1
|
Caramella-Pereira F, Zheng Q, Hicks JL, Roy S, Jones T, Pomper M, Antony L, Meeker AK, Yegnasubramanian S, De Marzo AM, Brennen WN. Overexpression of fibroblast activation protein (FAP) in the stroma of proliferative inflammatory atrophy (PIA) and primary adenocarcinoma of the prostate. Pathology 2025:S0031-3025(25)00093-5. [PMID: 40187966 DOI: 10.1016/j.pathol.2024.12.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 04/07/2025]
Abstract
Fibroblast activation protein (FAP) is a serine protease upregulated at sites of tissue remodelling and cancer that represents a promising therapeutic and molecular imaging target. In prostate cancer, studies of FAP expression using tissue microarrays are conflicting, such that its clinical potential is unclear. Furthermore, little is known regarding FAP expression in benign prostatic tissues. Here we demonstrated, using a novel iterative multiplex immunohistochemistry assay in standard tissue sections, that FAP was nearly absent in normal regions but was increased consistently in regions of proliferative inflammatory atrophy (PIA). In carcinoma, FAP was expressed in all cases but was highly heterogeneous. High FAP levels were associated with increased pathological stage and cribriform morphology. We verified that FAP levels in cancer correlated with CD163+ M2 macrophage density. In this first report to quantify FAP protein in benign prostate and primary tumours, using standard large tissue sections, we clarify that FAP is present in all primary prostatic carcinomas, supporting its potential clinical relevance. The finding of high levels of FAP within PIA supports the injury/regeneration model for its pathogenesis and suggests that it harbours a protumourigenic stroma, yet high levels of FAP in benign regions could lead to false-positive FAP-based molecular imaging results in clinically localised prostate cancer.
Collapse
Affiliation(s)
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujayita Roy
- Microbiology Devices for Regulatory Authorization or Clearance, Food and Drug Administration, Silver Spring, MD, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Pomper
- Department of Radiology, UT Southwestern, Dallas TX, USA
| | - Lizamma Antony
- Department of Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Pathology, Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Departments of Oncology, Pathology and Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA.
| | - W Nathaniel Brennen
- Department of Oncology, and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the James Buchanan Brady Urological Research Institute, Baltimore, MD, USA
| |
Collapse
|
2
|
Sayan M, Tuac Y, Akgul M, Kucukcolak S, Tjio E, Akbulut D, Chen LW, Yang DD, Moningi S, Leeman JE, Orio PF, Nguyen PL, D’Amico AV, Aktan C. Molecular Alterations Associated with Histologically Overt Stromal Response in Patients with Prostate Cancer. Int J Mol Sci 2024; 25:8913. [PMID: 39201599 PMCID: PMC11354361 DOI: 10.3390/ijms25168913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Prostate cancer has substantial heterogeneity in clinical outcomes and therapeutic responses, posing challenges in predicting disease progression and tailoring treatment strategies. Recent studies have highlighted the potential prognostic value of evaluating the tumor microenvironment, including the presence of a histologically overt stromal response (HOST-response) characterized by peri-glandular stromal changes and architectural distortions. This retrospective study examined patient records from The Cancer Genome Atlas database to identify genomic alterations associated with the HOST-response in prostate cancer. Among 348 patients who underwent radical prostatectomy, 160 (45.98%) were identified as having a HOST-response. A gene expression analysis revealed 1263 genes with significantly higher expression in patients with a HOST-response. A protein-protein interaction network analysis identified seven hub genes (KIF2C, CENPA, CDC20, UBE2C, ESPL1, KIF23, and PLK1) highly interconnected in the network. A functional enrichment analysis revealed alterations in the cell division, cytoskeletal organization, cytokinesis, and interleukin-16 signaling pathways in patients with a HOST-response, suggesting dysregulated proliferation and inflammation. The distinct molecular signature associated with the HOST-response provides insights into the tumor-stroma interactions driving adverse outcomes and potential targets for tailored therapeutic interventions in this subset of patients with prostate cancer.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yetkin Tuac
- Department of Statistics, Ankara University, Ankara 06100, Türkiye
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Samet Kucukcolak
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 07102, USA
| | - Elza Tjio
- Histopathology Department, Harrogate District Hospital, Harrogate HG2 7SX, UK
| | - Dilara Akbulut
- Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke W. Chen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David D. Yang
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Peter F. Orio
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Paul L. Nguyen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cagdas Aktan
- Department of Medical Biology, Faculty of Medicine, Bandirma Onyedi Eylul University, Balikesir 10250, Türkiye
| |
Collapse
|
3
|
Sayan M, Tuac Y, Kucukcolak S, Rowan MD, Pratt GK, Aktan C, Tjio E, Akbulut D, Moningi S, Leeman JE, Orio PF, Nguyen PL, D’Amico AV, Akgul M. Histologically Overt Stromal Response and the Risk of Progression after Radical Prostatectomy for Prostate Cancer. Cancers (Basel) 2024; 16:1871. [PMID: 38791950 PMCID: PMC11119771 DOI: 10.3390/cancers16101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Given the variable clinical course of prostate cancer and the limitations of current prognostic factors, this study was conducted to investigate the impact of a histologically overt stromal response (HOST-response) to prostate cancer on clinical outcomes after radical prostatectomy. METHODS This retrospective analysis utilized The Cancer Genome Atlas (TCGA) to evaluate data from individuals with a confirmed diagnosis of prostate cancer who underwent radical prostatectomy and had available pathology slides. These slides were assessed for the presence of a HOST-response, similar to desmoplasia. The primary endpoint was progression-free survival (PFS). A multivariable competing risk regression analysis was used to assess whether a significant association existed between HOST-response and PFS, adjusting for known prostate cancer prognostic factors. RESULTS Among the 348 patients analyzed, 166 (47.70%) demonstrated a HOST-response. After a median follow-up of 37.87 months (IQR: 21.20, 65.50), the presence of a HOST-response was significantly associated with a shorter PFS (SDHR, 2.10; 95% CI, 1.26 to 3.50; p = 0.004), after adjusting for covariates. CONCLUSIONS HOST-response in prostate cancer patients treated with radical prostatectomy is significantly associated with reduced PFS, suggesting a potential benefit from adjuvant therapy and highlighting the need for further investigation in a prospective randomized clinical trial.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yetkin Tuac
- Department of Statistics, Ankara University, 06100 Ankara, Türkiye
| | - Samet Kucukcolak
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 07102, USA
| | - Mary D. Rowan
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Grace K. Pratt
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cagdas Aktan
- Department of Medical Biology, Faculty of Medicine, Bandirma Onyedi Eylul University, 10250 Balikesir, Türkiye
| | - Elza Tjio
- Histopathology Department, Harrogate District Hospital, Harrogate HG2 7SX, UK
| | - Dilara Akbulut
- Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Peter F. Orio
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Paul L. Nguyen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, USA
| |
Collapse
|
4
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Caramella-Pereira F, Zheng Q, Hicks JL, Roy S, Jones T, Pomper M, Antony L, Meeker AK, Yegnasubramanian S, De Marzo AM, Brennen WN. Overexpression of Fibroblast Activation Protein (FAP) in stroma of proliferative inflammatory atrophy (PIA) and primary adenocarcinoma of the prostate. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.04.24305338. [PMID: 38633791 PMCID: PMC11023661 DOI: 10.1101/2024.04.04.24305338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Fibroblast activation protein (FAP) is a serine protease upregulated at sites of tissue remodeling and cancer that represents a promising therapeutic and molecular imaging target. In prostate cancer, studies of FAP expression using tissue microarrays are conflicting, such that its clinical potential is unclear. Furthermore, little is known regarding FAP expression in benign prostatic tissues. Here we demonstrated, using a novel iterative multiplex IHC assay in standard tissue sections, that FAP was nearly absent in normal regions, but was increased consistently in regions of proliferative inflammatory atrophy (PIA). In carcinoma, FAP was expressed in all cases, but was highly heterogeneous. High FAP levels were associated with increased pathological stage and cribriform morphology. We verified that FAP levels in cancer correlated with CD163+ M2 macrophage density. In this first report to quantify FAP protein in benign prostate and primary tumors, using standard large tissue sections, we clarify that FAP is present in all primary prostatic carcinomas, supporting its potential clinical relevance. The finding of high levels of FAP within PIA supports the injury/regeneration model for its pathogenesis and suggests that it harbors a protumorigenic stroma. Yet, high levels of FAP in benign regions could lead to false positive FAP-based molecular imaging results in clinically localized prostate cancer.
Collapse
|
6
|
Ding Y, Bu P, Assylbekova B, Ruder S, Miles B, Sayeeduddin M, Lee M, Ayala G. Quantification of collagen content and stromal cellularity within reactive stroma is predictive of prostate cancer biochemical recurrence and specific death. Hum Pathol 2024; 144:1-7. [PMID: 38159867 DOI: 10.1016/j.humpath.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 01/03/2024]
Abstract
Semiquantitative reactive stromal grading has been shown to be a predictor of biochemical recurrence and prostate cancer (PCa) specific death. It has been extensively validated. In this study we tested novel technologies to introduce quantitative measures of host response, in particular collagen content and stromal cellularity. We use 3 large retrospective cohorts, the Baylor College of Medicine cohort, the Brady cohort and the Pound cohort. Slides were stained and digitized using image deconvolution and analyzed using image segmentation and image analyses. PicroSirius red stain histochemical stains were used for collagen quantification. Area of cancer and stroma were measured independently, without regard to quality of stroma. Cellularity, in each compartment, was measured using image deconvolution, image segmentation and image analysis. Two biomarkers were tested in 3 independent cohorts with two endpoints, biochemical recurrence and prostate cancer specific death. Stromal cellularity (qCollCell) and stromal collagen area (qCollArea) are independently predictive biochemical recurrence in the Hopkins Brady cohort, particularly in Gleason 6-7 patients. Multivariate analysis demonstrated that increased stroma cellularity (qCollCell) was a significant predictor of PCa specific death, when compared to an established model of PCa, in the Baylor cohort. Stromal collagen (qCollArea) independently predicts PCa-specific death in the Hopkins Pound cohort. The introduction of a computerized quantitative test of the host response increases the probability that this test will be reproducible in other cohorts. The ability to improve prediction of prostate cancer specific death might lie in the study of the host and its response.
Collapse
Affiliation(s)
- Yi Ding
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Ping Bu
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Binara Assylbekova
- Clinical Pathology Associates, 2105 S. 48th Street, Suite 104. Tempe, AZ, 85282, USA
| | - Samuel Ruder
- Methodist Radiation Therapy, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Brian Miles
- Department of Urology, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Mohammad Sayeeduddin
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Minjae Lee
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Bogaard M, Skotheim RI, Maltau AV, Kidd SG, Lothe RA, Axcrona K, Axcrona U. 'High proliferative cribriform prostate cancer' defines a patient subgroup with an inferior prognosis. Histopathology 2023; 83:853-869. [PMID: 37501635 DOI: 10.1111/his.15012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
AIMS A cribriform pattern, reactive stroma (RS), PTEN, Ki67 and ERG are promising prognostic biomarkers in primary prostate cancer (PCa). We aim to determine the relative contribution of these factors and the Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) score in predicting PCa prognosis. METHODS AND RESULTS We included 475 patients who underwent radical prostatectomy (2010-12, median follow-up = 8.7 years). Cribriform pattern was identified in 57% of patients, PTEN loss in 55%, ERG expression in 51%, RS in 39% and high Ki67 in 9%. In patients with multiple samples from the same malignant focus and either PTEN loss or high Ki67, intrafocal heterogeneity for PTEN and Ki67 expression was detected in 55% and 89%, respectively. In patients with samples from two or more foci, interfocal heterogeneity was detected in 46% for PTEN and 6% for Ki67. A cribriform pattern and Ki67 were independent predictors of biochemical recurrence (BCR) and clinical recurrence (CR), whereas ERG expression was an independent predictor of CR. Besides CAPRA-S, a cribriform pattern provided the highest relative proportion of explained variation for predicting BCR (11%), and Ki67 provided the highest relative proportion of explained variation for CR (21%). In patients with a cribriform pattern, high Ki67 was associated with a higher risk of BCR [hazard ratio (HR) = 2.83, P < 0.001] and CR (HR = 4.35, P < 0.001). CONCLUSIONS High Ki67 in patients with a cribriform pattern identifies a patient subgroup with particularly poor prognosis, which we termed 'high proliferative cribriform prostate cancer'. These results support reporting a cribriform pattern in pathology reports, and advocate implementing Ki67.
Collapse
Affiliation(s)
- Mari Bogaard
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Aase V Maltau
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Susanne G Kidd
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | - Ulrika Axcrona
- Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| |
Collapse
|
8
|
Van der Kwast TH. Proliferative cribriform prostate cancer: a new opportunity for 'promising' marker KI-67? Histopathology 2023; 83:850-852. [PMID: 37927179 DOI: 10.1111/his.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Theodorus H Van der Kwast
- Laboratory Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
9
|
Marr KD, Gard JMC, Harryman WL, Keeswood EJ, Paxson AI, Wolgemuth C, Knudsen BS, Nagle RB, Hazlehurst L, Sorbellini M, Cress AE. Biophysical phenotype mixtures reveal advantages for tumor muscle invasion in vivo. Biophys J 2023; 122:4194-4206. [PMID: 37766428 PMCID: PMC10645557 DOI: 10.1016/j.bpj.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Bladder, colon, gastric, prostate, and uterine cancers originate in organs surrounded by laminin-coated smooth muscle. In human prostate cancer, tumors that are organ confined, without extracapsular extension through muscle, have an overall cancer survival rate of up to 97% compared with 32% for metastatic disease. Our previous work modeling extracapsular extension reported the blocking of tumor invasion by mutation of a laminin-binding integrin called α6β1. Expression of the α6AA mutant resulted in a biophysical switch from cell-ECM (extracellular matrix) to cell-cell adhesion with drug sensitivity properties and an inability to invade muscle. Here we used different admixtures of α6AA and α6WT cells to test the cell heterogeneity requirements for muscle invasion. Time-lapse video microscopy revealed that tumor mixtures self-assembled into invasive networks in vitro, whereas α6AA cells assembled only as cohesive clusters. Invasion of α6AA cells into and through live muscle occurred using a 1:1 mixture of α6AA and α6WT cells. Electric cell-substrate impedance sensing measurements revealed that compared with α6AA cells, invasion-competent α6WT cells were 2.5-fold faster at closing a cell-ECM or cell-cell wound, respectively. Cell-ECM rebuilding kinetics show that an increased response occurred in mixtures since the response was eightfold greater compared with populations containing only one cell type. A synthetic cell adhesion cyclic peptide called MTI-101 completely blocked electric cell-substrate impedance sensing cell-ECM wound recovery that persisted in vitro up to 20 h after the wound. Treatment of tumor-bearing animals with 10 mg/kg MTI-101 weekly resulted in a fourfold decrease of muscle invasion by tumor and a decrease of the depth of invasion into muscle comparable to the α6AA cells. Taken together, these data suggest that mixed biophysical phenotypes of tumor cells within a population can provide functional advantages for tumor invasion into and through muscle that can be potentially inhibited by a synthetic cell adhesion molecule.
Collapse
Affiliation(s)
- Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona; Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Elijah J Keeswood
- University of Arizona Cancer Center, Tucson, Arizona; Partnership for Native American Cancer Prevention, University of Arizona, Tucson, Arizona
| | - Allan I Paxson
- Partnership for Native American Cancer Prevention, University of Arizona, Tucson, Arizona
| | | | - Beatrice S Knudsen
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, Arizona
| | - Lori Hazlehurst
- Associate Director of Basic Research, Co-Leader Alexander B. Osborn Hematopoietic Malignancy and Transplantation, West Virginia University, Morgantown, West Virginia
| | | | - Anne E Cress
- University of Arizona Cancer Center, Tucson, Arizona; Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
10
|
Treacy PJ, Martini A, Falagario UG, Ratnani P, Wajswol E, Beksac AT, Wiklund P, Nair S, Kyprianou N, Durand M, Tewari AK. Association between Expression of Connective Tissue Genes and Prostate Cancer Growth and Progression. Int J Mol Sci 2023; 24:ijms24087520. [PMID: 37108678 PMCID: PMC10139147 DOI: 10.3390/ijms24087520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
To find an association between genomic features of connective tissue and pejorative clinical outcomes on radical prostatectomy specimens. We performed a retrospective analysis of patients who underwent radical prostatectomy and underwent a Decipher transcriptomic test for localized prostate cancer in our institution (n = 695). The expression results of selected connective tissue genes were analyzed after multiple t tests, revealing significant differences in the transcriptomic expression (over- or under-expression). We investigated the association between transcript results and clinical features such as extra-capsular extension (ECE), clinically significant cancer, lymph node (LN) invasion and early biochemical recurrence (eBCR), defined as earlier than 3 years after surgery). The Cancer Genome Atlas (TCGA) was used to evaluate the prognostic role of genes on progression-free survival (PFS) and overall survival (OS). Out of 528 patients, we found that 189 had ECE and 27 had LN invasion. The Decipher score was higher in patients with ECE, LN invasion, and eBCR. Our gene selection microarray analysis showed an overexpression in both ECE and LN invasion, and in clinically significant cancer for COL1A1, COL1A2, COL3A1, LUM, VCAN, FN1, AEBP1, ASPN, TIMP1, TIMP3, BGN, and underexpression in FMOD and FLNA. In the TCGA population, overexpression of these genes was correlated with worse PFS. Significant co-occurrence of these genes was observed. When presenting overexpression of our gene selection, the 5-year PFS rate was 53% vs. 68% (p = 0.0315). Transcriptomic overexpression of connective tissue genes correlated to worse clinical features, such as ECE, clinically significant cancer and BCR, identifying the potential prognostic value of the gene signature of the connective tissue in prostate cancer. TCGAp cohort analysis showed a worse PFS in case of overexpression of the connective tissue genes.
Collapse
Affiliation(s)
- Patrick-Julien Treacy
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology and Organ Transplantation, Nice University Hospital, 06003 Nice, France
| | - Alberto Martini
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ugo Giovanni Falagario
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Parita Ratnani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan Wajswol
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alp Tuna Beksac
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sujit Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthieu Durand
- Department of Urology and Organ Transplantation, Nice University Hospital, 06003 Nice, France
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Kidd SG, Bogaard M, Carm KT, Bakken AC, Maltau AMV, Løvf M, Lothe RA, Axcrona K, Axcrona U, Skotheim RI. In situ
expression of
ERG
protein in the context of tumor heterogeneity identifies prostate cancer patients with inferior prognosis. Mol Oncol 2022; 16:2810-2822. [PMID: 35574900 PMCID: PMC9348599 DOI: 10.1002/1878-0261.13225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Prognostic biomarkers for prostate cancer are needed to improve prediction of disease course and guide treatment decisions. However, biomarker development is complicated by the common multifocality and heterogeneity of the disease. We aimed to determine the prognostic value of candidate biomarkers transcriptional regulator ERG and related ETS family genes, while considering tumor heterogeneity. In a multisampled, prospective, and treatment‐naïve radical prostatectomy cohort from one tertiary center (2010–2012, median follow‐up 8.1 years), we analyzed ERG protein (480 patients; 2047 tissue cores), and RNA of several ETS genes in a subcohort (165 patients; 778 fresh‐frozen tissue samples). Intra‐ and interfocal heterogeneity was identified in 29% and 33% (ERG protein) and 39% and 27% (ETS RNA) of patients, respectively. ERG protein and ETS RNA was identified exclusively in a nonindex tumor in 31% and 32% of patients, respectively. ERG protein demonstrated independent prognostic value in predicting biochemical (P = 0.04) and clinical recurrence (P = 0.004) and appeared to have greatest prognostic value for patients with Grade Groups 4–5. In conclusion, when heterogeneity is considered, ERG protein is a robust prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
- Susanne G. Kidd
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
- Institute for Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway
| | - Mari Bogaard
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
- Institute for Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway
- Department of Pathology Oslo University Hospital–Radiumhospitalet Oslo Norway
| | - Kristina T. Carm
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
| | - Anne Cathrine Bakken
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
| | - Aase M. V. Maltau
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
| | - Marthe Løvf
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
- Institute for Clinical Medicine, Faculty of Medicine University of Oslo Oslo Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
- Department of Urology Akershus University Hospital Lørenskog Norway
| | - Ulrika Axcrona
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
- Department of Pathology Oslo University Hospital–Radiumhospitalet Oslo Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research Oslo University Hospital–Radiumhospitalet Oslo Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| |
Collapse
|
12
|
Ruder S, Gao Y, Ding Y, Bu P, Miles B, De Marzo A, Wheeler T, McKenney JK, Auman H, Fazli L, Simko J, Coll AH, Troyer DA, Carroll PR, Gleave M, Platz E, Trock B, Han M, Sayeeduddin M, True LD, Rowley D, Lin DW, Nelson PS, Thompson IM, Feng Z, Wei W, Brooks JD, Ittmann M, Lee M, Ayala G. Development and validation of a quantitative reactive stroma biomarker (qRS) for prostate cancer prognosis. Hum Pathol 2022; 122:84-91. [PMID: 35176252 PMCID: PMC9832989 DOI: 10.1016/j.humpath.2022.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 01/13/2023]
Abstract
To develop and validate a new tissue-based biomarker that improves prediction of outcomes in localized prostate cancer by quantifying the host response to tumor. We use digital image analysis and machine learning to develop a biomarker of the prostate stroma called quantitative reactive stroma (qRS). qRS is a measure of percentage tumor area with a distinct, reactive stromal architecture. Kaplan Meier analysis was used to determine survival in a large retrospective cohort of radical prostatectomy samples. qRS was validated in two additional, distinct cohorts that include international cases and tissue from both radical prostatectomy and biopsy specimens. In the developmental cohort (Baylor College of Medicine, n = 482), patients whose tumor had qRS > 34% had increased risk of prostate cancer-specific death (HR 2.94; p = 0.039). This result was replicated in two validation cohorts, where patients with qRS > 34% had increased risk of prostate cancer-specific death (MEDVAMC; n = 332; HR 2.64; p = 0.02) and also biochemical recurrence (Canary; n = 988; HR 1.51; p = 0.001). By multivariate analysis, these associations were shown to hold independent predictive value when compared to currently used clinicopathologic factors including Gleason score and PSA. qRS is a new, validated biomarker that predicts prostate cancer death and biochemical recurrence across three distinct cohorts. It measures host-response rather than tumor-based characteristics, and provides information not represented by standard prognostic measurements.
Collapse
Affiliation(s)
- Samuel Ruder
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center Medical School. 6431 Fannin Street, Houston, TX 77030. USA
| | - Yan Gao
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center Medical School. 6431 Fannin Street, Houston, TX 77030. USA
| | - Yi Ding
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center Medical School. 6431 Fannin Street, Houston, TX 77030. USA
| | - Ping Bu
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center Medical School. 6431 Fannin Street, Houston, TX 77030. USA
| | - Brian Miles
- Department of Urology, The Methodist Hospital. 6560 Fannin Street, Suite 2100. Houston, TX, 77030. USA
| | - Angelo De Marzo
- Departments of Pathology, Epidemiology and Urology, Johns Hopkins Hospital School of Medicine. 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, 21287. USA
| | - Thomas Wheeler
- Department of Pathology & Immunology, Baylor College of Medicine - BCM 215. One Baylor Plaza, Houston, TX, 77030. USA
| | - Jesse K. McKenney
- Department of Urology, Cleveland Clinic Foundation. Mail Code L25, 9500 Euclid Avenue, Cleveland, OH, 44195. USA
| | - Heidi Auman
- Canary Foundation, 3155 Porter Drive, Palo Alto, CA, 94304. USA
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia. 2660 Oak St., Vancouver, BC, V6H 3Z6. Canada
| | - Jeff Simko
- Department of Pathology, University of California San Francisco. 505 Parnassus Avenue, Suite M590, Box 0511, San Francisco, CA, 94143-0511. USA
| | - Antonio Hurtado Coll
- Vancouver Prostate Centre, University of British Columbia. 2660 Oak St., Vancouver, BC, V6H 3Z6. Canada
| | - Dean A. Troyer
- Department of Pathology, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA, 23501-1980. USA
| | - Peter R. Carroll
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Suite A-610. San Francisco, CA, 94143-0330. USA
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia. 2660 Oak St., Vancouver, BC, V6H 3Z6. Canada
| | - Elizabeth Platz
- Departments of Pathology, Epidemiology and Urology, Johns Hopkins Hospital School of Medicine. 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, 21287. USA
| | - Bruce Trock
- Departments of Pathology, Epidemiology and Urology, Johns Hopkins Hospital School of Medicine. 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, 21287. USA
| | - Misop Han
- Departments of Pathology, Epidemiology and Urology, Johns Hopkins Hospital School of Medicine. 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, 21287. USA
| | - Mohammad Sayeeduddin
- Department of Pathology & Immunology, Baylor College of Medicine - BCM 215. One Baylor Plaza, Houston, TX, 77030. USA
| | - Lawrence D. True
- Department of Urology, University of Washington. Surgery Pavilion, 1959 NE Pacific St., Seattle, WA, 98195. USA
| | - David Rowley
- Department of Molecular and Cell Biology, Baylor College of Medicine, BCMA-514B, Houston, TX, 77030. USA
| | - Daniel W. Lin
- Department of Urology, University of Washington. Surgery Pavilion, 1959 NE Pacific St., Seattle, WA, 98195. USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 110 Fairview Ave. N., PO Box 19024, Seattle, WA, 98109-1024. USA
| | - Ian M. Thompson
- Department of Urology, University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7845, San Antonio, TX, 78229-3900. USA
| | - Ziding Feng
- Biostatistics Department - Unit 1411, The University of Texas MD Anderson Cancer Center, P.O. Box 301402, Houston, TX, 77230-1402. USA
| | - Wei Wei
- Biostatistics Department - Unit 1411, The University of Texas MD Anderson Cancer Center, P.O. Box 301402, Houston, TX, 77230-1402. USA
| | - James D. Brooks
- Department of Urology, Stanford University, 453 Quarry Road, Urology 5656, Palo Alto, CA, 94304. USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine - BCM 215. One Baylor Plaza, Houston, TX, 77030. USA
| | - MinJae Lee
- Biostatistics/Epidemiology/Research Design (BERD) Core, Department of Internal Medicine, University of Texas Health Sciences Center Medical School, 6410 Fannin St, Houston, TX, 77030. USA
| | - Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center Medical School. 6431 Fannin Street, Houston, TX 77030. USA
| |
Collapse
|
13
|
Harryman WL, Marr KD, Nagle RB, Cress AE. Integrins and Epithelial-Mesenchymal Cooperation in the Tumor Microenvironment of Muscle-Invasive Lethal Cancers. Front Cell Dev Biol 2022; 10:837585. [PMID: 35300411 PMCID: PMC8921537 DOI: 10.3389/fcell.2022.837585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle-invasive lethal carcinomas traverse into and through this specialized biophysical and growth factor enriched microenvironment. We will highlight cancers that originate in organs surrounded by smooth muscle, which presents a barrier to dissemination, including prostate, bladder, esophageal, gastric, and colorectal cancers. We propose that the heterogeneity of cell-cell and cell-ECM adhesion receptors is an important driver of aggressive tumor networks with functional consequences for progression. Phenotype heterogeneity of the tumor provides a biophysical advantage for tumor network invasion through the tensile muscle and survival of the tumor network. We hypothesize that a functional epithelial-mesenchymal cooperation (EMC)exists within the tumor invasive network to facilitate tumor escape from the primary organ, invasion and traversing of muscle, and navigation to metastatic sites. Cooperation between specific epithelial cells within the tumor and stromal (mesenchymal) cells interacting with the tumor is illustrated using the examples of laminin-binding adhesion molecules—especially integrins—and their response to growth and inflammatory factors in the tumor microenvironment. The cooperation between cell-cell (E-cadherin, CDH1) and cell-ECM (α6 integrin, CD49f) expression and growth factor receptors is highlighted within poorly differentiated human tumors associated with aggressive disease. Cancer-associated fibroblasts are examined for their role in the tumor microenvironment in generating and organizing various growth factors. Cellular structural proteins are potential utility markers for future spatial profiling studies. We also examine the special characteristics of the smooth muscle microenvironment and how invasion by a primary tumor can alter this environment and contribute to tumor escape via cooperation between epithelial and stromal cells. This cooperative state allows the heterogenous tumor clusters to be shaped by various growth factors, co-opt or evade immune system response, adapt from hypoxic to normoxic conditions, adjust to varying energy sources, and survive radiation and chemotherapeutic interventions. Understanding the epithelial-mesenchymal cooperation in early tumor invasive networks holds potential for both identifying early biomarkers of the aggressive transition and identification of novel agents to prevent the epithelial-mesenchymal cooperation phenotype. Epithelial-mesenchymal cooperation is likely to unveil new tumor subtypes to aid in selection of appropriate therapeutic strategies.
Collapse
Affiliation(s)
- William L Harryman
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States.,Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ray B Nagle
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Pellinen T, Sandeman K, Blom S, Turkki R, Hemmes A, Välimäki K, Eineluoto J, Kenttämies A, Nordling S, Kallioniemi O, Rannikko A, Mirtti T. Stromal FAP Expression is Associated with MRI Visibility and Patient Survival in Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:172-181. [PMID: 36874403 PMCID: PMC9980917 DOI: 10.1158/2767-9764.crc-21-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Some clinically significant prostate cancers are missed by MRI. We asked whether the tumor stroma in surgically treated localized prostate cancer lesions positive or negative with MRI are different in their cellular and molecular properties, and whether the differences are reflected to the clinical course of the disease. We profiled the stromal and immune cell composition of MRI-classified tumor lesions by applying multiplexed fluorescence IHC (mfIHC) and automated image analysis in a clinical cohort of 343 patients (cohort I). We compared stromal variables between MRI-visible lesions, invisible lesions, and benign tissue and assessed the predictive significance for biochemical recurrence (BCR) and disease-specific survival (DSS) using Cox regression and log-rank analysis. Subsequently, we carried out a prognostic validation of the identified biomarkers in a population-based cohort of 319 patients (cohort II). MRI true-positive lesions are different from benign tissue and MRI false-negative lesions in their stromal composition. CD163+ cells (macrophages) and fibroblast activation protein (FAP)+ cells were more abundant in MRI true-positive than in MRI false-negative lesions or benign areas. In MRI true-visible lesions, a high proportion of stromal FAP+ cells was associated with PTEN status and increased immune infiltration (CD8+, CD163+), and predicted elevated risk for BCR. High FAP phenotype was confirmed to be a strong indicator of poor prognosis in two independent patient cohorts using also conventional IHC. The molecular composition of the tumor stroma may determine whether early prostate lesions are detectable by MRI and associates with survival after surgical treatment. Significance These findings may have a significant impact on clinical decision making as more radical treatments may be recommended for men with a combination of MRI-visible primary tumors and FAP+ tumor stroma.
Collapse
Affiliation(s)
- Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kevin Sandeman
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sami Blom
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Riku Turkki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology & Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juho Eineluoto
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Kenttämies
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stig Nordling
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology & Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
15
|
Reiter R, Majumdar S, Kearney S, Kajdacsy-Balla A, Macias V, Crivellaro S, Abern M, Royston TJ, Klatt D. Investigating the heterogeneity of viscoelastic properties in prostate cancer using MR elastography at 9.4T in fresh prostatectomy specimens. Magn Reson Imaging 2022; 87:113-118. [PMID: 35007693 DOI: 10.1016/j.mri.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE To quantify the heterogeneity of viscoelastic tissue properties in prostatectomy specimens from men with prostate cancer (PC) using MR elastography (MRE) with histopathology as reference. METHODS Twelve fresh prostatectomy specimens were examined in a preclinical 9.4T MRI scanner. Maps of the complex shear modulus (|G*| in kPa) with its real and imaginary part (G' and G" in kPa) were calculated at 500 Hz. Prostates were divided into 12 segments for segment-wise measurement of viscoelastic properties and histopathology. Coefficients of variation (CVs in %) were calculated for quantification of heterogeneity. RESULTS Group-averaged values of cancerous vs. benign segments were significantly increased: |G*| of 12.13 kPa vs. 6.14 kPa, G' of 10.84 kPa vs. 5.44 kPa and G" of 5.45 kPa vs. 2.92 kPa, all p < 0.001. In contrast, CVs were significantly increased for benign segments: 23.59% vs. 26.32% (p = 0.014) for |G*|, 27.05% vs. 37.84% (p < 0.003) for G', and 36.51% vs. 50.37% (p = 0.008) for G". DISCUSSION PC is characterized by a stiff yet homogeneous biomechanical signature, which may be due to the unique nondestructive growth pattern of PC with intervening stroma, providing a rigid scaffold in the affected area. In turn, increased heterogeneity in benign prostate segments may be attributable to the presence of different prostate zones with involvement by specific nonmalignant pathology.
Collapse
Affiliation(s)
- Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Shreyan Majumdar
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Steven Kearney
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States
| | - André Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Simone Crivellaro
- Department of Urology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Michael Abern
- Department of Urology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Thomas J Royston
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Dieter Klatt
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
16
|
Pavlova IP, Nair SS, Lundon D, Sobotka S, Roshandel R, Treacy PJ, Ratnani P, Brody R, Epstein JI, Ayala GE, Kyprianou N, Tewari AK. Multiphoton Microscopy for Identifying Collagen Signatures Associated with Biochemical Recurrence in Prostate Cancer Patients. J Pers Med 2021; 11:jpm11111061. [PMID: 34834413 PMCID: PMC8619628 DOI: 10.3390/jpm11111061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is a heterogeneous disease that remains dormant for long periods or acts aggressively with poor clinical outcomes. Identifying aggressive prostate tumor behavior using current glandular-focused histopathological criteria is challenging. Recent evidence has implicated the stroma in modulating prostate tumor behavior and in predicting post-surgical outcomes. However, the emergence of stromal signatures has been limited, due in part to the lack of adoption of imaging modalities for stromal-specific profiling. Herein, label-free multiphoton microscopy (MPM), with its ability to image tissue with stromal-specific contrast, is used to identify prostate stromal features associated with aggressive tumor behavior and clinical outcome. MPM was performed on unstained prostatectomy specimens from 59 patients and on biopsy specimens from 17 patients with known post-surgery recurrence status. MPM-identified collagen content, organization, and morphological tumor signatures were extracted for each patient and screened for association with recurrent disease. Compared to tumors from patients whose disease did not recur, tumors from patients with recurrent disease exhibited higher MPM-identified collagen amount and collagen fiber intensity signal and width. Our study shows an association between MPM-identified stromal collagen features of prostate tumors and post-surgical disease recurrence, suggesting their potential for prostate cancer risk assessment.
Collapse
Affiliation(s)
- Ina P. Pavlova
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
- Correspondence: (I.P.P.); (A.K.T.); Tel.: +1-212-659-5654 (I.P.P.); +1-212-241-8711 (A.K.T.)
| | - Sujit S. Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Dara Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Stanislaw Sobotka
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Reza Roshandel
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | | | - Parita Ratnani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Rachel Brody
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jonathan I. Epstein
- Department of Pathology, Urology and Oncology, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Gustavo E. Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
- Correspondence: (I.P.P.); (A.K.T.); Tel.: +1-212-659-5654 (I.P.P.); +1-212-241-8711 (A.K.T.)
| |
Collapse
|
17
|
Kidd SG, Carm KT, Bogaard M, Olsen LG, Bakken AC, Løvf M, Lothe RA, Axcrona K, Axcrona U, Skotheim RI. High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia 2021; 23:634-641. [PMID: 34107378 PMCID: PMC8192444 DOI: 10.1016/j.neo.2021.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
In primary prostate cancer, the common multifocality and heterogeneity are major obstacles in finding robust prognostic tissue biomarkers. The long noncoding RNA SCHLAP1 has been suggested, but its prognostic value has not been investigated in the context of tumor heterogeneity. In the present study, expression of SCHLAP1 was investigated using real-time RT-PCR in a multisampled series of 778 tissue samples from radical prostatectomies of 164 prostate cancer patients (median follow-up time 7.4 y). The prognostic value of SCHLAP1 was evaluated with biochemical recurrence as endpoint. In total, 29% of patients were classified as having high expression of SCHLAP1 in at least one malignant sample. Among these, inter- and intrafocal heterogeneity was detected in 72% and 56%, respectively. High expression of SCHLAP1 was shown to be a predictor of biochemical recurrence in both uni- and multivariable cox regression analyses (P < 0.001 and P = 0.02). High expression of SCHLAP1 was also significantly associated with adverse clinicopathological characteristics, including grade group, high pT stage, invasive cribriform growth/intraductal carcinoma of the prostate, and reactive stroma. In conclusion, high expression of SCHLAP1 in at least one malignant sample is a robust prognostic biomarker in primary prostate cancer. For the first time, high SCHLAP1 expression has been associated with the aggressive histopathologic feature reactive stroma. The expression of SCHLAP1 is highly heterogeneous, and analysis of multiple samples is therefore crucial in determination of the SCHLAP1 status of a patient.
Collapse
Affiliation(s)
- Susanne G Kidd
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina T Carm
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mari Bogaard
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Linn Guro Olsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Anne Cathrine Bakken
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Marthe Løvf
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | - Ulrika Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Pathology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
18
|
Osório DA, Consonni SR, Dos Santos AM, Carvalho HF. Polarization, migration, and homotypical interactions among prostatic smooth muscle cells in a laminin 111-rich extracellular matrix. Cell Biol Int 2021; 45:882-889. [PMID: 33377550 DOI: 10.1002/cbin.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/25/2020] [Indexed: 11/09/2022]
Abstract
Prostate cancer is a life-threatening condition worldwide. As the tumor progresses, smooth muscle cells (SMCs) become atrophic/dedifferentiated, within a series of stromal changes named stromal reaction. Here, we tested whether a laminin 111-rich extracellular matrix (Lr-ECM) could affect SMCs phenotype and differentiation status. Using time-lapse microscopy, image analyses, quantitative real-time reverse transcription polymerase chain reaction, immunohistochemistry and immunoblotting, and transmission electron microscopy, we showed that SMCs acquires a migratory behavior with a decreased expression of differentiation markers and relocation of focal adhesion kinase. SMCs set homotypic cell junctions and were active in autophagy/phagocytosis. Analysis of the migratory behavior showed that SMCs polarized and migrated toward each other, recognizing long-distance signals such as matrix tensioning. However, half of the cell population were immotile, irrespective of the nearest neighbor distance, suggesting they do not engage in productive interactions, possibly as a result of back-to-back positioning. In conclusion, the Lr-ECM, mimics the effects of the proliferating and infiltrating tumor epithelium, causing SMCs phenotypical change similar to that observed in the stromal reaction, in addition to a hitherto undescribed, stereotyped pattern of cell motility resulting from cell polarization.
Collapse
Affiliation(s)
- Daniel A Osório
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Silvio R Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline M Dos Santos
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,National Institute of Photonics Applied to Cell Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,National Institute of Photonics Applied to Cell Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Cohesive cancer invasion of the biophysical barrier of smooth muscle. Cancer Metastasis Rev 2021; 40:205-219. [PMID: 33398621 DOI: 10.1007/s10555-020-09950-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Smooth muscle is found around organs in the digestive, respiratory, and reproductive tracts. Cancers arising in the bladder, prostate, stomach, colon, and other sites progress from low-risk disease to high-risk, lethal metastatic disease characterized by tumor invasion into, within, and through the biophysical barrier of smooth muscle. We consider here the unique biophysical properties of smooth muscle and how cohesive clusters of tumor use mechanosensing cell-cell and cell-ECM (extracellular matrix) adhesion receptors to move through a structured muscle and withstand the biophysical forces to reach distant sites. Understanding integrated mechanosensing features within tumor cluster and smooth muscle and potential triggers within adjacent adipose tissue, such as the unique damage-associated molecular pattern protein (DAMP), eNAMPT (extracellular nicotinamide phosphoribosyltransferase), or visfatin, offers an opportunity to prevent the first steps of invasion and metastasis through the structured muscle.
Collapse
|
20
|
Frankenstein Z, Basanta D, Franco OE, Gao Y, Javier RA, Strand DW, Lee M, Hayward SW, Ayala G, Anderson ARA. Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nat Ecol Evol 2020; 4:870-884. [PMID: 32393869 PMCID: PMC11000594 DOI: 10.1038/s41559-020-1157-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/19/2020] [Indexed: 01/19/2023]
Abstract
Prostate cancer (PCa) progression is a complex eco-evolutionary process driven by the feedback between evolving tumour cell phenotypes and microenvironmentally driven selection. To better understand this relationship, we used a multiscale mathematical model that integrates data from biology and pathology on the microenvironmental regulation of PCa cell behaviour. Our data indicate that the interactions between tumour cells and their environment shape the evolutionary dynamics of PCa cells and explain overall tumour aggressiveness. A key environmental determinant of this aggressiveness is the stromal ecology, which can be either inhibitory, highly reactive (supportive) or non-reactive (neutral). Our results show that stromal ecology correlates directly with tumour growth but inversely modulates tumour evolution. This suggests that aggressive, environmentally independent PCa may be a result of poor stromal ecology, supporting the concept that purely tumour epithelium-centric metrics of aggressiveness may be incomplete and that incorporating markers of stromal ecology would improve prognosis.
Collapse
Affiliation(s)
- Ziv Frankenstein
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Independent Researcher, New York, NY, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Yan Gao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Rodrigo A Javier
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - MinJae Lee
- Biostatistics/Epidemiology/Research Design Core, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
21
|
Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiology 2020; 87:87-99. [PMID: 32045912 DOI: 10.1159/000505437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development and progression of neoplasms. TME consists of the extracellular matrix and numerous specialized cells interacting with cancer cells by paracrine and autocrine mechanisms. Tumor axonogenesis and neoneurogenesis constitute a developing area of investigation. Prostate cancer (PC) is one of the most common malignancies in men worldwide. During the past years, more and more studies have shown that mechanisms leading to the development of PC are not confined only to the epithelial cancer cell, but also involve the tumor stroma. Different nerve types and neurotransmitters present within the TME are thought to be important factors in PC biology. Moreover, perineural invasion, which is a common way of PC spreading, in parallel creates the neural niche for malignant cells. Cancer neurobiology seems to have become a new discipline to explore the contribution of neoplastic cell interactions with the nervous system and the neural TME component, also to search for potential therapeutic targets in malignant tumors such as PC.
Collapse
Affiliation(s)
- Aleksandra Sejda
- Department of Pathomorphology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland,
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
22
|
Mah CY, Nassar ZD, Swinnen JV, Butler LM. Lipogenic effects of androgen signaling in normal and malignant prostate. Asian J Urol 2019; 7:258-270. [PMID: 32742926 PMCID: PMC7385522 DOI: 10.1016/j.ajur.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/16/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is an androgen-dependent cancer with unique metabolic features compared to many other solid tumors, and typically does not exhibit the “Warburg effect”. During malignant transformation, an early metabolic switch diverts the dependence of normal prostate cells on aerobic glycolysis for the synthesis of and secretion of citrate towards a more energetically favorable metabolic phenotype, whereby citrate is actively oxidised for energy and biosynthetic processes (i.e. de novo lipogenesis). It is now clear that lipid metabolism is one of the key androgen-regulated processes in prostate cells and alterations in lipid metabolism are a hallmark of prostate cancer, whereby increased de novo lipogenesis accompanied by overexpression of lipid metabolic genes are characteristic of primary and advanced disease. Despite recent advances in our understanding of altered lipid metabolism in prostate tumorigenesis and cancer progression, the intermediary metabolism of the normal prostate and its relationship to androgen signaling remains poorly understood. In this review, we discuss the fundamental metabolic relationships that are distinctive in normal versus malignant prostate tissues, and the role of androgens in the regulation of lipid metabolism at different stages of prostate tumorigenesis.
Collapse
Affiliation(s)
- Chui Yan Mah
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johannes V Swinnen
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
23
|
Blom S, Erickson A, Östman A, Rannikko A, Mirtti T, Kallioniemi O, Pellinen T. Fibroblast as a critical stromal cell type determining prognosis in prostate cancer. Prostate 2019; 79:1505-1513. [PMID: 31269283 PMCID: PMC6813917 DOI: 10.1002/pros.23867] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tumor stroma associates with prostate cancer (PCa) progression, but its specific cellular composition and association to patient survival outcome have not been characterized. METHODS We analyzed stromal composition in human PCa using multiplex immunohistochemistry and quantitative, high-resolution image analysis in two retrospective, formalin-fixed paraffin embedded observational clinical cohorts (Cohort I, n = 117; Cohort II, n = 340) using PCa-specific mortality as outcome measurement. RESULTS A high proportion of fibroblasts associated with aggressive disease and castration-resistant prostate cancer (CRPC). In a multivariate analysis, increase in fibroblast proportion predicted poor cancer-specific outcome independently in the two clinical cohorts studied. CONCLUSIONS Fibroblasts were the most important cell type in determining prognosis in PCa and associated with CRPC. Thus, the stromal composition could be critically important in developing diagnostic and therapeutic approaches to aggressive prostate cancer.
Collapse
Affiliation(s)
- Sami Blom
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Andrew Erickson
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Arne Östman
- Science for Life Laboratory, Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | - Antti Rannikko
- Department of UrologyHelsinki University and Helsinki University HospitalHelsinkiFinland
| | - Tuomas Mirtti
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Science for Life Laboratory, Department of Oncology and PathologyKarolinska InstitutetStockholmSweden
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| |
Collapse
|
24
|
Shah RB, Shore KT, Yoon J, Mendrinos S, McKenney JK, Tian W. PTEN loss in prostatic adenocarcinoma correlates with specific adverse histologic features (intraductal carcinoma, cribriform Gleason pattern 4 and stromogenic carcinoma). Prostate 2019; 79:1267-1273. [PMID: 31111513 DOI: 10.1002/pros.23831] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The loss of PTEN tumor suppressor gene is one of the most common somatic genetic aberrations in prostate cancer (PCa) and is frequently associated with high-risk disease. Deletion or mutation of at least one PTEN allele has been reported to occur in 20% to 40% of localized PCa and up to 60% of metastases. The goal of this study was to determine if somatic alteration detected by PTEN immunohistochemical loss of expression is associated with specific histologic features. METHODS Two hundred sixty prostate core needle biopsies with PCa were assessed for PTEN loss using an analytically validated immunohistochemical assay. Blinded to PTEN status, each tumor was assessed for the Grade Group (GG) and the presence or absence of nine epithelial features. Presence of stromogenic PCa was also assessed and defined as grade 3 reactive tumor stroma as previously described: the presence of carcinoma associated stromal response with epithelial to stroma ratio of greater than 50% reactive stroma. RESULTS Eight-eight (34%) cases exhibited PTEN loss while 172 (66%) had intact PTEN. PTEN loss was significantly (P < 0.05) associated with increasing GG, poorly formed glands (74% of total cases with loss vs 49% of intact), and three well-validated unfavorable pathological features: intraductal carcinoma of the prostate (IDC-P) (69% of total cases with loss vs 12% of intact), cribriform Gleason pattern 4 (38% of total cases with loss vs 10% of intact) and stromogenic PCa (23% of total cases with loss vs 6% of intact). IDC-P had the highest relative risk (4.993, 95% confidence interval, 3.451-7.223, P < 0.001) for PTEN loss. At least one of these three unfavorable pathological features were present in 67% of PCa exhibiting PTEN loss, while only 11% of PCa exhibited PTEN loss when none of these three unfavorable pathological features were present. CONCLUSIONS PCa with PTEN loss demonstrates a strong correlation with known unfavorable histologic features, particularly IDC-P. This is the first study showing the association of PTEN loss with stromogenic PCa.
Collapse
Affiliation(s)
- Rajal B Shah
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Karen T Shore
- Weiss School of Natural Sciences, Rice University, Houston, Texas
| | - Jiyoon Yoon
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Savvas Mendrinos
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Wei Tian
- Division of Urologic Pathology, Inform Diagnostics, Irving, Texas
| |
Collapse
|
25
|
Randall EC, Zadra G, Chetta P, Lopez BGC, Syamala S, Basu SS, Agar JN, Loda M, Tempany CM, Fennessy FM, Agar NYR. Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging. Mol Cancer Res 2019; 17:1155-1165. [PMID: 30745465 PMCID: PMC6497547 DOI: 10.1158/1541-7786.mcr-18-1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.
Collapse
Affiliation(s)
- Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giorgia Zadra
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Paolo Chetta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- University of Milan, Milan, Italy
| | - Begona G C Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sudeepa Syamala
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey N Agar
- Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Massimo Loda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Y R Agar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Miles B, Ittmann M, Wheeler T, Sayeeduddin M, Cubilla A, Rowley D, Bu P, Ding Y, Gao Y, Lee M, Ayala GE. Moving Beyond Gleason Scoring. Arch Pathol Lab Med 2019; 143:565-570. [DOI: 10.5858/arpa.2018-0242-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
The combination of grading and staging is the basis of current standard of care for prediction for most cancers. D. F. Gleason created the current prostate cancer (PCa) grading system. This system has been modified several times. Molecular data have been added. Currently, all grading systems are cancer-cell based.
Objective.—
To review the literature available on host response measures as reactive stroma grading and stromogenic carcinoma, and their predictive ability for PCa biochemical recurrence and PCa-specific death.
Data Sources.—
Our own experience has shown that reactive stroma grading and the subsequently binarized system (stromogenic carcinoma) can independently predict biochemical recurrence and/or PCa-specific death, particularly in patients with a Gleason score of 6 or 7. Stromogenic carcinoma has been validated by 4 other independent groups in at least 3 continents.
Conclusions.—
Broders grading and Dukes staging have been combined to form the most powerful prognostic tools in standard of care. The time has come for us to incorporate measures of host response (stromogenic carcinoma) into the arsenal of elements we use to predict cancer survival, without abandoning what we know works. These data also suggest that our current definition of PCa might need some revision.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gustavo E. Ayala
- From the Department of Urology, The Methodist Hospital, Houston, Texas (Dr Miles); the Departments of Pathology & Immunology (Drs Ittmann and Wheeler and Mr Sayeeduddin) and Molecular and Cell Biology (Dr Rowley), Baylor College of Medicine, Houston, Texas; Instituto de Patologia e Investigacion, Asuncion, Paraguay (Dr Cubilla); Biostatistics/Epidemiology/Research Design (BERD) Core, Departments
| |
Collapse
|
27
|
Harryman WL, Warfel NA, Nagle RB, Cress AE. The Tumor Microenvironments of Lethal Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:149-170. [PMID: 31900909 DOI: 10.1007/978-3-030-32656-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.
Collapse
Affiliation(s)
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Anne E Cress
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
28
|
Integrative metabolic and transcriptomic profiling of prostate cancer tissue containing reactive stroma. Sci Rep 2018; 8:14269. [PMID: 30250137 PMCID: PMC6155140 DOI: 10.1038/s41598-018-32549-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Reactive stroma is a tissue feature commonly observed in the tumor microenvironment of prostate cancer and has previously been associated with more aggressive tumors. The aim of this study was to detect differentially expressed genes and metabolites according to reactive stroma content measured on the exact same prostate cancer tissue sample. Reactive stroma was evaluated using histopathology from 108 fresh frozen prostate cancer samples gathered from 43 patients after prostatectomy (Biobank1). A subset of the samples was analyzed both for metabolic (n = 85) and transcriptomic alterations (n = 78) using high resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) and RNA microarray, respectively. Recurrence-free survival was assessed in patients with clinical follow-up of minimum five years (n = 38) using biochemical recurrence (BCR) as endpoint. Multivariate metabolomics and gene expression analysis compared low (≤15%) against high reactive stroma content (≥16%). High reactive stroma content was associated with BCR in prostate cancer patients even when accounting for the influence of Grade Group (Cox hazard proportional analysis, p = 0.013). In samples with high reactive stroma content, metabolites and genes linked to immune functions and extracellular matrix (ECM) remodeling were significantly upregulated. Future validation of these findings is important to reveal novel biomarkers and drug targets connected to immune mechanisms and ECM in prostate cancer. The fact that high reactive stroma grading is connected to BCR adds further support for the clinical integration of this histopathological evaluation.
Collapse
|
29
|
Gillard M, Javier R, Ji Y, Zheng SL, Xu J, Brendler CB, Crawford SE, Pierce BL, Griend DJV, Franco OE. Elevation of Stromal-Derived Mediators of Inflammation Promote Prostate Cancer Progression in African-American Men. Cancer Res 2018; 78:6134-6145. [PMID: 30181178 DOI: 10.1158/0008-5472.can-17-3810] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
Abstract
Progress in prostate cancer racial disparity research has been hampered by a lack of appropriate research tools and better understanding of the tumor biology. Recent gene expression studies suggest that the tumor microenvironment (TME) may contribute to racially disparate clinical outcomes in prostate cancer. Analysis of the prostate TME has shown increased reactive stroma associated with chronic inflammatory infiltrates in African-American (AA) compared with European-American (EA) patients with prostate cancer. To better understand stromal drivers of changes in TME, we isolated prostate fibroblasts (PrF) from AA (PrF-AA) and EA (PrF-EA) prostate cancer tissues and studied their functional characteristics. PrF-AA showed increased growth response to androgens FGF2 and platelet-derived growth factor. Compared with PrF-EA, conditioned media from PrF-AA significantly enhanced the proliferation and motility of prostate cancer cell lines. Expression of markers associated with myofibroblast activation (αSMA, vimentin, and tenascin-C) was elevated in PrF-AA In vivo tumorigenicity of an AA patient-derived prostatic epithelial cell line E006AA was significantly increased in the presence of PrF-AA compared with PrF-EA, and RNA-seq data and cytokine array analysis identified a panel of potential proinflammatory paracrine mediators (BDNF, CHI3L1, DPPIV, FGF7, IL18BP, IL6, and VEGF) to be enriched in PrF-AA E006AA cell lines showed increased responsiveness to BDNF ligand compared with EA-derived LNCaP and C4-2B cells. Addition of a TrkB-specific antagonist significantly reduced the protumorigenic effects induced by PrF-AA compared with PrF-EA These findings suggest that fibroblasts in the TME of AA patients may contribute to the health disparity observed in the incidence and progression of prostate cancer tumors.Significance: These findings suggest that stromal cells in the tumor microenvironment of African-American men promote progression of prostate cancer by increasing levels of a specific set of pro-inflammatory molecules compared with European-American men.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6134/F1.large.jpg Cancer Res; 78(21); 6134-45. ©2018 AACR.
Collapse
Affiliation(s)
- Marc Gillard
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois
| | - Rodrigo Javier
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Yuan Ji
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - S Lilly Zheng
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Jianfeng Xu
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Charles B Brendler
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois.
| |
Collapse
|
30
|
Unfavorable Pathology, Tissue Biomarkers and Genomic Tests With Clinical Implications in Prostate Cancer Management. Adv Anat Pathol 2018; 25:293-303. [PMID: 29727322 DOI: 10.1097/pap.0000000000000192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer management has traditionally relied upon risk stratification of patients based on Gleason score, pretreatment prostate-specific antigen and clinical tumor stage. However, these factors alone do not adequately reflect the inherent complexity and heterogeneity of prostate cancer. Accurate and individualized risk stratification at the time of diagnosis is instrumental to facilitate clinical decision-making and treatment selection tailored to each patient. The incorporation of tissue and genetic biomarkers into current prostate cancer prediction models may optimize decision-making and improve patient outcomes. In this review we discuss the clinical significance of unfavorable morphologic features such as cribriform architecture and intraductal carcinoma of the prostate, tissue biomarkers and genomic tests and assess their potential use in prostate cancer risk assessment and treatment selection.
Collapse
|