1
|
Sahm F, Aldape KD, Brastianos PK, Brat DJ, Dahiya S, von Deimling A, Giannini C, Gilbert MR, Louis DN, Raleigh DR, Reifenberger G, Santagata S, Sarkar C, Zadeh G, Wesseling P, Perry A. cIMPACT-NOW update 8: Clarifications on molecular risk parameters and recommendations for WHO grading of meningiomas. Neuro Oncol 2025; 27:319-330. [PMID: 39212325 PMCID: PMC11812049 DOI: 10.1093/neuonc/noae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Meningiomas are the most frequent primary intracranial tumors. Hence, they constitute a major share of diagnostic specimens in neuropathology practice. The 2021 WHO Classification of Central Nervous System Tumors ("CNS5") has introduced the first molecular grading parameters for meningioma with oncogenic variants in the TERT promoter and homozygous deletion of CDKN2A/B as markers for CNS WHO grade 3. However, after the publication of the new classification volume, clarifications were requested, not only on novel but also on long-standing questions in meningioma grading that were beyond the scope of the WHO "blue book." In addition, more recent research into possible new molecular grading parameters could not yet be implemented in the 2021 classification but constitutes a compelling body of literature. Hence, the consortium to inform molecular and practical approaches to CNS tumor taxonomy-not official WHO (cIMPACT-NOW) Steering Committee convened a working group to provide such clarification and assess the evidence of possible novel molecular criteria. As a result, this cIMPACT-NOW update provides guidance for more standardized morphological evaluation and interpretation, most prominently pertaining to brain invasion, identifies scenarios in which advanced molecular testing is recommended, proposes to assign CNS WHO grade 2 for cases with CNS WHO grade 1 morphology but chromosomal arm 1p deletion in combination with 22q deletion and/or NF2 oncogenic variants, and discusses areas in which the current evidence is not yet sufficient to result in new recommendations.
Collapse
Affiliation(s)
- Felix Sahm
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Priscilla K Brastianos
- Divisions of Hematology/Oncology and Neuro-Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, Bologna, Italy
- Department of Laboratory Medicine/Pathology and Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - David N Louis
- Department of Pathology, Massachusetts General Hospital, Brigham and Women’s Hospital, and Harvard Medical School, Boston Massachusetts, USA
| | - David R Raleigh
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Guido Reifenberger
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers / VU University, Amsterdam, The Netherlands
| | - Arie Perry
- Departments of Pathology and Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
2
|
Deshpande S, Nayal B, Nair R, Nayak D, J P, V G. Role of H3K27me3 and Ki-67 Labeling Index in Assessing the Biological Behavior of Meningiomas. World Neurosurg 2025; 194:123514. [PMID: 39608490 DOI: 10.1016/j.wneu.2024.11.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Meningiomas are neoplasms primarily originating from arachnoid cells and are classified into 3 grades (1, 2, and 3) based on histological features according to the World Health Organization classification. However, this classification system is imperfect especially for grade 1 and 2 meningiomas as many grade 1 tumors recur. Meningiomas are hence a histologically diverse class of tumors exhibiting more unpredictable behavior. Therefore, more improved classification is required, possibly using novel and more dependable biomarkers. In this study, we aim to investigate the role of the H3K27me3 and Ki-67 labeling index (LI) in assessing the biological behavior of meningiomas. The study was conceived, with the primary objective of examining the expression of H3K27me3 and Ki-67 LI in grade 1/2 meningiomas with atypical features to ascertain if this potentially impacts patient prognosis. METHODS Upon obtaining clearance from the Institutional Ethical Committee, the authors studied 81 cases of meningiomas including 11 recurrent cases. The study used immunohistochemistry to evaluate the Ki-67 index and H3K27me3 immunohistochemistry. The Ki-67 LI was determined by counting the positively stained MIB-1 cells and categorizing them into <5%, 5%-10%, and >10%. The H3K27me3 staining was evaluated by finding the product of the tumor cells showing positive staining and the intensity of staining. Based on the product of the two, the cases were subdivided into negative (0), low (1-4), and high expression (5-9) of H3K27me3. RESULTS The results showed that the presence of atypical morphological features including necrosis and prominent nucleoli in grade 1 meningioma and low expression of H3K27me3 was significantly associated with higher grade, recurrence, and shorter progression-free survival (Kaplan-Meier curves showed higher negative slope). The study also found that a higher Ki-67 LI was associated with recurrence and poor prognosis. This suggests that the H3K27me3 and Ki-67 LI can be useful prognostic markers in meningiomas, particularly in challenging grade 1 and 2 cases and recurrent meningiomas. CONCLUSIONS The study highlights the importance of the H3K27me3 and Ki-67 LI in assessing the biological behavior of meningiomas. The findings provide valuable insights into the prognosis and treatment of meningiomas, emphasizing the need for further research to validate these markers and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shalaka Deshpande
- Department of Pathology, HBTMC and Dr. R.N. Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | - Bhavna Nayal
- Department of Pathology, Kasturba Medical College, Manipal, MAHE, Karnataka, India.
| | - Rajesh Nair
- Department of Neurosurgery, Kasturba Medical College, Manipal, MAHE, Karnataka, India
| | - Deepak Nayak
- Department of Pathology, Kasturba Medical College, Manipal, MAHE, Karnataka, India
| | - Padmapriya J
- Department of Pathology, Kasturba Medical College, Manipal, MAHE, Karnataka, India
| | - Geetha V
- Department of Pathology, Kasturba Medical College, Manipal, MAHE, Karnataka, India
| |
Collapse
|
3
|
Aung TM, Ngamjarus C, Proungvitaya T, Saengboonmee C, Proungvitaya S. Biomarkers for prognosis of meningioma patients: A systematic review and meta-analysis. PLoS One 2024; 19:e0303337. [PMID: 38758750 PMCID: PMC11101050 DOI: 10.1371/journal.pone.0303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Meningioma is the most common primary brain tumor and many studies have evaluated numerous biomarkers for their prognostic value, often with inconsistent results. Currently, no reliable biomarkers are available to predict the survival, recurrence, and progression of meningioma patients in clinical practice. This study aims to evaluate the prognostic value of immunohistochemistry-based (IHC) biomarkers of meningioma patients. A systematic literature search was conducted up to November 2023 on PubMed, CENTRAL, CINAHL Plus, and Scopus databases. Two authors independently reviewed the identified relevant studies, extracted data, and assessed the risk of bias of the studies included. Meta-analyses were performed with the hazard ratio (HR) and 95% confidence interval (CI) of overall survival (OS), recurrence-free survival (RFS), and progression-free survival (PFS). The risk of bias in the included studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. A total of 100 studies with 16,745 patients were included in this review. As the promising markers to predict OS of meningioma patients, Ki-67/MIB-1 (HR = 1.03, 95%CI 1.02 to 1.05) was identified to associate with poor prognosis of the patients. Overexpression of cyclin A (HR = 4.91, 95%CI 1.38 to 17.44), topoisomerase II α (TOP2A) (HR = 4.90, 95%CI 2.96 to 8.12), p53 (HR = 2.40, 95%CI 1.73 to 3.34), vascular endothelial growth factor (VEGF) (HR = 1.61, 95%CI 1.36 to 1.90), and Ki-67 (HR = 1.33, 95%CI 1.21 to 1.46), were identified also as unfavorable prognostic biomarkers for poor RFS of meningioma patients. Conversely, positive progesterone receptor (PR) and p21 staining were associated with longer RFS and are considered biomarkers of favorable prognosis of meningioma patients (HR = 0.60, 95% CI 0.41 to 0.88 and HR = 1.89, 95%CI 1.11 to 3.20). Additionally, high expression of Ki-67 was identified as a prognosis biomarker for poor PFS of meningioma patients (HR = 1.02, 95%CI 1.00 to 1.04). Although only in single studies, KPNA2, CDK6, Cox-2, MCM7 and PCNA are proposed as additional markers with high expression that are related with poor prognosis of meningioma patients. In conclusion, the results of the meta-analysis demonstrated that PR, cyclin A, TOP2A, p21, p53, VEGF and Ki-67 are either positively or negatively associated with survival of meningioma patients and might be useful biomarkers to assess the prognosis.
Collapse
Affiliation(s)
- Tin May Aung
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chetta Ngamjarus
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Nozzoli F, Buccoliero AM, Massi D, Santoro R, Pecci R. External auditory canal ectopic atypical meningioma: A case report and brief literature review. Pathol Res Pract 2024; 253:154963. [PMID: 38029716 DOI: 10.1016/j.prp.2023.154963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Meningiomas are tumours typically derived from the meningothelial cells of the arachnoid mater. They most often arise in intracranial, intraspinal, or orbital locations. Ectopic meningiomas, described as primary meningiomas with no intracranial involvement, are definitely unconventional. In fact, most of the extracranial meningiomas described in the literature, particularly in the outer ear, are effectively spreads of disease with primary intracranial localization. We describe a case of a primary external auditory canal meningioma with demonstrated absence of intracranial involvement, and we provide a full radiological, histological, immunohistochemical and molecular characterization of the lesion.
Collapse
Affiliation(s)
- Filippo Nozzoli
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy.
| | | | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Roberto Santoro
- Audiology and Robotic Oncologic Head and Neck Surgery, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rudi Pecci
- Audiology and Robotic Oncologic Head and Neck Surgery, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Tatman PD, Wroblewski TH, Fringuello AR, Scherer SR, Foreman WB, Damek DM, Youssef AS, Lillehei KO, Jensen RL, Graner MW, Ormond DR. High-Throughput Screening of Epigenetic Inhibitors in Meningiomas Identifies HDAC, G9a, and Jumonji-Domain Inhibition as Potential Therapies. J Neurol Surg B Skull Base 2023; 84:452-462. [PMID: 37671294 PMCID: PMC10477014 DOI: 10.1055/a-1885-1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022] Open
Abstract
Background Epigenetics may predict treatment sensitivity and clinical course for patients with meningiomas more accurately than histopathology. Nonetheless, targeting epigenetic mechanisms is understudied for pharmacotherapeutic development for these tumors. The bio-molecular insights and potential therapeutic development of meningioma epigenetics led us to investigate epigenetic inhibition in meningiomas. Methods We screened a 43-tumor cohort using a 139-compound epigenetic inhibitor library to assess sensitivity of relevant meningioma subgroups to epigenetic inhibition. The cohort was composed of 5 cell lines and 38 tumors cultured directly from surgery; mean patient age was 56.6 years ± 13.9 standard deviation. Tumor categories: 38 primary tumors, 5 recurrent; 33 from females, 10 from males; 32 = grade 1; 10 = grade 2; 1 = grade 3. Results Consistent with our previous results, histone deacetylase inhibitors (HDACi) were the most efficacious class. Panobinostat significantly reduced cell viability in 36 of 43 tumors; 41 tumors had significant sensitivity to some HDACi. G9a inhibition and Jumonji-domain inhibition also significantly reduced cell viability across the cohort; tumors that lost sensitivity to panobinostat maintained sensitivity to either G9a or Jumonji-domain inhibition. Sensitivity to G9a and HDAC inhibition increased with tumor grade; tumor responses did not separate by gender. Few differences were found between recurrent and primary tumors, or between those with prior radiation versus those without. Conclusions Few efforts have investigated the efficacy of targeting epigenetic mechanisms to treat meningiomas, making the clinical utility of epigenetic inhibition largely unknown. Our results suggest that epigenetic inhibition is a targetable area for meningioma pharmacotherapy.
Collapse
Affiliation(s)
- Philip D. Tatman
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Tadeusz H. Wroblewski
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Anthony R. Fringuello
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Samuel R. Scherer
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - William B. Foreman
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Denise M. Damek
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - A. Samy Youssef
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Randy L. Jensen
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
Kim H, Lee K, Shim YM, Kim EE, Kim SK, Phi JH, Park CK, Choi SH, Park SH. Epigenetic Alteration of H3K27me3 as a Possible Oncogenic Mechanism of Central Neurocytoma. J Transl Med 2023; 103:100159. [PMID: 37088465 DOI: 10.1016/j.labinv.2023.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Central neurocytoma (CN) is a low-grade neuronal tumor that mainly arises from the lateral ventricle (LV). This tumor remains poorly understood in the sense that no driver gene aberrations have been identified thus far. We investigated immunomarkers in fetal and adult brains and 45 supratentorial periventricular tumors to characterize the biomarkers, cell of origin, and tumorigenesis of CN. All CNs occurred in the LV. A minority involved the third ventricle, but none involved the fourth ventricle. As expected, next-generation sequencing performed using a brain-tumor-targeted gene panel in 7 CNs and whole exome sequencing in 5 CNs showed no driver mutations. Immunohistochemically, CNs were robustly positive for FGFR3 (100%), SSTR2 (92%), TTF-1 (Nkx2.1) (88%), GLUT-1 (84%), and L1CAM (76%), in addition to the well-known markers of CN, synaptophysin (100%) and NeuN (96%). TTF-1 was also positive in subependymal giant cell astrocytomas (100%, 5/5) and the pituicyte tumor family, including pituicytoma and spindle cell oncocytoma (100%, 5/5). Interestingly, 1 case of LV subependymoma (20%, 1/5) was positive for TTF-1, but all LV ependymomas were negative (0/5 positive). Because TTF-1-positive cells were detected in the medial ganglionic eminence around the foramen of Monro of the fetal brain and in the subventricular zone of the LV of the adult brain, CN may arise from subventricular TTF-1-positive cells undergoing neuronal differentiation. H3K27me3 loss was observed in all CNs and one case (20%) of LV subependymoma, suggesting that chromatin remodeling complexes or epigenetic alterations may be involved in the tumorigenesis of all CNs and some ST-subependymomas. Further studies are required to determine the exact tumorigenic mechanism of CN.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Shim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eric Eunshik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Cello G, Patel RV, McMahon JT, Santagata S, Bi WL. Impact of H3K27 trimethylation loss in meningiomas: a meta-analysis. Acta Neuropathol Commun 2023; 11:122. [PMID: 37491289 PMCID: PMC10369842 DOI: 10.1186/s40478-023-01615-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Trimethylation of lysine 27 on histone 3 (H3K27me3) loss has been implicated in worse prognoses for patients with meningiomas. However, there have been challenges in measuring H3K27me3 loss, quantifying its impact, and interpreting its clinical utility. We conducted a systematic review across Pubmed, Embase, and Web of Science to identify studies examining H3K27me3 loss in meningioma. Clinical, histopathological, and immunohistochemistry (IHC) characteristics were aggregated. A meta-analysis was performed using a random-effects model to assess prevalence of H3K27me3 loss and meningioma recurrence risk. Study bias was characterized using the NIH Quality Assessment Tool and funnel plots. Nine publications met inclusion criteria with a total of 2376 meningioma cases. The prevalence of H3K27me3 loss was 16% (95% CI 0.09-0.27), with higher grade tumors associated with a significantly greater proportion of loss. H3K27me3 loss was more common in patients who were male, had recurrent meningiomas, or required adjuvant radiation therapy. Patients were 1.70 times more likely to have tumor recurrence with H3K27me3 loss (95% CI 1.35-2.15). The prevalence of H3K27me3 loss in WHO grade 2 and 3 meningiomas was found to be significantly greater in tissue samples less than five years old versus tissue of all ages and when a broader definition of IHC staining loss was applied. This analysis demonstrates that H3K27me3 loss significantly associates with more aggressive meningiomas. While differences in IHC and tumor tissue age have led to heterogeneity in studying H3K27me3 loss, a robust prognostic signal is present. Our findings suggest an opportunity to improve study design and standardize tissue processing to optimize clinical viability of this epigenetic marker.
Collapse
Affiliation(s)
- Gregory Cello
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ruchit V Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James Tanner McMahon
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sandro Santagata
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Franca RA, Della Monica R, Corvino S, Chiariotti L, Del Basso De Caro M. WHO grade and pathological markers of meningiomas: Clinical and prognostic role. Pathol Res Pract 2023; 243:154340. [PMID: 36738518 DOI: 10.1016/j.prp.2023.154340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
In recent years, WHO grading criteria have emerged as an inaccurate tool to correctly predict the risk of progression/recurrence for meningioma patients. Therefore, great efforts were made to find further prognostic factors that could predict the clinical course of meningiomas. Why morphological criteria are not able alone to correctly predict outcome in all patients? What are the biological parameters underlying a more aggressive behavior? Are there any molecular markers can be integrated in the risk assessment? Could new technologies, such as methylome profiling, contribute to provide additional tools in patients prognostic evaluation? We performed a literature review to find answers to these questions. Meningiomas have been demonstrated to be extremely heterogeneous neoplasms, also from the genetic and epigenetic standpoints. However, WHO Classification of Tumours of the central Nervous System 5th edition introduced only CDKN2A/B deletion and TERT promoter mutations as poor prognostic, grade 3 defining parameters. The different proposals of integrated grading, taking into account cytogenetic alterations and study of methylation profile, have not yet been incorporated in WHO grading criteria. Work in progress: this is the summary of current knowledge. Further studies are needed to expand the diagnostic and prognostic equipment to be integrated into clinical practice.
Collapse
Affiliation(s)
- Raduan Ahmed Franca
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Sergio Corvino
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, Università di Napoli Federico II, Naples 80131, Italy.
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
9
|
Behling F, Paßlack P, Fodi CK, Hielscher T, Schittenhelm J, Nassiri F, Wang JZ, Zadeh G, Tabatabai G, Sahm F. Loss of H3K27me3 in meningiomas: an independent marker for CNS WHO grade 2? Neurooncol Adv 2023; 5:vdad112. [PMID: 37727848 PMCID: PMC10506376 DOI: 10.1093/noajnl/vdad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Affiliation(s)
- Felix Behling
- Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Paßlack
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christina-Katharina Fodi
- Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Schittenhelm
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
- Cluster of excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Felix Sahm
- Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Hua L, Ren L, Wu Q, Deng J, Chen J, Cheng H, Wang D, Chen H, Xie Q, Wakimoto H, Gong Y. Loss of H3K27me3 expression enriches in recurrent grade 1&2 meningiomas and maintains as a biomarker stratifying progression risk. J Neurooncol 2023; 161:267-275. [PMID: 36329368 DOI: 10.1007/s11060-022-04169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To determine if loss of H3K27me3 could predict higher risk of re-recurrence in recurrent meningiomas. METHODS A retrospective, single-center cohort study was performed for patients who underwent resection of recurrent grade 1 (N = 132) &2 (N = 32) meningiomas from 2009 to 2013. Association of H3K27me3 staining and clinical parameters was analyzed. Additionally, H3K27me3 staining was performed from 45 patients whose tumors recurred and were resected during the follow-up, to evaluate H3K27me3 change during tumor progression. Survival analysis was performed as well. RESULTS Loss of H3K27me3 expression was observed in 83 patients, comprising 63 grade 1 (47.7%) and 20 grade 2 patients (62.5%). Both grade 1 (p < 0.001) and grade 2 recurrent meningiomas (p < 0.001) had a higher frequency of H3K27me3 loss, compared to de novo meningiomas. 8 of 27 tumors with retained H3K27me3 lost H3K27me3 during re-recurrence (29.6%), while no gain of H3K27me3 was observed in progressive disease from 18 tumors with H3K27me3 loss. Loss of H3K27me3 expression was associated with an earlier re-recurrence in recurrent meningiomas grade 1 and 2 (p < 0.001), and was an independent prognostic factor for PFS in recurrent grade 1 meningiomas (p = 0.005). CONCLUSION Compared to primary meningiomas, recurrent meningiomas more predominantly had loss of H3K27me3 expression, and further loss can occur during the progression of recurrent tumors. Our results further demonstrated that loss of H3K27me3 predicted shorter PFS in recurrent grade 1 and grade 2 meningiomas. Our work thus supports clinical testing of H3K27me3 in recurrent meningiomas WHO grade 1 and 2.
Collapse
Affiliation(s)
- Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute, Fudan University, Shangha, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Leihao Ren
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute, Fudan University, Shangha, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Qian Wu
- Department of Pathology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute, Fudan University, Shangha, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jiawei Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute, Fudan University, Shangha, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute, Fudan University, Shangha, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Hong Chen
- Department of Pathology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute, Fudan University, Shangha, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,National Center for Neurological Disorders, Shanghai, China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China. .,Neurosurgical Institute, Fudan University, Shangha, China. .,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China. .,Department of Critical Care Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China. .,Department of Neurosurgery, Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.
| |
Collapse
|
11
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
12
|
Loss of H3K27me3 in WHO grade 3 meningioma. Brain Tumor Pathol 2022; 39:200-209. [PMID: 35678886 DOI: 10.1007/s10014-022-00436-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 01/08/2023]
Abstract
Immunohistochemical quantification of H3K27me3 was reported to distinguish meningioma patients with an unfavorable prognosis but is not yet established as a prognostic biomarker within WHO grade 3 meningiomas. We studied H3K27me3 loss in a series of biopsies from primary and secondary malignant meningioma to validate its prognostic performance and describe if loss of H3K27me3 occurs during malignant transformation. Two observers quantified H3K27me3 status as "complete loss", < 50% and > 50% stained cells in 110 tumor samples from a population-based consecutive cohort of 40 WHO grade 3 meningioma patients. We found no difference in overall survival (OS) in patients with > 50% H3K27me3 retention compared to < 50% in the cohort of patients with WHO grade 3 meningioma (Wald test p = 0.5). H3K27me3 staining showed heterogeneity in full section tumor slides while staining of the Barr body and peri-necrotic cells complicated quantification further. H3K27me3 expression differed without a discernible pattern between biopsies from repeated surgeries of meningioma recurrences. In conclusion, our results were not compatible with a systematic pattern of immunohistochemical H3K27me3 loss being associated with OS or malignant transformation of meningiomas and did not support H3K27me3 loss as a useful immunohistochemical biomarker within grade 3 meningiomas due to staining-specific challenges in quantification.
Collapse
|
13
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Lu VM, Luther EM, Eichberg DG, Morell AA, Shah AH, Komotar RJ, Ivan ME. The emerging relevance of H3K27 trimethylation loss in meningioma: A systematic review of recurrence and overall survival with meta-analysis. World Neurosurg 2022; 163:87-95.e1. [DOI: 10.1016/j.wneu.2022.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
|
15
|
Patel B, Desai R, Pugazenthi S, Butt OH, Huang J, Kim AH. Identification and Management of Aggressive Meningiomas. Front Oncol 2022; 12:851758. [PMID: 35402234 PMCID: PMC8984123 DOI: 10.3389/fonc.2022.851758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are common primary central nervous system tumors derived from the meninges, with management most frequently entailing serial monitoring or a combination of surgery and/or radiation therapy. Although often considered benign lesions, meningiomas can not only be surgically inaccessible but also exhibit aggressive growth and recurrence. In such cases, adjuvant radiation and systemic therapy may be required for tumor control. In this review, we briefly describe the current WHO grading scale for meningioma and provide demonstrative cases of treatment-resistant meningiomas. We also summarize frequently observed molecular abnormalities and their correlation with intracranial location and recurrence rate. We then describe how genetic and epigenetic features might supplement or even replace histopathologic features for improved identification of aggressive lesions. Finally, we describe the role of surgery, radiotherapy, and ongoing systemic therapy as well as precision medicine clinical trials for the treatment of recurrent meningioma.
Collapse
Affiliation(s)
- Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Sangami Pugazenthi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Omar H. Butt
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, United States,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jiayi Huang
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States,*Correspondence: Albert H. Kim,
| |
Collapse
|
16
|
Zoli M, Della Pepa GM, Carretta A, Bongetta D, Somma T, Zoia C, Raffa G. Adjuvant radiotherapy in grossly total resected grade II atypical meningiomas. A protective effect on recurrence? A systematic review and meta-analysis. J Neurosurg Sci 2021; 66:240-250. [PMID: 34763391 DOI: 10.23736/s0390-5616.21.05522-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Management of grade II Atypical Meningiomas (AM) remains controversial. Conflicting evidences exist on the possible protective effect of adjuvant radiotherapy (ART) on recurrence in grossly resected AMs. The aim of this meta-analysis is to evaluate the role of ART in grossly resected (Simpson grades 1-3) AMs on the recurrence and survival. EVIDENCE ACQUISITION Data were retrieved from comparative studies of AMs undergone surgical resection alone vs. surgery+ART. Only grossly total resected AMs (Simpson grade 1,2,3) were included. The individual and pooled odds ratio (OR) for the crude recurrence, progression free survival (PFS) at 1, 3 and 5-years, as well as for the overall survival (OS) at 5-years were calculated by using the Mantel-Haenszel model in surgery alone vs. surgery+ART. EVIDENCE SYNTHESIS 11 studies were considered eligible. 8 were included for the outcome "crude recurrence"; 6 for PFS at 1-3 years, 7 for PFS at 5-years; 6 for the OS at 5-years. Results suggest that surgery+ART might have a protective role on recurrence in gross-totally resected AMs (OR:1.66). Specifically, surgery+ART slightly improved PFS at 1-year (OR:0.92) and more consistently at 3- and 5-years (OR:0.31 and 0.35 respectively) hence favoring a combined approach. CONCLUSIONS Current literature on the impact of ART after gross total resection of AM are still heterogeneous and not systematically reported. The present meta-analysis suggests a possible protective role of postoperative RT against long-term recurrence as compared to surgical resection alone.
Collapse
Affiliation(s)
- Matteo Zoli
- Programma Neurochirurgia Ipofisi-Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Bio-Medical and Neuro-Motor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe M Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, Rome, Italy -
| | - Alessandro Carretta
- Department of Bio-Medical and Neuro-Motor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Daniele Bongetta
- Neurosurgery Unit, Fatebenefratelli e Oftalmico Hospital, Milan, Italy
| | - Teresa Somma
- Division of Neurosurgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cesare Zoia
- Department of Neurosurgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|