1
|
Nian X, Wang B, Holford P, Beattie GAC, Tan S, Yuan W, Cen Y, He Y, Zhang S. Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412384. [PMID: 40112150 PMCID: PMC12079412 DOI: 10.1002/advs.202412384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 03/22/2025]
Abstract
The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.
Collapse
Affiliation(s)
- Xiaoge Nian
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Bo Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | | | - Shijian Tan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Weiwei Yuan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yijing Cen
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yurong He
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Songdou Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
2
|
Liu J, Gao L, Du C, Duan T, Liu L. Transcriptomic Characterization of miRNAs in Pyrrhalta aenescens Fairmaire in Response to 20-Hydroxyecdysone Treatment. Genes (Basel) 2025; 16:435. [PMID: 40282395 PMCID: PMC12026910 DOI: 10.3390/genes16040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pyrrhalta aenescens, a major pest of elm trees, causes extensive ecological and economic damage through rapid population growth and defoliation. Existing research mainly focuses on its biological traits and chemical control, with little knowledge about its reproductive development mechanisms, a key factor in population expansion. In other insects, the steroid hormone 20-hydroxyecdysone (20E) regulates development and reproduction via microRNA (miRNA)-mediated pathways, but this has not been studied in P. aenescens. This study aimed to systematically identify miRNAs responsive to 20E in P. aenescens and unravel their roles in regulating reproduction and metabolic pathways, providing foundational insights into hormone-miRNA crosstalk in this ecologically significant pest. METHODS Adult beetles (collected from Baotou, Inner Mongolia) were injected with 1.0 μg/μL 20E or control. Total RNA from three biological replicates (10 adults each) was sequenced, followed by miRNA identification, differential expression analysis, target prediction, and functional enrichment. RESULTS Small RNA sequencing identified 205 miRNAs (162 conserved, 43 novel), with 12 DEMs post-20E treatment. Target prediction linked these miRNAs to 7270 genes, including key regulators of the FoxO signaling pathway and MAPK signaling pathway. KEGG analysis highlighted lipid metabolism and stress response pathways. CONCLUSIONS This study revealed that 20E modulates miRNA networks to regulate FoxO and MAPK pathways in P. aenescens, suggesting hormonal control of lipid metabolism and developmental processes. As the first miRNA resource for this pest, our findings provide mechanistic insights into 20E-miRNA crosstalk and identify potential molecular targets for disrupting its reproductive biology, laying a foundation for eco-friendly pest control.
Collapse
Affiliation(s)
| | | | | | - Tianfeng Duan
- College of Ecology and Environment, Baotou Teachers’ College, Baotou 014030, China; (J.L.); (L.G.); (C.D.); (L.L.)
| | | |
Collapse
|
3
|
Luo S, Zhou X. Post-transcriptional regulation of behavior plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101329. [PMID: 39708917 DOI: 10.1016/j.cois.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Social insects often show remarkable behavioral plasticity, which is closely associated with their respective castes. The underpinnings of this plasticity are complex, involving genetic differences among individuals within a colony and regulation of gene expression at multiple levels. Post-transcriptional regulation, which increases the complexity of the transcriptome, plays a crucial role in the multilayer regulatory network that influences social insect behavior. We provide an overview of the impact of three post-transcriptional regulatory processes on the reproductive division of labor and worker division of labor in social insects: alternative splicing, RNA modifications, and noncoding RNAs. We also discuss the relationship between post-transcriptional regulation and chromatin modification.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Depintor TS, Freitas FCP, Hernandes N, Nunes FMF, Simões ZLP. Interactions of juvenile hormone, 20-hydroxyecdysone, developmental genes, and miRNAs during pupal development in Apis mellifera. Sci Rep 2025; 15:10354. [PMID: 40133508 PMCID: PMC11937373 DOI: 10.1038/s41598-025-93580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Insect development is primarily controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E), which regulate gene cascades leading to changes in phenotype, physiology, and behavior. Besides these hormones, microRNAs play a crucial role in insect development by regulating gene expression at the post-transcriptional level. To advance the molecular understanding of holometabolous developmental events, we investigate the pupal phase in the honeybee, Apis mellifera. In this study, we assessed the expression profiles of genes components of JH and 20E cascades - Usp, ftz-f1, EcR, Met, Chd64, InR-2, Kr-h1 and Tai - as well as the microRNAs miRNA-34 and miRNA-281 during pupal development of A. mellifera. We then analyzed the impact of JH and 20E treatments on the expression of these developmental genes and their putative regulators, the microRNAs. Overall, the selected genes and miRNAs remained stable or were downregulated following 20E treatment, while treatments with JH, upregulated most of our candidate developmental genes and microRNAs. Notably, the expression profile of Met, an intracellular receptor of JH, showed a strong correlation with fluctuations in 20E titers during pupal development. Furthermore, a computational analysis, followed by experimental assays, points to both miR-34 and miR-281 as potential regulators of pupal development in A. mellifera. This study paves the way for a better understanding of how JH and 20E hormones interact with developmental genes and microRNAs (miR-34 and miR-281) to regulate pupal development in honeybees, elucidating a piece of this complex network of interactions.
Collapse
Affiliation(s)
- T S Depintor
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - F C P Freitas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - N Hernandes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - F M F Nunes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Genetics and Evolution, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Z L P Simões
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Tang H, Chen C, Li S, Xu Z, Chen M, Peng X. The miRNA-275 Targeting RpABCG23L is Involved in Pyrethroid Resistance in the Bird Cherry-Oat Aphid, a Serious Agricultural Pest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6610-6621. [PMID: 40052623 DOI: 10.1021/acs.jafc.5c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Rhopalosiphum padi is a global agricultural pest which had developed resistance to different insecticides. The ATP-binding cassette (ABC) transporter plays an important role in insecticide resistance. However, ABC transporters' role and regulatory mechanism in mediating R. padi 's response to pyrethroids are unclear. In this study, we found that RpABCG23L was significantly overexpressed in the pyrethroid-resistant strains of R. padi. Knockdown of RpABCG23L significantly increased the susceptibility of R. padi to lambda-cyhalothrin and bifenthrin. Luciferase reporter gene analysis showed that miR-275 binds to the RpABCG23L coding region and down-regulates its expression. Injection of miR-275 mimics significantly reduced RpABCG23L expression and increased R. padi susceptibility to lambda-cyhalothrin and bifenthrin, while miR-275 inhibitor injection enhanced RpABCG23L expression and increased tolerance to both insecticides. The results provide a theoretical basis for understanding the mechanism of miRNA-mediated pyrethroid resistance, and open up a new way for the development of miRNA-based biopesticides.
Collapse
Affiliation(s)
- Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sisi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhimin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Khan A, Smagghe G, Li S, Shakeel M, Yang G, Ahmed N. Insect metamorphosis and chitin metabolism under miRNA regulation: a review with current advances. PEST MANAGEMENT SCIENCE 2025. [PMID: 40079237 DOI: 10.1002/ps.8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism. miRNAs are now recognized as essential regulators of chitin metabolism and hormonal signaling, ensuring precise control of insect development. Disrupting the expression of participating genes in hormone signaling pathways through miRNAs leads to aberrant metamorphosis and consequent lethal outcomes, highlighting their potential as targets for pest control. This review summarizes current advances in miRNA-mediated regulation of insect metamorphosis and chitin metabolism, with a focus on their interactions with 20E and JH signaling pathways. By integrating recent findings, we provide insights into the molecular mechanisms underlying miRNA function in developmental transitions and their potential applications in insect pest management strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ashraf Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant and Environmental Protection, National Agricultural Research Center, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Shakeel
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guangming Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Institute of Biology, Guiyang, China
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Liu X, Geng S, Ye D, Xu W, Zheng Y, Wang F, Lei J, Wu Y, Jiang H, Hu Y, Chen D, Yan T, Guo R, Qiu J. Global discovery, expression pattern, and regulatory role of miRNA-like RNAs in Ascosphaera apis infecting the Asian honeybee larvae. Front Microbiol 2025; 16:1551625. [PMID: 40104596 PMCID: PMC11914139 DOI: 10.3389/fmicb.2025.1551625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Ascosphaera apis, a specialized fungal pathogen, causes lethal infection in honeybee larvae. miRNA-like small RNAs (milRNAs) are fungal small non-coding RNAs similar to miRNAs, which have been shown to regulate fungal hyphal growth, spore formation, and pathogenesis. Based on the transcriptome data, differentially expressed miRNA-like RNAs (DEmilRNAs) in A. apis infecting the Apis cerana cerana worker 4-, 5-, and 6-day-old larvae (Aa-4, Aa-5, and Aa-6) were screened and subjected to trend analysis, followed by target prediction and annotation as well as investigation of regulatory networks, with a focus on sub-networks relative to MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. A total of 606 milRNAs, with a length distribution ranging from 18 nt to 25 nt, were identified. The first nucleotide of these milRNAs presented a bias toward U, and the bias patterns across bases of milRNAs were similar in the aforementioned three groups. There were 253 milRNAs, of which 68 up-and 54 down-regulated milRNAs shared by these groups. Additionally, the expression and sequences of three milRNAs were validated by stem-loop RT-PCR and Sanger sequencing. Trend analysis indicated that 79 DEmilRNAs were classified into three significant profiles (Profile4, Profile6, and Profile7). Target mRNAs of DEmilRNAs in these three significant profiles were engaged in 42 GO terms such as localization, antioxidant activity, and nucleoid. These targets were also involved in 120 KEGG pathways including lysine biosynthesis, pyruvate metabolism, and biosynthesis of antibiotics. Further investigation suggested that DEmilRNA-targeted mRNAs were associated with the MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. Moreover, the binding relationships between aap-milR10516-x and ChsD as well as between aap-milR-2478-y and mkh1 were confirmed utilizing a combination of dual-luciferase reporter gene assay and RT-qPCR. Our data not only provide new insights into the A. apis proliferation and invasion, but also lay a basis for illustrating the DEmilRNA-modulated mechanisms underlying the A. apis infection.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sihai Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangji Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianpeng Lei
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Ying Hu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Tizhen Yan
- Dongguan Maternal and Children Health Hospital, Dongguan, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
8
|
Xu H, Xing Y, Zhou Y, Zhang M, Dang X. MiR8523 negatively regulates the immunity of Plutella xylostella against entomopathogenic fungus Isaria cicadae by targeting PxSpz5. Int J Biol Macromol 2025; 293:139417. [PMID: 39753171 DOI: 10.1016/j.ijbiomac.2024.139417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025]
Abstract
The diamondback moth, Plutella xylostella is a notorious pest and has developed serious resistance to insecticides. Entomopathogenic fungi (EPF) have been developed as eco-friendly alternatives to insecticides. Insects rely on their immunity to defend against fungi. MicroRNAs are critical regulators of insect immunity. The roles of miRNAs in P. xylostella immunity against fungi remain uncertain. In this study, high-throughput sequencing was conducted to identify miRNAs involved in P. xylostella immunity against EPF Isaria cicadae. A total of 432 miRNAs were identified, and 80 differentially expressed miRNAs (DEMs) were identified in the larvae infected with I. cicadae. Among these DEMs, 77 were predicted to target 290 genes related to immunity. miR8523 was confirmed to specifically target PxSpz5 by bioinformatics, RNA pull-down and dual-luciferase reporter assay. PxSpz5 interacted with PxToll. Knockdown of PxSpz5 enhanced the susceptibility of P. xylostella to I. cicadae. Injection with a miR8523 mimic significantly reduced PxSpz5 expression, and increased the susceptibility of P. xylostella to fungus infection. Collectively, miR8523 played a critical role in P. xylostella immunity against I. cicadae by targeting PxSpz5. This study provides insights into the abundance of miRNAs involved in insect immunity, and also promotes the development of new pest control strategies.
Collapse
Affiliation(s)
- Huihui Xu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anqing Vocational and Technical College, Anqing 246003, China
| | - Yue Xing
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Yongli Zhou
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China.
| |
Collapse
|
9
|
Chen W, Li Z. miR-571 manipulating termite immune response to fungus and showing potential for green management of Copotermes formosanus (Blattodea: Isoptera). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106274. [PMID: 40015866 DOI: 10.1016/j.pestbp.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
Termites are not merely social insects; they are also globally important insect pests. MicroRNAs (miRNAs) are potential molecular targets for the biological control of termites. However, their role in termite resistance to pathogens, particularly their impact on termite social immune behaviour, remains unclear. In this study, we identified 50 differentially expressed miRNAs in Coptotermes formosanus, a globally economically important termite pest, in response to Metarhizium anisopliae infection. Injecting miR-571 agomir, one of significantly upregulated miRNAs, significantly increased termite mortality without or with M. anisopliae infection (compared to that with M. anisopliae infection alone). Meanwhile, termites infected with M. anisopliae exhibited a significant reduction in the avoidance, trophallaxis, and grooming behaviors. Subsequently, we identified POP5 as a target gene of miR-571 and found that miR-571-POP5 inhibits the termite immune response to M. anisopliae by inhibiting the expression of downstream genes, trypsin-like serine protease and serine protease. Finally, we confirmed that the ingestion of miR-571 agomir also increased the mortality of M. anisopliae-infected termites. Our findings enhance knowledge regarding miRNA role in insect social immunity, pathogen manipulation mechanisms, and optimizing pathogen effectiveness through insect miRNAs. This offers new molecular targets for the biological control of termites.
Collapse
Affiliation(s)
- Weiwen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Zhang YH, Qian X, Zong X, An SH, Yan S, Shen J. Dual-role regulator of a novel miR-3040 in photoperiod-mediated wing dimorphism and wing development in green peach aphid. INSECT SCIENCE 2025; 32:80-94. [PMID: 38728615 DOI: 10.1111/1744-7917.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin Qian
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zong
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Force E, Debernard S. [microRNAs: regulators of metamorphosis in insects]. Biol Aujourdhui 2025; 218:165-175. [PMID: 39868715 DOI: 10.1051/jbio/2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/28/2025]
Abstract
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis. Recently, another regulatory network has emerged trough the discovery of microRNAs, non-coding RNAs of 19 to 25 nucleotides that are highly conserved among taxa and act by modulating gene expression at the post-transcriptional level. Experiments carried out on model insects highlighted the relevance of microRNAs in several developmental processes during metamorphosis. This review aims to give an overview of the regulatory actions of microRNAs in the programming of cellular and molecular events associated with the metamorphosis of insects and also to provide new insights into the evolutionary history of this taxon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
12
|
Song J, Li W, Gao L, Yan Q, Zhang X, Liu M, Zhou S. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Commun Biol 2024; 7:1604. [PMID: 39623057 PMCID: PMC11612435 DOI: 10.1038/s42003-024-07285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Juvenile hormone (JH) represses insect metamorphosis and stimulates reproduction. JH titers are generally low in juveniles, drop to a nadir during metamorphosis, increase after eclosion and peak in vitellogenic phase. We found that Jhamt, a rate-limiting enzyme in JH biosynthesis, mirrors JH titer patterns in the migratory locust. Knocking down Jhamt reduced JH titers, led to precocious nymphal ecdysis, metamorphosis and impaired vitellogenesis. Jhamt is negatively regulated by miR-276 and positively by miR-182013-5p. miR-276 is abundant in late nymphal but low in adults, while miR-182013-5p shows the opposite pattern. In nymphs, miR-276 binds more to Jhamt, while in adults, miR-182013-5p dominates. Functionally, miR-276 reduced Jhamt and JH levels, shortening nymphal development and inhibiting Vg expression. Conversely, miR-182013-5p increased Jhamt and JH levels, prolonging nymphal development and enhancing Vg expression. Our findings identify miR-276 and miR-182013-5p as dual regulators in JH biosynthesis, acting as "brake" and "accelerator," respectively. This study provides new insights into JH titer fluctuations and miRNA regulation in insect metamorphosis and reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Wanwan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Lulu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingzhi Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
13
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
14
|
Cao HH, Kong WW, Ling B, Wang ZY, Zhang Y, Guo ZX, Liu SH, Xu JP. Bmo-miR-3351 modulates glutathione content and inhibits BmNPV proliferation by targeting BmGSTe6 in Bombyx mori. INSECT SCIENCE 2024; 31:1378-1396. [PMID: 38258370 DOI: 10.1111/1744-7917.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Wei-Wei Kong
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Bing Ling
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhi-Yi Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying Zhang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhe-Xiao Guo
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shi-Huo Liu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
15
|
Wang YP, Chen XY, Pu DQ, Yi CY, Liu CH, Zhang CC, Wei ZZ, Guo JW, Yu WJ, Chen S, Liu HL. Identification and Prediction of Differentially Expressed MicroRNAs Associated with Detoxification Pathways in Larvae of Spodoptera frugiperda. Genes (Basel) 2024; 15:1021. [PMID: 39202382 PMCID: PMC11353827 DOI: 10.3390/genes15081021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Spodoptera frugiperda poses a severe threat to crops, causing substantial economic losses. The increased use of chemical pesticides has led to resistance in S. frugiperda populations. Micro ribonucleic acids (MicroRNAs or miRNAs) are pivotal in insect growth and development. This study aims to identify miRNAs across different developmental stages of S. frugiperda to explore differential expression and predict target gene functions. High-throughput sequencing of miRNAs was conducted on eggs, 3rd instar larvae, pupae, and adults. Bioinformatics analyses identified differentially expressed miRNAs specifically in larvae, with candidate miRNAs screened to predict target genes, particularly those involved in detoxification pathways. A total of 184 known miRNAs and 209 novel miRNAs were identified across stages. Comparative analysis revealed 54, 15, and 18 miRNAs differentially expressed in larvae, compared to egg, pupa, and adult stages, respectively. Eight miRNAs showed significant differential expression across stages, validated by quantitative reverse transcription PCR (qRT-PCR). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses predicted target genes' functions, identifying eight differentially expressed miRNAs targeting 10 gene families associated with detoxification metabolism, including P450s, glutathione S-transferase (GSTs), ATP-binding cassette (ABC) transporters, and sodium channels. These findings elucidate the species-specific miRNA profiles and regulatory mechanisms of detoxification-related genes in S. frugiperda larvae, offering insights and strategies for effectively managing this pest.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Xing-Yu Chen
- Science and Technology Security Center, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - De-Qiang Pu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Chun-Yan Yi
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Chang-Hua Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Cui-Cui Zhang
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Zhen-Zhen Wei
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Jing-Wei Guo
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Wen-Juan Yu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Song Chen
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Hong-Ling Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| |
Collapse
|
16
|
Ghadimmollaloo M, Moharramipour S, Mehrabadi M. Suppression of a Spodoptera frugiperda (Sf9) cellular microRNA following Baculovirus infection and its role in the insect cell - virus interactions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106032. [PMID: 39084784 DOI: 10.1016/j.pestbp.2024.106032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Baculoviruses have been extensively studied for their potential in microbial pest control, but the mechanisms behind their mode of action still need to be addressed. Here we report differential expression of a cellular miRNA, Sfr-miR-184, from Sf9 cells in response to Autographa californica multicapsid Nucleopolyhedrovirus (AcMNPV) infection. Our results showed that Sfr-miR-184 is down-regulated in AcMNPV-infected cells but not with UV-inactivated virus. Prohibitin gene was determined as a target of the miRNA, which was up-regulated following AcMNPV infection. Using synthetic miRNA mimic, we found that oversupply of the miRNA resulted in decreased transcript levels of the target gene. Results suggest that Sfr-miR-184 negatively regulate prohibitin transcripts in the host cells. Antibody-mediated inhibition and silencing of the prohibitin gene revealed significant reductions in virus DNA replication suggesting a possible role for prohibitin in the virus-host interaction. These findings highlight another molecular mechanism used by baculovirus to manipulate host cells for its replication.
Collapse
Affiliation(s)
- Maryam Ghadimmollaloo
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Han HL, Li JM, Chen D, Zhai XD, Smagghe G, Jiang H, Wang JJ, Wei D. Overexpression of miR-927-5p suppresses stalky expression and negatively reduces the spermatid production in Zeugodacus cucurbitae. PEST MANAGEMENT SCIENCE 2024; 80:3412-3422. [PMID: 38407521 DOI: 10.1002/ps.8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The melon fly, Zeugodacus cucurbitae Coquillett, is one of the major pests attacking Cucurbitaceae crops. Identifying critical genes or proteins regulating fertility is essential for sustainable pest control and a research hotspot in insect physiology. MicroRNAs (miRNAs) are short RNAs that do not directly participate in protein translation, but instead function in post-transcriptional regulation of gene expression involved in male fertility. RESULTS We found that miR-927-5p is highly expressed in the testes and investigated its function in spermatogenesis in Z. cucurbitae. Fluorescence in situ hybridization (FISH) showed miR-927-5p in the transformation and maturation region of the testis, and overexpression of miR-927-5p reduced the number of sperms by 53%. In continuation, we predicted 12 target genes of miR-927-5p using bioinformatics combined with transcriptome sequencing data, and found that miR-927-5p targets the new gene Stalky in insects, which was validated by quantitative real-time PCR, RNA pull-down and dual luciferase reporter assays. FISH also confirmed the co-localization of miR-927-5p and the transcript Stalky_1 in the testis. Moreover, silencing of Stalky_1 by RNA interference reduced the number of sperms by 32% and reduced sperm viability by 39% in physiologically mature male adults. Meanwhile, the silencing of Stalky_1 also resulted in low hatchability. CONCLUSION Our work not only presents a new, so far unreported mechanism regulating spermatogenesis by miR-927-5p targeting a new unknown target, Stalky, which is providing new knowledge on the regulatory network of insect spermatogenesis, but also lays a foundation for the development of SIT against important tephritid fly pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jing-Ming Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
18
|
Zhang BZ, Jiang YT, Cui LL, Hu GL, Li XA, Zhang P, Ji X, Ma PC, Kong FB, Liu RQ. microRNA-3037 targeting CYP6CY2 confers imidacloprid resistance to Sitobion miscanthi (Takahashi). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105958. [PMID: 38879340 DOI: 10.1016/j.pestbp.2024.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 06/29/2024]
Abstract
The wheat aphid Sitobion miscanthi is a dominant and destructive pest in agricultural production. Insecticides are the main substances used for effective control of wheat aphids. However, their extensive application has caused severe resistance of wheat aphids to some insecticides; therefore, exploring resistance mechanisms is essential for wheat aphid management. In the present study, CYP6CY2, a new P450 gene, was isolated and overexpressed in the imidacloprid-resistant strain (SM-R) compared to the imidacloprid-susceptible strain (SM-S). The increased sensitivity of S. miscanthi to imidacloprid after knockdown of CYP6CY2 indicates that it could be associated with imidacloprid resistance. Subsequently, the posttranscriptional regulation of CYP6CY2 in the 3' UTR by miR-3037 was confirmed, and CYP6CY2 participated in imidacloprid resistance. This finding is critical for determining the role of P450 in relation to the resistance of S. miscanthi to imidacloprid. It is of great significance to understand this regulatory mechanism of P450 expression in the resistance of S. miscanthi to neonicotinoids.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China; Hebi College of Engineering and Technology, Henan Polytechnic University, China
| | - Yu-Tai Jiang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ling-Ling Cui
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xin-An Li
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pei Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiang Ji
- Hebi College of Engineering and Technology, Henan Polytechnic University, China
| | - Ping-Chuan Ma
- Hebi College of Engineering and Technology, Henan Polytechnic University, China
| | - Fan-Bin Kong
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Run-Qiang Liu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
19
|
Cao HH, Kong WW, Chen XY, Ayaz S, Hou CP, Wang YS, Liu SH, Xu JP. Bmo-miR-6498-5p suppresses Bombyx mori nucleopolyhedrovirus infection by down-regulating BmPLPP2 to modulate pyridoxal phosphate content in B. mori. INSECT MOLECULAR BIOLOGY 2024; 33:259-269. [PMID: 38335442 DOI: 10.1111/imb.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xi-Ya Chen
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Cai-Ping Hou
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yi-Sheng Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
20
|
Li S, Yang Q, Li M, Lan Y, Song Z. Integrated miRNA and mRNA Sequencing Reveals the Sterility Mechanism in Hybrid Yellow Catfish Resulting from Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂). Animals (Basel) 2024; 14:1586. [PMID: 38891632 PMCID: PMC11171309 DOI: 10.3390/ani14111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The hybrid yellow catfish exhibits advantages over pure yellow catfish in terms of fast growth, fast development, a high feeding rate, and strong immunity; additionally, it is almost sterile, thus ensuring the conservation of the genetic stock of fish populations. To investigate the sterility mechanism in hybrid yellow catfish (P. fulvidraco (♀) × P. vachelli (♂)), the mRNA and miRNA of the gonads of P. fulvidraco, P. vachelli, and a hybrid yellow catfish were analyzed to characterize the differentially expressed genes; this was carried out to help establish gene expression datasets to assist in the further determination of the mechanisms of genetic sterility in hybrid yellow catfish. In total, 1709 DEGs were identified between the hybrid and two pure yellow catfishes. A KEGG pathway analysis indicated that several genes related to reproductive functions were upregulated, including those involved in the cell cycle, progesterone-mediated oocyte maturation, and oocyte meiosis, and genes associated with ECM-receptor interaction were downregulated. The spermatogenesis-related GO genes CFAP70, RSPH6A, and TSGA10 were identified as being downregulated DEGs in the hybrid yellow catfish. Sixty-three DEmiRNAs were identified between the hybrid and the two pure yellow catfish species. The upregulated DEmiRNAs ipu-miR-194a and ipu-miR-499 were found to target the spermatogenesis-related genes CFAP70 and RSPH6A, respectively, playing a negative regulatory role, which may underscore the miRNA-mRNA regulatory mechanism of sterility in hybrid yellow catfish. The differential expression of ipu-miR-196d, ipu-miR-125b, and ipu-miR-150 and their target genes spidr, cep85, and kcnn4, implicated in reproductive processes, was verified via qRT-PCR, consistent with the transcriptome sequencing expression trends. This study provides deep insights into the mechanism of hybrid sterility in vertebrate groups, thereby contributing to achieving a better understanding and management of fish conservation related to hybrid sterility.
Collapse
Affiliation(s)
- Shu Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Qiao Yang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Maohua Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Kaplanoglu E, Scott IM, Vickruck J, Donly C. Role of CYP9E2 and a long non-coding RNA gene in resistance to a spinosad insecticide in the Colorado potato beetle, Leptinotarsa decemlineata. PLoS One 2024; 19:e0304037. [PMID: 38787856 PMCID: PMC11125468 DOI: 10.1371/journal.pone.0304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Spinosads are insecticides used to control insect pests, especially in organic farming where limited tools for pest management exist. However, resistance has developed to spinosads in economically important pests, including Colorado potato beetle (CPB), Leptinotarsa decemlineata. In this study, we used bioassays to determine spinosad sensitivity of two field populations of CPB, one from an organic farm exposed exclusively to spinosad and one from a conventional farm exposed to a variety of insecticides, and a reference insecticide naïve population. We found the field populations exhibited significant levels of resistance compared with the sensitive population. Then, we compared transcriptome profiles between the two field populations to identify genes associated primarily with spinosad resistance and found a cytochrome P450, CYP9E2, and a long non-coding RNA gene, lncRNA-2, were upregulated in the exclusively spinosad-exposed population. Knock-down of these two genes simultaneously in beetles of the spinosad-exposed population using RNA interference (RNAi) resulted in a significant increase in mortality when gene knock-down was followed by spinosad exposure, whereas single knock-downs of each gene produced smaller effects. In addition, knock-down of the lncRNA-2 gene individually resulted in significant reduction in CYP9E2 transcripts. Finally, in silico analysis using an RNA-RNA interaction tool revealed that CYP9E2 mRNA contains multiple binding sites for the lncRNA-2 transcript. Our results imply that CYP9E2 and lncRNA-2 jointly contribute to spinosad resistance in CPB, and lncRNA-2 is involved in regulation of CYP9E2 expression. These results provide evidence that metabolic resistance, driven by overexpression of CYP and lncRNA genes, contributes to spinosad resistance in CPB.
Collapse
Affiliation(s)
- Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ian M. Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jessica Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Wang Z, Zhou Y, Li X, Tang F. Importance of core microRNA pathway genes and microRNAs associated with the defense of Odontotermes formosanus (Shiraki) against Serratia marcescens infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105864. [PMID: 38685240 DOI: 10.1016/j.pestbp.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
MicroRNAs (miRNAs) are noncoding small regulatory RNAs involved in diverse biological processes. Odontotermes formosanus (Shiraki) is a polyphagous pest that causes economic damage to agroforestry. Serratia marcescens is a bacterium with great potential for controlling this insect. However, knowledge about the miRNA pathway and the role of miRNAs in O. formosanus defense against SM1 is limited. In this study, OfAgo1, OfDicer1 and OfDrosha were differentially expressed in different castes and tissues. SM1 infection affected the expression of all three genes in O. formosanus. Then, we used specific double-stranded RNAs to silence OfAgo1, OfDicer1 and OfDrosha. Knockdown of these genes enhanced the virulence of SM1 to O. formosanus, suggesting that miRNAs were critical in the defense of O. formosanus against SM1. Furthermore, we sequenced miRNAs from SM1-infected and uninfected O. formosanus. 33 differentially expressed (DE) miRNAs were identified, whereby 22 were upregulated and 11 were downregulated. Finally, the miRNA-mRNA networks were constructed, which further suggested the important role of miRNAs in the defense of O. formosanus against SM1. Totally, O. formosanus miRNA core genes defend against SM1 infection by regulating miRNA expression. This study elucidates the interactions between O. formosanus and SM1 and provides new theories for biological control.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
24
|
Wu M, Lv H, Guo Z, Li S, Tang J, Li J, You H, Ma K. miR-317-3p and miR-283-5p Play a Crucial Role in Regulating the Resistance to Indoxacarb in Spodoptera frugiperda by Targeting GSTs4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6889-6899. [PMID: 38512131 DOI: 10.1021/acs.jafc.3c06531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Spodoptera frugiperda is primarily controlled through chemical insecticides. Our RNA-seq data highlight the overexpression of GSTs4 in indoxacarb-resistant S. frugiperda. However, the exact role of GSTs4 in indoxacarb resistance and its regulatory mechanisms remains elusive. Therefore, we investigated the functional role of GSTs4 in S. frugiperda and explored the underlying post-transcriptional regulatory mechanisms. GSTs4 was highly overexpressed (27.6-fold) in the indoxacarb-resistant strain, and GSTs4 silencing significantly increases the susceptibility of S. frugiperda to indoxacarb, increasing mortality by 27.3%. miR-317-3p and miR-283-5p can bind to the 3'UTR of GSTs4, and the targeting relationship was confirmed by dual-luciferase reporter assays. Injecting miR-317-3p and miR-283-5p agomirs reduces GSTs4 levels by 64.8 and 42.3%, respectively, resulting in an increased susceptibility of S. frugiperda to indoxacarb. Conversely, the administration of miR-317-3p and miR-283-5pantagomirs increases GSTs4 expression and reduces larval susceptibility to indoxacarb. These findings demonstrate that miR-317-3p and miR-283-5p contribute to indoxacarb resistance in S. frugiperda by regulating the overexpression of GSTs4.
Collapse
Affiliation(s)
- Mengyan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haixiang Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhimin Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Sheng Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahui Tang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong You
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
25
|
Yang Y, Wang A, Xue C, Tian H, Zhang Y, Zhou M, Zhao M, Liu Z, Zhang J. MicroRNA PC-5p-3991_515 mediates triflumezopyrim susceptibility in the small brown planthopper through regulating the post-transcriptional expression of P450 CYP417A2. PEST MANAGEMENT SCIENCE 2024; 80:1761-1770. [PMID: 38018281 DOI: 10.1002/ps.7905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases (P450s) are recognized as a major contributor to metabolic resistance in insects to most insecticides, through gene overexpressions and protein mutations. MicroRNA (miRNA), an important post-transcriptional regulator, has been reported to promote insecticide resistance by mediating the expression of detoxification enzyme genes. RESULTS In the present study, we reported that a novel microRNA PC-5p-3991_515 was involved in the post-transcriptional regulation of CYP417A2 and mediated the triflumezopyrim susceptibility in the small brown planthopper (SBPH), Laodelphax striatellus (Fallén). The tissue expression profiles showed that CYP417A2 was highly expressed in fat body. CYP417A2 was significantly up-regulated at 12, 36, 60, 84 and 108 h after the triflumezopyrim treatment. RNA interference (RNAi) against CYP417A2 significantly increased triflumezopyrim susceptibility in SBPH. According to the prediction by miRanda and TargetScan software, three miRNAs were indicated to bind to CYP417A2. However, when oversupply of agomir, only two miRNAs, PC-3p-625_4405 and PC-5p-3991_515, significantly increased the susceptibility to triflumezopyrim and decreased CYP417A2 levels. Furthermore, PC-5p-3991_515 was confirmed to be involved in the post-transcriptional regulation of CYP417A2 by dual luciferase reporter assay. Meanwhile, PC-5p-3991_515 was co-localized with CYP417A2 in the midgut in situ hybridization. CONCLUSION Our findings revealed that the novel microRNA, PC-5p-3991_515, post-transcriptionally regulated CYP417A2 expression, which then mediated the triflumezopyrim susceptibility in SBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Honglin Tian
- Institute of Maize, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Maolin Zhou
- Institute of Maize, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
26
|
Chen J, Guan Z, Ma Y, Shi Q, Chen T, Waris MI, Lyu L, Lu Y, Qi G. Juvenile hormone induces reproduction via miR-1175-3p in the red imported fire ant, Solenopsis invicta. INSECT SCIENCE 2024; 31:371-386. [PMID: 37933419 DOI: 10.1111/1744-7917.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the "re-development" of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ziying Guan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yunjie Ma
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Muhammad Irfan Waris
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lyu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
27
|
Liu J, Tian Z, Li R, Ni S, Sun H, Yin F, Li Z, Zhang Y, Li Y. Key Contributions of the Overexpressed Plutella xylostella Sigma Glutathione S-Transferase 1 Gene ( PxGSTs1) in the Resistance Evolution to Multiple Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2560-2572. [PMID: 38261632 DOI: 10.1021/acs.jafc.3c09458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The overexpression of insect detoxification enzymes is a typical adaptive evolutionary strategy for insects to cope with insecticide pressure. In this study, we identified a glutathione S-transferase (GST) gene, PxGSTs1, that exhibited pronounced expression in the field-resistant population of Plutella xylostella. By using RNAi (RNA interference), the transgenic fly models, and quantitative real-time polymerase chain reaction (RT-qPCR) methods, we confirmed that the augmented expression of PxGSTs1 mediates the resistance of P. xylostella to various types of insecticides, including chlorantraniliprole, novaluron, λ-cyhalothrin, and abamectin. PxGSTs1 was found to bolster insecticide resistance in two ways: direct detoxification and enhancing antioxidative defenses. In addition, our findings demonstrated that pxy-miR-8528a exerts a pivotal influence on forming insecticide resistance in P. xylostella by downregulating PxGSTs1 expression. In summary, we elucidated the multifaceted molecular and biochemical underpinnings of PxGSTs1-driven insecticide resistance in P. xylostella. Our results provide a new perspective for understanding the insecticide resistance mechanism of P. xylostella.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujun Ni
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Yin
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Zhenyu Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
28
|
Chen L, Liang J, Zhang Q, Yang C, Lu H, Zhang R, Chen K, Wang S, Li M, Zhang S, He N. Mulberry-derived miR168a downregulates BmMthl1 to promote physical development and fecundity in silkworms. Int J Biol Macromol 2024; 259:129077. [PMID: 38199542 DOI: 10.1016/j.ijbiomac.2023.129077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Plant-derived miRNAs and their interactions with host organisms are considered important factors in regulating host physiological processes. In this study, we investigated the interaction between the silkworm, an oligophagous insect, and its primary food source, mulberry, to determine whether mulberry-derived miRNAs can penetrate silkworm cells and regulate their functions. Our results demonstrated that miR168a from mulberry leaves enters the silkworm hemolymph and binds to the silkworm Argonaute1 BmAGO1, which is transported via vesicles secreted by silkworm cells to exert its regulatory functions. In vivo and in vitro functional studies revealed that miR168a targets the mRNA of silkworm G protein-coupled receptor, BmMthl1, thereby inhibiting its expression and activating the JNK-FoxO pathway. This activation reduces oxidative stress responses, prolongs the lifespan of silkworms, and improves their reproductive capacity. These findings highlight the challenges of replacing mulberry leaves with alternative protein sources and provide a foundation for developing silkworm germplasms suitable for factory rearing.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jiubo Liang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chao Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hulin Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Renze Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Kaiying Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Sheng Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Mingbo Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Shaoyu Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
| |
Collapse
|
29
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Li J, Zhang D, Zhang Z, Meng S, Wang B, Li Z, Liu X, Zhang S. miR-2765 Modulates the Seasonal Polyphenism in Cacopsylla chinensis by Targeting a Novel Cold Rreceptor CcTRPC3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:140-152. [PMID: 38118125 DOI: 10.1021/acs.jafc.3c05429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Polyphenism is a beneficial way in organisms to better cope with changing circumstances and is a hot topic in entomology, evolutionary biology, and ecology. Until now, this phenomenon has been proven to be season-, density-, and diet-dependent; however, there are very few reports on temperature regulation. Cacopsylla chinensis showed seasonal polyphenism, namely as summer- and winter-form, with obvious diversity in phenotypic characteristics in response to seasonal variation. Previous studies have found that low temperature in autumn is an extremely important element in inducing summer-form change to winter-form, but the underlying regulatory mechanism is still a mystery. Herein, we provided the initial evidence that the third instar of the summer-form is the critical period for developing to the winter-form, and 10 °C induces this transition by affecting the total pigment, chitin level, and thickness of the cuticle. Second, CcTPRC3 was proven to function as a novel cold receptor to control this seasonal polyphenism. Moreover, miR-2765 was found to mediate seasonal polyphenism by inhibiting CcTRPC3 expression. Last, we found that cuticle binding proteins CcCPR4 and CcCPR9 function as the downstream signals of CcTRPC3 to regulate the seasonal polyphenism in C. chinensis. In conclusion, our results displayed a novel signal pathway of miR-2765 and CcTRPC3 for the regulation of seasonal polyphenism in C. chinensis. These findings provide insights into the comprehensive analysis of insect polyphenism and are useful in developing potential strategies to block the phase transition for the pest control of C. chinensis.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Bo Wang
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| |
Collapse
|
31
|
Zhang S, Li J, Zhang D, Zhang Z, Meng S, Li Z, Liu X. miR-252 targeting temperature receptor CcTRPM to mediate the transition from summer-form to winter-form of Cacopsylla chinensis. eLife 2023; 12:RP88744. [PMID: 37965868 PMCID: PMC10651175 DOI: 10.7554/elife.88744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Temperature determines the geographical distribution of organisms and affects the outbreak and damage of pests. Insects seasonal polyphenism is a successful strategy adopted by some species to adapt the changeable external environment. Cacopsylla chinensis (Yang & Li) showed two seasonal morphotypes, summer-form and winter-form, with significant differences in morphological characteristics. Low temperature is the key environmental factor to induce its transition from summer-form to winter-form. However, the detailed molecular mechanism remains unknown. Here, we firstly confirmed that low temperature of 10 °C induced the transition from summer-form to winter-form by affecting the cuticle thickness and chitin content. Subsequently, we demonstrated that CcTRPM functions as a temperature receptor to regulate this transition. In addition, miR-252 was identified to mediate the expression of CcTRPM to involve in this morphological transition. Finally, we found CcTre1 and CcCHS1, two rate-limiting enzymes of insect chitin biosyntheis, act as the critical down-stream signal of CcTRPM in mediating this behavioral transition. Taken together, our results revealed that a signal transduction cascade mediates the seasonal polyphenism in C. chinensis. These findings not only lay a solid foundation for fully clarifying the ecological adaptation mechanism of C. chinensis outbreak, but also broaden our understanding about insect polymorphism.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| |
Collapse
|
32
|
Hussain M, Qi Z, Hedges LM, Nouzova M, Noriega FG, Asgari S. Investigating the role of aae-miR-34-5p in the regulation of juvenile hormone biosynthesis genes in the mosquito Aedes aegypti. Sci Rep 2023; 13:19023. [PMID: 37923767 PMCID: PMC10624809 DOI: 10.1038/s41598-023-46154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Juvenile hormone (JH) controls the development and reproduction of insects. Therefore, a tight regulation of the expression of JH biosynthetic enzymes is critical. microRNAs (miRNAs) play significant roles in the post-transcriptional regulation of gene expression by interacting with complementary sequences in target genes. Previously, we reported that several miRNAs were differentially expressed during three developmental stages of Aedes aegypti mosquitoes with different JH levels (no JH, high JH, and low JH). One of these miRNAs was aae-miR-34-5p. In this study, we identified the presence of potential target sequences of aae-miR-34-5p in the transcripts of some genes encoding JH biosynthetic enzymes. We analysed the developmental expression patterns of aae-miR-34-5p and the predicted target genes involved in JH biogenesis. Increases in miRNA abundance were followed, with a delay, by decreases in transcript levels of target genes. Application of an inhibitor and a mimic of aae-miR-34-5p led respectively to increased and decreased levels of thiolase transcripts, which is one of the early genes of JH biosynthesis. Female adult mosquitoes injected with an aae-miR-34-5p inhibitor exhibited significantly increased transcript levels of three genes encoding JH biosynthetic enzymes, acetoacetyl-CoA thiolase (thiolase), farnesyl diphosphate phosphatase, and farnesal dehydrogenase. Overall, our results suggest a potential role of miRNAs in JH production by directly targeting genes involved in its biosynthesis.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren M Hedges
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Yoon KA, Lee DE, Lee SH, Kim JH. Exploring the potential role of defensins in differential vector competence of body and head lice for Bartonella quintana. Parasit Vectors 2023; 16:183. [PMID: 37280715 DOI: 10.1186/s13071-023-05802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The body and head lice of humans are conspecific, but only the body louse functions as a vector to transmit bacterial pathogens such as Bartonella quintana. Both louse subspecies have only two antimicrobial peptides, defensin 1 and defensin 2. Consequently, any differences in the molecular and functional properties of these two louse subspecies may be responsible for the differential vector competence between them. METHODS To elucidate the molecular basis of vector competence, we compared differences in the structural properties and transcription factor/microRNA binding sites of the two defensins in body and head lice. Antimicrobial activity spectra were also investigated using recombinant louse defensins expressed via baculovirus. RESULTS The full-length amino acid sequences of defensin 1 were identical in both subspecies, whereas the two amino acid residues in defensin 2 were different between the two subspecies. Recombinant louse defensins showed antimicrobial activities only against the representative Gram-positive Staphylococcus aureus but not against either Gram-negative Escherichia coli or the yeast Candida albicans. However, they did show considerable activity against B. quintana, with body louse defensin 2 being significantly less potent than head louse defensin 2. Regulatory sequence analysis revealed that the gene units of both defensin 1 and defensin 2 in body lice possess decreased numbers of transcription factor-binding sites but increased numbers of microRNA binding sites, suggesting relatively lower transcription activities of body louse defensins. CONCLUSIONS The significantly lower antibacterial activities of defensin 2 along with the reduced probability of defensin expression in body lice likely contribute to the relaxed immune response to B. quintana proliferation and viability, resulting in higher vector competence of body lice compared to head lice.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Do Eun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
34
|
Liu L, Wang DH, Zhao CC, Yan FM, Lei CL, Su LJ, Zhang YC, Huang QY, Tang QB. Transcriptomics Reveals the Killing Mechanism by Which Entomopathogenic Fungi Manipulate the RNA Expression Profiles of Termites and Provides Inspiration for Green Pest Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7152-7162. [PMID: 37104842 DOI: 10.1021/acs.jafc.3c00743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As chemical pesticides have caused serious environmental pollution, fungus-based biological control has become a developing alternative to chemical control. Here, we aimed to determine the molecular mechanism underlying how Metarhizium anisopliae facilitated invasive infection. We found that the fungus increased its virulence by downregulating glutathione S-transferase (GST) and superoxide dismutase (SOD) throughout termite bodies. Among 13 fungus-induced microRNAs throughout termite bodies, miR-7885-5p and miR-252b upregulation significantly downregulated several mRNAs in response to toxic substances to increase the fungal virulence [e.g., phosphoenolpyruvate carboxykinase (GTP) and heat shock protein homologue SSE1]. In addition, nanodelivered small interfering RNA of GST and SOD and miR-7885-5p and miR-252b mimics increased the virulence of the fungus. These findings provide new insights into the killing mechanism of entomopathogens and their utilization of the host miRNA machinery to reduce host defenses, laying the groundwork to enhance virulence of biocontrol agents for green pest management.
Collapse
Affiliation(s)
- Long Liu
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong-Huai Wang
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen-Chen Zhao
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng-Ming Yan
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Juan Su
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuan-Chen Zhang
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Anyang 456582, China
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Bo Tang
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
35
|
Xie J, Cai Z, Zheng W, Zhang H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. INSECT SCIENCE 2023; 30:443-458. [PMID: 35751912 DOI: 10.1111/1744-7917.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA-gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA-gene pairs were identified from the miRNA-mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation-reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.
Collapse
Affiliation(s)
- Junfei Xie
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
36
|
Duan TF, Li L, Wang HC, Pang BP. MicroRNA miR-2765-3p regulates reproductive diapause by targeting FoxO in Galeruca daurica. INSECT SCIENCE 2023; 30:279-292. [PMID: 35731017 DOI: 10.1111/1744-7917.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The forkhead box O (FoxO), as a conserved transcription factor, plays an indispensable role in regulating insect diapause. However, how FoxO is regulated to control diapause in insects remains unknown. In this study, we discovered functional binding sites for miR-2765-3p in the 3' untranslated region of FoxO in Galeruca daurica. The luciferase reporter assay showed that miR-2765-3p targeted FoxO and suppressed its expression. The expression profiles of miR-2765-3p and FoxO displayed opposite patterns during the female developmental process. Overexpression of miR-2765-3p by the injection of the miR-2765-3p agomir into adult females reduced FoxO expression, leading to the suppression of lipid accumulation, promotion of ovarian development, and inhibition of reproductive diapause. This is similar to the phenotype that results from the depletion of FoxO by injecting dsFoxO into adult females. In addition, the repression of miR-2765-3p by injecting the miR-2765-3p antagomir increased the FoxO transcript level, leading to the stimulation of lipid accumulation, depression of ovarian development, and induction of reproductive diapause. A hormone injection assay showed that the juvenile hormone (JH) agonist (methoprene) upregulated miR-2765-3p and downregulated FoxO. Notably, injecting methoprene rescued ovarian development defects associated with miR-2765-3p inhibition. These findings indicate that the JH/miR-2765-3p/FoxO axis plays a vital role in the regulation of reproductive diapause in G. daurica.
Collapse
Affiliation(s)
- Tian-Feng Duan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Chao Wang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
37
|
Yang J, Chen S, Xu X, Lin S, Wu J, Lin G, Bai J, Song Q, You M, Xie M. Novel miR-108 and miR-234 target juvenile hormone esterase to regulate the response of Plutella xylostella to Cry1Ac protoxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114761. [PMID: 36907089 DOI: 10.1016/j.ecoenv.2023.114761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Insect hormones, such as juvenile hormone (JH), precisely regulate insect life-history traits. The regulation of JH is tightly associated with the tolerance or resistance to Bacillus thuringiensis (Bt). JH esterase (JHE) is a primary JH-specific metabolic enzyme which plays a key role in regulating JH titer. Here, we characterized a JHE gene from Plutella xylostella (PxJHE), and found it was differentially expressed in the Bt Cry1Ac resistant and susceptible strains. Suppression of PxJHE expression with RNAi increased the tolerance of P. xylostella to Cry1Ac protoxin. To investigate the regulatory mechanism of PxJHE, two target site prediction algorithms were applied to predict the putative miRNAs targeting PxJHE, and the resulting putative miRNAs were subsequently verified for their function targeting PxJHE using luciferase reporter assay and RNA immunoprecipitation. MiR-108 or miR-234 agomir delivery dramatically reduced PxJHE expression in vivo, whilst only miR-108 overexpression consequently increased the tolerance of P. xylostella larvae to Cry1Ac protoxin. By contrast, reduction of miR-108 or miR-234 dramatically increased PxJHE expression, accompanied by the decreased tolerance to Cry1Ac protoxin. Furthermore, injection of miR-108 or miR-234 led to developmental defects in P. xylostella, whilst injection of antagomir did not cause any obvious abnormal phenotypes. Our results indicated that miR-108 or miR-234 can be applied as potential molecular targets to combat P. xylostella and perhaps other lepidopteran pests, providing novel insights into miRNA-based integrated pest management.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuejiao Xu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqi Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Attarianfar M, Mikani A, Mehrabadi M. Fenoxycarb exposure affects antiviral immunity and HaNPV infection in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2023; 79:1078-1085. [PMID: 36424349 DOI: 10.1002/ps.7301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/25/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Application of insect growth regulators (IGR) is a good option for insect pest management because of their fewer adverse effects on humans and domestic animals. These compounds are capable of interfering with normal growth and development by mimicking the actions of hormones such as juvenile hormone (JH) or ecdysone. The effect of JH and its analogs on some aspects of insect immunity has been determined, yet their possible effects on antiviral immunity response has not been investigated yet. Considering the importance of antiviral response in viral replication, in this study the effects of the JH analog (JHA), fenoxycarb on the antiviral immunity pathway core genes [i.e. micro (mi)RNA, small interfering (si)RNA and apoptosis] of Helicoverpa armigera (Hubner) larvae were investigated. The effect of fenoxycarb on the susceptibility of the larvae to H. armigera nuclear polyhedrosis virus (HaNPV) also was assessed. RESULTS The results showed that the transcription level of miRNA (Dicer1, Ago1), siRNA (Dicer2, Ago2) and apoptosis (Caspase1, Caspase5) core genes in H. armigera larvae were decreased significantly after 24, 48 and 96 h feeding on a diet containing lethal and sublethal doses of fenoxycarb. Moreover, the mortality rate to HaNPV in the larvae treated with fenoxycarb increased compared to the control, leading to an increased replication of HaNPV. CONCLUSION Together, our results suggest that the antiviral immune system could be modulated by JHA and facilitate HaNPV replication in the larvae, increasing the mortality rate of the insect larvae. Understanding the effect of JHA on antiviral immunity is an important step toward the process of exploiting JHAs and viral pathogens to control insect pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marzieh Attarianfar
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Wang Z, Tang F, Xu M, Shen T. Exploring miRNA-mRNA regulatory modules responding to tannic acid stress in Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) via small RNA sequencing. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:86-97. [PMID: 35817762 DOI: 10.1017/s0007485322000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (sRNAs) that regulate gene expression by inhibiting translation or degrading mRNA. Although the functions of miRNAs in many biological processes have been reported, there is currently no research on the possible roles of miRNAs in Micromelalopha troglodyta (Graeser) involved in the response of plant allelochemicals. In this article, six sRNA libraries (three treated with tanic acid and three control) from M. troglodyta were constructed using Illumina sequencing. From the results, 312 known and 43 novel miRNAs were differentially expressed. Notably, some of the most abundant miRNAs, such as miR-432, miR-541-3p, and miR-4448, involved in important physiological processes were also identified. To better understand the function of the targeted genes, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results indicated that differentially expressed miRNA targets were involved in metabolism, development, hormone biosynthesis, and immunity. Finally, we visualized a miRNA-mRNA regulatory module that supports the role of miRNAs in host-allelochemical interactions. To our knowledge, this is the first report on miRNAs responding to tannic acid in M. troglodyta. This study provides indispensable information for understanding the potential roles of miRNAs in M. troglodyta and the applications of these miRNAs in M. troglodyta management.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
40
|
Yang XB, Zhou C, Yang JP, Gong MF, Yang H, Long GY, Jin DC. Identification and profiling of Sogatella furcifera microRNAs and their potential roles in regulating the developmental transitions of nymph-adult. INSECT MOLECULAR BIOLOGY 2022; 31:798-809. [PMID: 35899838 DOI: 10.1111/imb.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Sogatella furcifera is one of the most serious insect pests that affect rice in Asia. One class of small RNAs (sRNAs; ~22 nt long) is miRNAs, which participate in various biological processes by regulating the expression of target genes in a spatiotemporal manner. However, the role of miRNAs in nymph-to-adult transition in S. furcifera remains unknown. In this study, we sequenced sRNA libraries of S. furcifera prepared from individuals at three different developmental stages (pre-moult, moulting and early adult). A total of 253 miRNAs (134 known and 119 novel) were identified, of which 12 were differentially expressed during the nymph-to-adult developmental transition. Moreover, Real time quantitative PCR (RT-qPCR) analysis revealed that all 12 miRNAs were differentially expressed among five different nymph tissues and 14 different developmental stages (first to fifth instar nymphs and 1-day-old adults). Injection of miR-2a-2 mimic/antagomir and miR-305-5p-1 mimic/antagomir into 1-day-old fifth instar nymphs significantly increased the mortality rate. In addition, a defective moulting phenotype was observed in nymphs injected with miR-2a-2 and miR-305-5p-1, suggesting that these miRNAs are involved in S. furcifera nymph-adult transition. In conclusion, these results reveal the function of critical miRNAs in S. furcifera nymph-adult transition, and also provide novel potential targets of insecticides for the long-term sustainable management of S. furcifera.
Collapse
Affiliation(s)
- Xi-Bin Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Cao Zhou
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Jia-Peng Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Ming-Fu Gong
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
| | - Gui-Yun Long
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| |
Collapse
|
41
|
Avila-Bonilla RG, Salas-Benito JS. Interactions of host miRNAs in the flavivirus 3´UTR genome: From bioinformatics predictions to practical approaches. Front Cell Infect Microbiol 2022; 12:976843. [PMID: 36310869 PMCID: PMC9606609 DOI: 10.3389/fcimb.2022.976843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Flavivirus of the Flaviviridae family includes important viruses, such as Dengue, Zika, West Nile, Japanese encephalitis, Murray Valley encephalitis, tick-borne encephalitis, Yellow fever, Saint Louis encephalitis, and Usutu viruses. They are transmitted by mosquitoes or ticks, and they can infect humans, causing fever, encephalitis, or haemorrhagic fever. The treatment resources for these diseases and the number of vaccines available are limited. It has been discovered that eukaryotic cells synthesize small RNA molecules that can bind specifically to sequences present in messenger RNAs to inhibit the translation process, thus regulating gene expression. These small RNAs have been named microRNAs, and they have an important impact on viral infections. In this review, we compiled the available information on miRNAs that can interact with the 3’ untranslated region (3’UTR) of the flavivirus genome, a conserved region that is important for viral replication and translation.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Moleculart 3, Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| |
Collapse
|
42
|
A Tale of Two Lobsters—Transcriptomic Analysis Reveals a Potential Gap in the RNA Interference Pathway in the Tropical Rock Lobster Panulirus ornatus. Int J Mol Sci 2022; 23:ijms231911752. [PMID: 36233053 PMCID: PMC9569428 DOI: 10.3390/ijms231911752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.
Collapse
|
43
|
Bidari F, Fathipour Y, Asgari S, Mehrabadi M. Targeting the microRNA pathway core genes, Dicer 1 and Argonaute 1, negatively affects the survival and fecundity of Bemisia tabaci. PEST MANAGEMENT SCIENCE 2022; 78:4234-4239. [PMID: 35708473 DOI: 10.1002/ps.7041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small regulatory non-coding RNAs that are involved in a variety of biological processes such as immunity, cell signaling and development by regulating gene expression. The whitefly Bemisia tabaci is a polyphagous vector that transmits many plant viruses causing economic damage to crops worldwide. In this study, we characterized and analyzed the expression of the miRNA core genes Argonaute-1 (Ago1) and Dicer-1 (Dcr1) in B. tabaci and explored the effect of their silencing on the insect's fitness. RESULTS Our results showed that Ago1 and Dcr1 are differentially expressed in different tissues and developmental stages of B. tabaci. To determine the function of the miRNA pathway in B. tabaci, we silenced Ago1 and Dcr1 using specific double-stranded RNAs to the genes. RNA interference (RNAi) of Ago1 and Dcr1 decreased the expression level of the core genes and reduced the abundance of Let-7 and miR-184 miRNAs. Silencing of the miRNA pathway core gene also negatively affected the biology of B. tabaci by reducing fertility, fecundity and survival of this insect pest. CONCLUSIONS Together, our results showed that silencing the miRNA pathway core genes reduced the miRNA levels followed by reduced fecundity and survival of B. tabaci, which highlighted the importance of the miRNA pathway in this insect. The miRNA core genes are attractive targets for developing an RNAi-based strategy for targeting this notorious insect pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Farzad Bidari
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
44
|
Zhang BZ, Zhang MY, Li YS, Hu GL, Fan XZ, Guo TX, Zhou F, Zhang P, Wu YB, Gao YF, Gao XW. MicroRNA-263b confers imidacloprid resistance in Sitobion miscanthi (Takahashi) by regulating the expression of the nAChRβ1 subunit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105218. [PMID: 36127060 DOI: 10.1016/j.pestbp.2022.105218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The Chinese wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Imidacloprid plays a critical role in controlling pests with sucking mouthparts. However, imidacloprid-resistant pests have been observed after insecticide overuse. Point mutations and low expression levels of the nicotinic acetylcholine receptor β1 (nAchRβ1) subunit are the main imidacloprid-resistant mechanisms. However, the regulatory mechanism underlying nAChRβ1 subunit expression is poorly understood. In this study, a target of miR-263b was isolated from the 5'UTR of the nAchRβ1 subunit in the CWA. Low expression levels were found in the imidacloprid-resistant strain CWA. Luciferase reporter assays showed that miR-263b could combine with the 5'UTR of the nAChRβ1 subunit and suppress its expression by binding to a site in the CWA. Aphids treated with the miR-263b agomir exhibited a significantly reduced abundance of the nAchRβ1 subunit and increased imidacloprid resistance. In contrast, aphids treated with the miR-263b antagomir exhibited significantly increased nAchRβ1 subunit abundance and decreased imidacloprid resistance. These results provide a basis for an improved understanding of the posttranscriptional regulatory mechanism of the nAChRβ1 subunit and further elucidate the function of miRNAs in regulating susceptibility to imidacloprid in the CWA. These results provide a better understanding of the mechanisms of posttranscriptional regulation of nAChRβ1 and will be helpful for further studies on the role of miRNAs in the regulation of nAChRβ1 subunit resistance in homopteran pests.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Meng-Yuan Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ya-She Li
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xin-Zheng Fan
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Tian-Xin Guo
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Feng Zhou
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Pei Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yan-Bing Wu
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yang-Fan Gao
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
45
|
Hu GL, Lu LY, Li YS, Su X, Dong WY, Zhang BZ, Liu RQ, Shi MW, Wang HL, Chen XL. CYP4CJ6-mediated resistance to two neonicotinoid insecticides in Sitobion miscanthi (Takahashi). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:646-655. [PMID: 35172917 DOI: 10.1017/s0007485322000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.
Collapse
Affiliation(s)
- Gui-Lei Hu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Liu-Yang Lu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Ya-She Li
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Xu Su
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Wen-Yang Dong
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. China
| | - Bai-Zhong Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Run-Qiang Liu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Ming-Wang Shi
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Hong-Liang Wang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| | - Xi-Ling Chen
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P.R. China
| |
Collapse
|
46
|
Activating pathway of three metabolic detoxification phases via down-regulated endogenous microRNAs, modulates triflumezopyrim tolerance in the small brown planthopper, Laodelphax striatellus (Fallén). Int J Biol Macromol 2022; 222:2439-2451. [DOI: 10.1016/j.ijbiomac.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
47
|
Li Z, Mao K, Jin R, Cai T, Qin Y, Zhang Y, He S, Ma K, Wan H, Ren X, Li J. miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in Nilaparvata lugens. Int J Biol Macromol 2022; 217:615-623. [PMID: 35853504 DOI: 10.1016/j.ijbiomac.2022.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests that seriously threatens the high-quality and safe production of rice. However, due to the unscientific use of chemical insecticides, N. lugens has developed varying levels of resistance to insecticides, including nitenpyram and clothianidin. The ATP-binding cassette (ABC) transporter plays a nonnegligible role in phase III of the detoxification process, which may play an important role in insecticide resistance. In the present study, NlABCG3 was significantly overexpressed in both the NR and CR populations compared with susceptible populations. Silencing NlABCG3 significantly increased the susceptibility of BPH to nitenpyram and clothianidin. In addition, RNAi-mediated knockdown of three key genes in the miRNA biogenesis pathway altered the level of NlABCG3. Subsequently, the luciferase reporter assays demonstrated that novel_268 binds to the NlABCG3 coding region and downregulates its expression. Furthermore, injection of miRNA inhibitors or mimics of novel_268 significantly altered the susceptibility of N. lugens to nitenpyram and clothianidin. These results suggest that miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in N. lugens. These findings may help to enhance our knowledge of the transcriptional regulation of the ABC transporter that mediate insecticide resistance in N. lugens.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
48
|
Khashaveh A, An X, Shan S, Pang X, Li Y, Fu X, Zhang Y. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022; 114:110447. [PMID: 35963492 DOI: 10.1016/j.ygeno.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and contribute to numerous physiological processes. However, little is known about the functions of miRNAs in insect chemosensation. In this study, nine small RNA libraries were constructed and sequenced from the antennae of nymphs, adult males, and adult females of Apolygus lucorum. In total, 399 (275 known and 124 novel) miRNAs were identified. miR-7-5p_1 was the most abundant miRNA. Altogether, 69,708 target genes related to biogenesis, membrane, and binding activities were predicted. In particular, 15 miRNAs targeted 16 olfactory genes. Comparing the antennae of nymphs and adult males and females, 94 miRNAs were differentially expressed. Alternatively, a subset of differentially expressed miRNAs was verified by qPCR, supporting the reliability of the sequencing results. This study provides a global miRNA transcriptome for the antennae of A. lucorum and valuable information for further investigations of the functions of miRNAs in the regulation of chemosensation.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqian Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Fu
- School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
49
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
50
|
Lee MH, Medina Munoz M, Rio RVM. The Tsetse Metabolic Gambit: Living on Blood by Relying on Symbionts Demands Synchronization. Front Microbiol 2022; 13:905826. [PMID: 35756042 PMCID: PMC9218860 DOI: 10.3389/fmicb.2022.905826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies have socioeconomic significance as the obligate vector of multiple Trypanosoma parasites, the causative agents of Human and Animal African Trypanosomiases. Like many animals subsisting on a limited diet, microbial symbiosis is key to supplementing nutrient deficiencies necessary for metabolic, reproductive, and immune functions. Extensive studies on the microbiota in parallel to tsetse biology have unraveled the many dependencies partners have for one another. But far less is known mechanistically on how products are swapped between partners and how these metabolic exchanges are regulated, especially to address changing physiological needs. More specifically, how do metabolites contributed by one partner get to the right place at the right time and in the right amounts to the other partner? Epigenetics is the study of molecules and mechanisms that regulate the inheritance, gene activity and expression of traits that are not due to DNA sequence alone. The roles that epigenetics provide as a mechanistic link between host phenotype, metabolism and microbiota (both in composition and activity) is relatively unknown and represents a frontier of exploration. Here, we take a closer look at blood feeding insects with emphasis on the tsetse fly, to specifically propose roles for microRNAs (miRNA) and DNA methylation, in maintaining insect-microbiota functional homeostasis. We provide empirical details to addressing these hypotheses and advancing these studies. Deciphering how microbiota and host activity are harmonized may foster multiple applications toward manipulating host health, including identifying novel targets for innovative vector control strategies to counter insidious pests such as tsetse.
Collapse
Affiliation(s)
- Mason H Lee
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| | - Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States.,Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States
| |
Collapse
|