1
|
Jiang K, Yu H, Kong L, Liu S, Du S, Li Q. DOPA Decarboxylase (DDC) in Pacific Oysters: Characterization and Role in Tyrosine Metabolism and Melanogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:59. [PMID: 40035897 DOI: 10.1007/s10126-025-10439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
DOPA decarboxylase (DDC) plays a crucial role in the physiological functions of animals by participating in the dopaminergic system. However, the functions of DDC in shellfish remain poorly understood. The Pacific oyster (Crassostrea gigas) is an extensively cultivated shellfish. In this study, we characterized a DDC gene, designated CgDDC, from C. gigas. The CgDDC gene encodes a protein that contains a Pyridoxal_deC domain, which features specific binding sites for pyridoxal-5'-phosphate (PLP) and L-DOPA. CgDDC exhibits a significantly higher expression level in the black shell oyster strain than the white strain. In vitro enzymatic reaction assays demonstrated that CgDDC catalyzes the conversion of L-DOPA to dopamine. In vivo experiments revealed that inhibiting CgDDC activity reduced the expression of genes associated with tyrosine metabolism. Furthermore, the knockdown of CgDDC caused a decline in cAMP level and reduced transcription of genes involved in the cAMP-mediated melanogenesis. Additionally, treatment with L-α-DOPA inhibited CgDDC enzyme activity and cAMP-mediated melanogenesis; however, dopamine supplementation countered this inhibition, maintaining gene expression and melanin content at baseline levels. Collectively, our findings suggest that CgDDC is intricately involved in regulating tyrosine metabolism and melanogenesis in C. gigas.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Inoue S, Fujie K, Hamaguchi T, Ishimaru Y, Miyawaki K, Takahashi A, Nikawa T, Noji S, Watanabe T, Mito T. Lineage-specific duplication and functional diversification of DOPA-decarboxylase genes in the Gryllidae family, as revealed in Gryllus bimaculatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104246. [PMID: 39653316 DOI: 10.1016/j.ibmb.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The DOPA-decarboxylase (DDC) gene is crucial for dopamine synthesis and influences various biological functions in insects, including body coloration, behavior, learning, and sleep. However, its evolutionary impact remains largely unexplored. This study reports on the tandem duplication of two bona fide ddc genes (ddc1 and ddc2) in the Gryllidae cricket family. We herein investigated the function of ddc1 and ddc2 using Gryllus bimaculatus (Gb) as a model. Our results revealed that Gb'ddc1 was expressed systemically, with its expression being higher immediately after molting compared to the stage following melanin pigmentation. In homozygous knockout mutants of Gb'ddc1, generated via CRISPR/Cas9, reduced body color pigmentation and had translucent cuticles, decreased dopamine levels, and over-accumulated DOPA. These mutants died shortly after hatching, likely due to cuticle defects, underscoring the essential role of dopamine, produced by Gb'ddc1, in melanin synthesis. Conversely, Gb'ddc2 expression was confined to the ovary and was not up-regulated after molting. Homozygous knockout mutants of Gb'ddc2 exhibited no body color defects, whereas hatchability and embryonic development rates were significantly reduced. Interestingly, dopamine levels in the ovaries were significantly elevated in Gb'ddc2 mutants. This suggests that normal ovarian dopamine levels, modulated by Gb'ddc2, are vital for fertility maintenance. The function of Gb'ddc2 differs from that of typical ddc, indicating neofunctionalization through evolutionary duplication. Overall, Gb'ddc1 and Gb'ddc2 have distinct functions, and precise regulation of ovarian dopamine levels using these two ddc genes may have enhanced cricket fertility.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Kai Fujie
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan.
| |
Collapse
|
3
|
Mullins DE, Nalepa CA, Mullins AJ, Gabbert SE. Cuticular nitrogen economy during development in the cockroach Cryptocercus punctulatus and the termite Neotermes jouteli. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104745. [PMID: 39725309 DOI: 10.1016/j.jinsphys.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The role of nitrogen during insect development and reproduction is key in the success of a species, and is of primary importance in wood feeding taxa. Based on comparison of xylophagous, one-piece termites to the termite sister group, subsocial wood-feeding cockroaches in the genus Cryptocercus, it has been proposed that the evolution of termite eusociality involved a fundamental shift in nitrogen allocation strategies. Cryptocercus exhibits a nitrogen storage economy, with individuals gradually increasing in size and cuticular density over a years-long developmental period. Termites, however, remain in a juvenilized morphotype with minimal investment into cuticle, suggesting that nitrogen is conserved and circulated according to the needs of the colony via behaviors such as trophallaxis and cannibalism. We examined the nitrogen economy of Cryptocercus punctulatus and the dampwood termite Neotermes jouteli, focusing on cuticular nitrogen investment during development and exuvial nitrogen losses resulting from molting. Cryptocercus progressively changes from a pale, thin, soft cuticle at hatch to a dark, thick, heavily sclerotized cuticle in adults; increases in N/mg cuticle and the quantity of cuticular catecholamines are correlated with these ontogenetic color changes. There were significant differences in the nitrogen content of two successive age classes of early stage juveniles and in their discarded exuvia at molt. Soldier and alate castes of N. jouteli exhibited the highest sclerotization/melanization indices; pseudergates had levels comparable to those measured in Class I (3rd and 4th instar) juveniles of C. punctulatus. Exuvia of N. jouteli contained 0.19 μgN/mg, while exuvia of approximately two- and three-year-old C. punctulatus had 72.9 and 82.6 μgN/mg, respectively. Our data support the hypothesis that the evolution of termite eusociality from subsocial cockroach ancestors was rooted in chronic fitness limitations imposed by their low nitrogen diet.
Collapse
Affiliation(s)
- D E Mullins
- Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States.
| | - C A Nalepa
- Department of Entomology, NC State University, Raleigh, NC 27695-7613, United States
| | - A J Mullins
- Fort Lauderdale Research and Education Center, University of FL, 3205 College Ave. Davie, FL 33314-7719, United States
| | - S E Gabbert
- Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States
| |
Collapse
|
4
|
Tang CY, Wang J, Liu X, Chen JB, Liang J, Wang T, Simpson WR, Li YL, Li XZ. Medium optimization for high mycelial soluble protein content of Ophiocordyceps sinensis using response surface methodology. Front Microbiol 2022; 13:1055055. [PMID: 36569047 PMCID: PMC9780674 DOI: 10.3389/fmicb.2022.1055055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is widely utilized due to its pharmaceutical value. Mycelial protein forms a key active component of O. sinensis and determines the medicinal potential of fungus. Here, we describe the development of an optimized fermentation medium to obtain more mycelial soluble protein from O. sinensis using response surface methodology (RSM) and investigate the increased mycelial protein content using transcriptomics. The maximum mycelial protein content of 2.11% was obtained using a medium consisting of 20% beef broth, 0.10% peptone, 2% glucose, 0.15% yeast extract, 0.20% KH2PO4, and 0.02% MgSO4. Transcriptome analysis identified 790 differentially expressed genes (DEGs), including 592 up-regulated genes and 198 down-regulated genes, optimisation resulted in more up-regulated genes. The main DEGs were enriched in metabolic pathways, ABC transporters, starch and sucrose metabolism, tyrosine metabolism, and glutathione metabolism. In addition, some DEGs associated with mycelial protein enhancement such as tyrosinase (TYR), glutathione S-transferase (GST), glutamine synthetase (glnA), and β-glucosidase may contribute to increased mycelial protein content. Real-time quantitative PCR (RT-qPCR) was used to confirm gene expression and the results support the accuracy of RNA-Seq and DEG analysis. This study provides an optimized fermentation method for enhancing the mycelial protein content of O. sinensis and a reference for the effective development of O. sinensis protein.
Collapse
Affiliation(s)
- Chu-Yu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Jie Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Xin Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Jian-Bo Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Jing Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | | | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China,*Correspondence: Yu-Ling Li,
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China,Xiu-Zhang Li,
| |
Collapse
|
5
|
Lu X, Zhang L, Wang G, Huang S, Zhang Y, Xie Y. The occurrence process of chromatophores in three body color strains of the ornamental shrimp Neocaridina denticulata sinensis. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ze LJ, Wang P, Peng YC, Jin L, Li GQ. Silencing tyrosine hydroxylase or dopa decarboxylase gene disrupts cuticle tanning during larva-pupa-adult transformation in Henosepilachna vigintioctopunctata. PEST MANAGEMENT SCIENCE 2022; 78:3880-3893. [PMID: 35470957 DOI: 10.1002/ps.6948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The 28-spotted potato ladybird, Henosepilachna vigintioctopunctata, is a notorious defoliator of many solanaceous and cucurbitaceous plants. Tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) are responsible for cuticle tanning pathway in insects. RESULTS We identified HvTH and HvDDC in H. vigintioctopunctata, and found that high levels of them were accumulated just before or right after molting. Injection of dsHvTH or feeding 3-iodo-tyrosine (3-IT) at the third instar larval stage repressed tanning of the larval cuticle, reduced larval feeding, inhibited larval growth, and consequently caused 100% of larval mortality. Knockdown of HvDDC at the third instar larval stage hardly affected the coloration of larval head, and partially inhibited pigmentation of larval bodies and around 80% of the HvDDC RNAi larvae developed into albino pupae and adults. Moreover, depletion of HvTH or HvDDC at the fourth instar larval stage resulted in albino pupae and adults. The HvTH or HvDDC hypomorph adults fully or partially failed to remove the larval/pupal exuviae, possessed pale and abnormal wings, and poorly tanned heads and bodies, and eventually, struggled for several days without feeding on leaves before death. CONCLUSION These results show that TH and DDC play key roles in larval and adult cuticle tanning and development in H. vigintioctopunctata. Also, these findings suggest that dopa- and dopamine-originated pigments are essential for larval and adult feeding behavior and the molting process during emergence. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Lin Jin
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Comparison of gene expression profiles among caste differentiations in the termite Reticulitermes speratus. Sci Rep 2022; 12:11947. [PMID: 35831400 PMCID: PMC9279399 DOI: 10.1038/s41598-022-15984-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Termite castes express specialized phenotypes for their own tasks and are a good example of insect polyphenism. To understand the comprehensive gene expression profiles during caste differentiation, RNA-seq analysis based on the genome data was performed during the worker, presoldier, and nymphoid molts in Reticulitermes speratus. In this species, artificial induction methods for each molt have already been established, and the time scale has been clarified. Three different periods (before the gut purge (GP), during the GP, and after the molt) were discriminated in each molt, and two body parts (head and other body regions) were separately sampled. The results revealed that many differentially expressed genes (head: 2884, body: 2579) were identified in each molt. Based on the independent real-time quantitative PCR analysis, we confirmed the different expression patterns of seven out of eight genes in the presoldier molt. Based on the GO and KEGG enrichment analyses, the expressions of genes related to juvenile hormone titer changes (e.g., JH acid methyltransferase), nutrition status (e.g., Acyl-CoA Delta desaturase), and cell proliferation (e.g., insulin receptor), were shown to specifically fluctuate in each molt. These differences may have a crucial impact on caste differentiation. These data are important resources for future termite sociogenomics.
Collapse
|
8
|
Soldier Caste-Specific Protein 1 Is Involved in Soldier Differentiation in Termite Reticulitermes aculabialis. INSECTS 2022; 13:insects13060502. [PMID: 35735839 PMCID: PMC9224846 DOI: 10.3390/insects13060502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
Termite soldiers are a unique caste among social insects, and their differentiation can be induced by Juvenile hormone (JH) from workers through two molts (worker–presoldier–soldier). However, the molecular mechanism underlying the worker-to-soldier transformation in termites is poorly understood. To explore the mechanism of soldier differentiation induced by JH, the gene soldier caste-specific protein 1 (RaSsp1, NCBI accession no: MT861054.1) in R. aculabialis was cloned, and its function was studied. This gene was highly expressed in the soldier caste, and the protein RsSsp1 was similar to the JHBP (JH-binding protein) domain-containing protein by Predict Protein online. In addition, JHIII could be anchored in the hydrophobic cage of RaSsp1 as the epoxide of the JHBP-bound JH according to the protein ligand molecular docking online tool AutoDock. The functional studies indicated that knocking down of the RaSsp1 shorted the presoldier’s head capsule, reduced mandible size, delayed molting time and decreased molting rate (from worker to presoldier) at the beginning of worker gut-purging. Furthermore, knocking down of the RaSsp1 had a more pronounced effect on soldier differentiation (from presoldier to soldier), and manifested in significantly shorter mandibles, rounder head capsules, and lower molting rate (from worker to presoldier) at the beginning of presoldier gut-purging. Correspondingly, the expressions of JH receptor Methoprene-tolerant (Met), the JH-inducible transcription factor Krüppel homolog1 (Kr-h1) and ecdysone signal genes Broad-complex (Br-C) were downregulated when knocking down the RaSsp1 at the above two stages. All these results that RaSsp1 may be involved in soldier differentiation from workers by binding and transporting JH.
Collapse
|
9
|
Chen EH, Hou QL, Dou W, Yang PJ, Wang JJ. Expression profiles of tyrosine metabolic pathway genes and functional analysis of DOPA decarboxylase in puparium tanning of Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2022; 78:344-354. [PMID: 34532962 DOI: 10.1002/ps.6648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tanning is an important physiological process with critical roles in cuticle pigmentation and sclerotization. Previous studies have shown that insect cuticle tanning is closely associated with the tyrosine metabolism pathway, which consists of a series of enzymes. RESULTS In this study, 24 tyrosine metabolism pathway genes were identified in the oriental fruit fly Bactrocera dorsalis (Hendel) genome. Gene expression profiles throughout 15 developmental stages of B. dorsalis were established based on our previous RNA sequencing data, and we found that 13 enzyme genes could be involved in the process of pupariation. Accordingly, a tyrosine-mediated tanning pathway during the pupariation of B. dorsalis was predicted and a critical enzyme, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase (DDC), was used to explore its possible roles in formation of the puparium. First, a real-time quantitative polymerase chain reaction confirmed that BdDDC had an epidermis-specific expression pattern, and was highly expressed during larval metamorphosis in B. dorsalis. Subsequent disruption of BdDDC by feeding 5-day-old larvae with DDC inhibitor (l-α-methyl-DOPA) could lead to: (i) a significant decrease in BdDDC enzyme activity and dopamine concentration; (ii) defects in puparium pigmentation; (iii) impairment of the morphology and less thickness of the puparium; and (iv) lower pupal weight and obstacles to eclosion. CONCLUSION This study provided a potential tyrosine metabolic pathway that was responsible for insect tanning during pupariation, and the BdDDC enzyme has been shown to have crucial roles in larval-pupal tanning of B. dorsalis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Pei-Jin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Ye C, Song Z, Wu T, Zhang W, Saba NU, Xing L, Su X. Endocuticle is involved in caste differentiation of the lower termite. Curr Zool 2021; 67:489-499. [PMID: 34616947 PMCID: PMC8489109 DOI: 10.1093/cz/zoab005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
Caste differentiation in termites is one of the most conspicuous examples of facultative polyphenism in animals. It is clear that specific cuticular formation occurs in hard exocuticles during caste differentiation. However, the developmental pattern of the soft endocuticle in the differentiation pathways of castes is unknown. To reveal whether the endocuticle is involved in caste differentiation, we compared the exocuticle and endocuticle thickness of individuals in 2 pathways (nymph line and worker line) of caste differentiation in the termite Reticulitermes aculabialis. The endocuticle protein genes were identified by transcriptome analysis and the expression patterns of these genes were confirmed in caste differentiation. We found that the endocuticle structure showed dynamic changes in 2 pathways, and the first difference in endocuticle structure occurred after larvae differentiation bifurcated into workers and nymphs. The thinning of the endocuticle was a significant event from nymphs developing into alates with the thickest exocuticle and thinnest endocuticle. The thickest endocuticle layers were found in the heads of the workers and the ultrastructure of the endocuticle in the heads was more complex than that in the thorax-abdomens. Six endocuticle protein genes were identified and annotated as endocuticle structural glycoproteins SgAbd-2, SgAbd-9, and Abd-5. The expression levels of endocuticle protein genes changed dramatically during caste development and the expression levels in neotenic reproductives (secondary reproductives) were significantly higher than those in alates (primary reproductives). These results reveal the roles of endocuticles in caste differentiation and adaptation to the environment.
Collapse
Affiliation(s)
- Chenxu Ye
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhuanzhuan Song
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Taoyu Wu
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wenxiu Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Noor us Saba
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Lianxi Xing
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaohong Su
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
11
|
Spana EP, Abrams AB, Ellis KT, Klein JC, Ruderman BT, Shi AH, Zhu D, Stewart A, May S. speck, First Identified in Drosophila melanogaster in 1910, Is Encoded by the Arylalkalamine N-Acetyltransferase (AANAT1) Gene. G3 (BETHESDA, MD.) 2020; 10:3387-3398. [PMID: 32709620 PMCID: PMC7466976 DOI: 10.1534/g3.120.401470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
The pigmentation mutation speck is a commonly used recombination marker characterized by a darkly pigmented region at the wing hinge. Identified in 1910 by Thomas Hunt Morgan, speck was characterized by Sturtevant as the most "workable" mutant in the rightmost region of the second chromosome and eventually localized to 2-107.0 and 60C1-2. Though the first speck mutation was isolated over 110 years ago, speck is still not associated with any gene. Here, as part of an undergraduate-led research effort, we show that speck is encoded by the Arylalkylamine N-acetyltransferase 1 (AANAT1) gene. Both alleles from the Morgan lab contain a retrotransposon in exon 1 of the RB transcript of the AANAT1 gene. We have also identified a new insertion allele and generated multiple deletion alleles in AANAT1 that all give a strong speck phenotype. In addition, expression of AANAT1 RNAi constructs either ubiquitously or in the dorsal portion of the developing wing generates a similar speck phenotype. We find that speck alleles have additional phenotypes, including ectopic pigmentation in the posterior pupal case, leg joints, cuticular sutures and overall body color. We propose that the acetylated dopamine generated by AANAT1 decreases the dopamine pool available for melanin production. When AANAT1 function is decreased, the excess dopamine enters the melanin pathway to generate the speck phenotype.
Collapse
Affiliation(s)
- Eric P Spana
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | - Jason C Klein
- Department of Biology, Duke University, Durham, NC 27708
| | | | - Alvin H Shi
- Department of Biology, Duke University, Durham, NC 27708
| | - Daniel Zhu
- Department of Biology, Duke University, Durham, NC 27708
| | - Andrea Stewart
- Department of Biology, Duke University, Durham, NC 27708
| | - Susan May
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
12
|
Wu M, Chen X, Cui K, Li H, Jiang Y. Pigmentation formation and expression analysis of tyrosinase in Siniperca chuatsi. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1279-1293. [PMID: 32185567 DOI: 10.1007/s10695-020-00788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Animal pigmentation primarily depends on the presence and mixing ratio of chromatophores, functioning in animal survival and communication. For the benthic and carnivorous Siniperca chuatsi, pigmentation pattern is key to concealment and predation. In this study, the formation, distribution, and main pattern of chromatophores were observed in the embryos, larvae, skins, and visceral tissues from S. chuatsi. Melanophores were firstly visualized in the yolk sac at segmentation stage, and then they were migrated to the whole body and further clustered into the black stripes, bands, and patches. In adult S. chuatsi, the head, black band, and body side skins mainly contained melanophores, showing as deep or light black. The abdomen skin mainly contained iridophores, showing as silvery. In the eye, the pigment layers were located in the epithelial layers of iris and retina and shown as black. Then, the pigmentation-related gene, tyrosinase gene from S. chuatsi (Sc-tyr) was analyzed by bioinformatics and quantitative methods. The Sc-tyr gene encoded a protein with 540 amino acids (Sc-TYR). The Sc-TYR contained two copper ion binding sites, which were coordinated by six conserved histidines (H182, H205, H214, H366, H370, H393) and necessary for catalytic activity. The Sc-TYR was well conserved compared with TYR of various species with higher degree of sequence similarity with other fishes (77.6-98.3%). The qRT-PCR test showed that the Sc-tyr mRNA reached the peak value at segmentation stage in the embryo development, the black skins displayed a higher expression level than that in silvery skin, and the eye had the highest expression level compared with other tissues. Further research on enzyme activity showed that the expression patterns of tyrosinase activity were similar to that of the Sc-tyr mRNA. Comparing with the results of molecular and phenotype, it was found that the temporal and spatial distributions of tyrosinase corresponded well with changes in pigmentation patterns and the intensity of skin melanization. This study initially explored the pigmentation formation and tyrosinase expression, which served as a foundation for further insight into the genetics mechanism of body color formation in S. chuatsi.
Collapse
Affiliation(s)
- Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Xiaowu Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Kai Cui
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
| | - Haiyang Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Yangyang Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| |
Collapse
|
13
|
Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali. Sci Rep 2020; 10:3464. [PMID: 32103072 PMCID: PMC7044228 DOI: 10.1038/s41598-020-60340-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022] Open
Abstract
Multicopper oxidase (MCO) genes comprise multigene families in bacteria, fungi, plants and animals. Two families of MCO genes, MCO1 (laccase1) and MCO2 (laccase2), are conserved among diverse insects and relatively well-characterized, whereas additional MCO genes, whose biological functions have been poorly understood, are also found in some insects. Previous studies reported that MCO1 participates in gut immunity and MCO2 plays important roles in cuticle sclerotization and pigmentation of insects. In mosquitoes, MCO2 was reported to be involved in eggshell sclerotization and pigmentation, on the ground that knockdown of MCO2 caused deformity and fragility of the eggshell. Here we identified a total of 7 MCO genes, including PsMCO1 and PsMCO2, and investigated their expression and function in the brown-winged green stinkbug Plautia stali. RNA interference (RNAi) knockdown of MCO genes by injecting double-stranded RNA (dsRNA) into nymphs revealed that MCO2, but not the other 6 MCOs, is required for cuticle sclerotization and pigmentation, and also for survival of P. stali. Trans-generational knockdown of MCO2 by injecting dsRNA into adult females (maternal RNAi) resulted in the production of unhatched eggs despite the absence of deformity or fragility of the eggshell. These results suggested that MCO2 plays an important role in sclerotization and pigmentation of the cuticle but not in eggshell integrity in P. stali. Maternal RNAi of any of the other 6 MCO genes and 3 tyrosinase genes affected neither survival nor eggshell integrity of P. stali. Contrary to the observations in the red flour beetle and the brown rice planthopper, RNAi knockdown of MCO6 (MCORP; Multicopper oxidase related protein) exhibited no lethal effects on P. stali. Taken together, our findings provide insight into the functional diversity and commonality of MCOs across hemipteran and other insect groups.
Collapse
|
14
|
Rasheed H, Ye C, Meng Y, Ran Y, Li J, Su X. Comparative transcriptomic analysis and endocuticular protein gene expression of alate adults, workers and soldiers of the termite Reticulitermes aculabialis. BMC Genomics 2019; 20:742. [PMID: 31615402 PMCID: PMC6794787 DOI: 10.1186/s12864-019-6149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The insect cuticle is mainly composed of exocuticle and endocuticle layers that consist of a large number of structural proteins. The thickness and synthesis of the exocuticle depend on different castes that perform various functions in alates, workers and soldiers. However, it is not clear whether the soft endocuticle is involved in the division of labour in termite colonies. To reveal the structural characteristics of the endocuticle in different castes, we investigated the thickness of endocuticle layers in alates, workers and soldiers of the termite Reticulitermes aculabialis, and then we sequenced their transcriptome and detected the endocuticle protein genes. The differential expression levels of the endocuticular protein genes were confirmed in the three castes. RESULTS We found that there was a great difference in the thickness of the endocuticle among the alates, soldiers and workers. The thickest endocuticle layers were found in the heads of the workers 7.88 ± 1.67 μm. The endocuticle layer in the head of the workers was approximately three-fold and nine-fold thicker than that in the heads of soldiers and alates, respectively. The thinnest endocuticle layers occurred in the head, thorax and abdomen of alates, which were 0.86 ± 0.15, 0.76 ± 0.24 and 0.52 ± 0.17 μm thick, respectively, and had no significant differences. A total of 43,531,650 clean sequencing reads was obtained, and 89,475 unigenes were assembled. Of the 70 identified cuticular protein genes, 10 endocuticular genes that belong to the RR-1 family were selected. qRT-PCR analysis of the five endocuticular genes (SgAbd-2, SgAbd-9, Abd-5, SgAbd-2-like and Abd-4-like) revealed that the endocuticle genes were more highly expressed in workers than in soldiers and alates. CONCLUSION These results suggest that SgAbd and Abd are the key components of the endocuticle. We infer that the thicker endocuticle in workers is helpful for them to perform their functions against environmental stress.
Collapse
Affiliation(s)
- Humaira Rasheed
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Chenxu Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yufeng Meng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuehua Ran
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China.
- College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
15
|
Asano T, Seto Y, Hashimoto K, Kurushima H. Mini-review an insect-specific system for terrestrialization: Laccase-mediated cuticle formation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:61-70. [PMID: 30904465 DOI: 10.1016/j.ibmb.2019.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Insects are often regarded as the most successful group of animals in the terrestrial environment. Their success can be represented by their huge biomass and large impact on ecosystems. Among the factors suggested to be responsible for their success, we focus on the possibility that the cuticle might have affected the process of insects' evolution. The cuticle of insects, like that of other arthropods, is composed mainly of chitin and structural cuticle proteins. However, insects seem to have evolved a specific system for cuticle formation. Oxidation reaction of catecholamines catalyzed by a copper enzyme, laccase, is the key step in the metabolic pathway for hardening of the insect cuticle. Molecular phylogenetic analysis indicates that laccase functioning in cuticle sclerotization has evolved only in insects. In this review, we discuss a theory on how the insect-specific "laccase" function has been advantageous for establishing their current ecological position as terrestrial animals.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Yosuke Seto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kosei Hashimoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hiroaki Kurushima
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
16
|
Matsunami M, Nozawa M, Suzuki R, Toga K, Masuoka Y, Yamaguchi K, Maekawa K, Shigenobu S, Miura T. Caste-specific microRNA expression in termites: insights into soldier differentiation. INSECT MOLECULAR BIOLOGY 2019; 28:86-98. [PMID: 30126008 DOI: 10.1111/imb.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eusocial insects have polyphenic caste systems in which each caste exhibits characteristic morphology and behaviour. In insects, caste systems arose independently in different lineages, such as Isoptera and Hymenoptera. Although partial molecular mechanisms for the development of eusociality in termites have been clarified by the functional analysis of genes and hormones, the contribution of microRNAs (miRNAs) to caste differentiation is unknown. To understand the role of miRNAs in termite caste polyphenism, we performed small RNA sequencing in a subterranean termite (Reticulitermes speratus) and identified the miRNAs that were specifically expressed in the soldier and worker castes. Of the 550 miRNAs annotated in the R. speratus genome, 74 were conserved in insects and 174 were conserved in other termite species. We found that eight miRNAs (mir-1, mir-125, mir-133, mir-2765, mir-87a and three termite-specific miRNAs) are differentially expressed (DE) in soldiers and workers of R. speratus. This differential expression was experimentally verified for five miRNAs by real-time quantitative PCR. Further, four of the eight DE miRNAs in soldier and worker termite castes were also differentially expressed in hymenopteran castes. The finding that Isoptera and Hymenoptera shared several DE miRNAs amongst castes suggests that these miRNAs evolved independently in these phylogenetically distinct lineages.
Collapse
Affiliation(s)
- M Matsunami
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - M Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - K Toga
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Y Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - K Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - K Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - S Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
17
|
A Crucial Caste Regulation Gene Detected by Comparing Termites and Sister Group Cockroaches. Genetics 2018; 209:1225-1234. [PMID: 29934338 DOI: 10.1534/genetics.118.301038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
Sterile castes are a defining criterion of eusociality; investigating their evolutionary origins can critically advance theory. In termites, the soldier caste is regarded as the first acquired permanently sterile caste. Previous studies showed that juvenile hormone (JH) is the primary factor inducing soldier differentiation, and treatment of workers with artificial JH can generate presoldier differentiation. It follows that a shift from a typical hemimetabolous JH response might be required for soldier formation during the course of termite evolution within the cockroach clade. To address this possibility, analysis of the role of JH and its signaling pathway was performed in the termite Zootermopsis nevadensis and compared with the wood roach Cryptocercus punctulatus, a member of the sister group of termites. Treatment with a JH analog (JHA) induced a nymphal molt in C. punctulatus RNA interference (RNAi) of JH receptor Methoprene tolerant (Met) was then performed, and it inhibited the presoldier molt in Z. nevadensis and the nymphal molt in C. punctulatus Knockdown of Met in both species inhibited expression of 20-hydroxyecdysone (20E; the active form of ecdysone) synthesis genes. However, in Z. nevadensis, several 20E signaling genes were specifically inhibited by Met RNAi. Consequently, RNAi of these genes were performed in JHA-treated termite individuals. Knockdown of 20E signaling and nuclear receptor gene, Hormone receptor 39 (HR39/FTZ-F1β) resulted in newly molted individuals with normal worker phenotypes. This is the first report of the JH-Met signaling feature in termites and Cryptocercus JH-dependent molting activation is shared by both taxa and mediation between JH receptor and 20E signalings for soldier morphogenesis is specific to termites.
Collapse
|
18
|
TGFβ signaling related genes are involved in hormonal mediation during termite soldier differentiation. PLoS Genet 2018; 14:e1007338. [PMID: 29641521 PMCID: PMC5912798 DOI: 10.1371/journal.pgen.1007338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/23/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022] Open
Abstract
A working knowledge of the proximate factors intrinsic to sterile caste differentiation is necessary to understand the evolution of eusocial insects. Genomic and transcriptomic analyses in social hymenopteran insects have resulted in the hypothesis that sterile castes are generated by the novel function of co-opted or recruited universal gene networks found in solitary ancestors. However, transcriptome analysis during caste differentiation has not been tested in termites, and evolutionary processes associated with acquiring the caste are still unknown. Termites possess the soldier caste, which is regarded as the first acquired permanently sterile caste in the taxon. In this study, we performed a comparative transcriptome analysis in termite heads during 3 molting processes, i.e., worker, presoldier and soldier molts, under natural conditions in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Although similar expression patterns were observed during each molting process, more than 50 genes were shown to be highly expressed before the presoldier (intermediate stage of soldier) molt. We then performed RNA interference (RNAi) of the candidate 13 genes, including transcription factors and uncharacterized protein genes, during presoldier differentiation induced by juvenile hormone (JH) analog treatment. Presoldiers induced after RNAi of two genes related to TGFβ (Transforming growth factor beta) signaling were extremely unusual and possessed soldier-like phenotypes. These individuals also displayed aggressive behaviors similar to natural soldiers when confronted with Formica ants as hypothetical enemies. These presoldiers never molted into the next instar, presumably due to the decreased expression levels of the molting hormone (20-hydroxyecdysone; 20E) signaling genes. These results suggest that TGFβ signaling was acquired for the novel function of regulating between JH and 20E signaling during soldier differentiation in termites.
Collapse
|
19
|
Masuoka Y, Maekawa K. Ecdysone signaling regulates soldier-specific cuticular pigmentation in the termiteZootermopsis nevadensis. FEBS Lett 2016; 590:1694-703. [DOI: 10.1002/1873-3468.12219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Yudai Masuoka
- Graduate School of Science and Engineering; University of Toyama; Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering; University of Toyama; Japan
| |
Collapse
|