1
|
Guo T, Zhang Y, Huang Y, Zhang Y, Li Z, Qin Y. Structural Basis and Recognition Mechanism of Host-Derived Volatiles by Olfactory Proteins in the Agricultural Pest Bactrocera correcta (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12604-12618. [PMID: 40387050 DOI: 10.1021/acs.jafc.5c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Host-derived volatiles play a critical role in mediating plant-insect interactions. Bactrocera correcta is a destructive pest of fruit crops. In this study, we investigated the recognition mechanisms of three key volatiles─β-caryophyllene, ethyl decanoate, and hexyl hexanoate─derived from the host fruits of B. correcta. Using transcriptomic analysis, fluorescence binding assays, molecular docking, and molecular dynamics simulations, we identified BcorOBP19d-2 as a key odorant-binding protein that binds multiple volatiles and facilitates their stabilization and transport. Odorant receptors (BcorOR7a-13, BcorOR74a-3, and BcorOR7a-3) selectively recognize these volatiles, with hydrophobic interactions as the primary driving force for binding. β-Caryophyllene exhibited the highest binding specificity with BcorOR7a-13, ethyl decanoate demonstrated the strongest binding affinity with BcorOR74a-3, and hexyl hexanoate showed moderate stability with BcorOR7a-3. These findings provide structural insights into volatile recognition in polyphagous insects and offer a basis for developing attractants or repellents for pest management.
Collapse
Affiliation(s)
- Tengda Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yumeng Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongjun Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhihong Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yujia Qin
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Persyn E, Duyck PF, François MC, Mille C, Jacob V, Jacquin-Joly E. Transcriptomic analyses in thirteen Tephritidae species provide insights into the ecological driving force behind odorant receptor evolution. Mol Phylogenet Evol 2025; 206:108322. [PMID: 40049262 DOI: 10.1016/j.ympev.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025]
Abstract
The insect olfactory system has evolved while guiding species to specific mating partners, different food sources, and oviposition sites. How species repertoires of odorant receptors (ORs), responsible for the detection of volatile cues, have been shaped by ecologically driven forces remains poorly understood. Due to several host switches back and forth throughout their evolutionary history, fruit flies of the Tephritidae family (Diptera) show highly diverse host preferences, making them good models to address this question. For instance, a comparative analysis of genomic and transcriptomic resources on a large variety of fruit fly species could provide statistical conclusions. Here, we used a RNAseq approach to identify the OR repertoires of thirteen Tephritidae species with different host ranges, namely Bactrocera curvipennis, Bactrocera dorsalis, Bactrocera psidii, Bactrocera tryoni, Bactrocera umbrosa, Bactrocera zonata, Ceratitis capitata, Ceratitis catoirii, Ceratitis quilicii, Dacus ciliatus, Dacus demmerezi, Neoceratitis cyanescens, and Zeugodacus cucurbitae. Manual curation allowed us to annotate 60-80 OR transcripts per species, including the obligatory coreceptor Orco. In total, we reported 698 new OR sequences. Differential expression analyses between antennae and maxillary palps and between the two sexes, performed in three species, revealed some organ- and sex-biased OR expression. Moreover, after adjusting for phylogenetic distance, we found significant correlations between some characteristics of the OR repertoire and species host range: sequences and relative expression level of several ORs were more conserved in polyphagous than in oligophagous species and, in addition, other ORs were found specifically in polyphagous species. Our results provide molecular insights into the ecological driving forces behind Tephritidae OR evolution.
Collapse
Affiliation(s)
- Emma Persyn
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France; INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Pierre-François Duyck
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia; CIRAD, UMR PVBMT, F-98488 Nouméa, New Caledonia
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Christian Mille
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia
| | - Vincent Jacob
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
3
|
Jabeen A, Oakeshott JG, Lee SF, Ranganathan S, Taylor PW. Template-based modeling of insect odorant receptors outperforms AlphaFold3 for ligand binding predictions. Sci Rep 2024; 14:29084. [PMID: 39580516 PMCID: PMC11585542 DOI: 10.1038/s41598-024-80094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Insects rely on odorant receptors (ORs) to detect and respond to volatile environmental cues, so the ORs are attracting increasing interest as potential targets for pest control. However, experimental analysis of their structures and functions faces significant challenges. Computational methods such as template-based modeling (TBM) and AlphaFold3 (AF3) could facilitate the structural characterisation of ORs. This study first showed that both models accurately predicted the structural fold of MhOR5, a jumping bristletail OR with known experimental 3D structures, although accuracy was higher in the extracellular region of the protein and binding mode of their cognate ligands with TBM. The two approaches were then compared for their ability to predict the empirical binding evidence available for OR-odorant complexes in two economically important fruit fly species, Bactrocera dorsalis and B. minax. Post-simulation analyses including binding affinities, complex and ligand stability and receptor-ligand interactions (RLIs) revealed that TBM performed better than AF3 in discriminating between binder and non-binder complexes. TBM's superior performance is attributed to hydrophobicity-based helix-wise multiple sequence alignment (MSA) between available insect OR templates and the ORs for which the binding data were generated. This MSA identified conserved residues and motifs which could be used as anchor points for refining the alignments.
Collapse
Affiliation(s)
- Amara Jabeen
- Applied BioSciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | | | - Siu Fai Lee
- Applied BioSciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- CSIRO Environment, Black Mountain, ACT, Australia
| | - Shoba Ranganathan
- Applied BioSciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Xie J, Liu J, Khashaveh A, Tang H, Liu X, Zhao D, Wang Q, Shi W, Liu T, Zhang Y. Two Structural Analogs of Kairomones are Detected by an Odorant Receptor HvarOR28 in the Coccinellid Hippodamia variegata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21624-21634. [PMID: 39300682 DOI: 10.1021/acs.jafc.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In natural environments, general plant volatiles and herbivore-induced plant volatiles (HIPVs) serve as critical clues for predatory natural enemies in the search for prey. The insect olfactory system plays a vital role in perceiving plant volatiles including HIPVs. In this study, we found that HIPV (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) and the plant volatile geranyl acetate (GA), two structurally similar chemicals, displayed electrophysiological activities on the antennae of the ladybird Hippodamia variegata, but were only attractive to adult females in behavior. Moreover, mated female ladybirds laid a significantly higher number of eggs on TMTT-treated and GA-treated cotton leaves compared to controls. Screening of female-biased odorant receptors (ORs) from the antennal transcriptomes, performing Xenopus oocytes expression coupled with two-electrode voltage clamp recordings, suggested that HvarOR28 specifically tuned to TMTT and GA. Molecular docking and site-directed mutagenesis revealed that the amino acid residues Tyr143 and Phe81 of HvarOR28 are the key site for binding with TMTT and GA. Furthermore, RNA interference (RNAi) assay demonstrated that HvarOR28-silenced individuals demonstrated a notable decrease in electrophysiological responses, even female adults almost lost behavioral preference for the two compounds. Thus, it could be concluded that HvarOR28 in H. variegata contributes to facilitating egg laying through the perception of TMTT and GA. These findings may help to develop new olfactory modulators based on the behaviorally active ligands of HvarOR28.
Collapse
Affiliation(s)
- Jiaoxin Xie
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingtao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Sichuan University of Arts and Science, Dazhou 635000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingnan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Wang Q, Zhang J, Liu C, Ru C, Qian Q, Yang M, Yan S, Liu W, Wang G. Identification of antennal alternative splicing by combining genome and full-length transcriptome analysis in Bactrocera dorsalis. Front Physiol 2024; 15:1384426. [PMID: 38952867 PMCID: PMC11215311 DOI: 10.3389/fphys.2024.1384426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuanjian Ru
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qian Qian
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
6
|
Xu L, Jiang HB, Yu JL, Wang JJ. Plasticity of the olfactory behaviors in Bactrocera dorsalis under various physiological states and environmental conditions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101196. [PMID: 38555081 DOI: 10.1016/j.cois.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Insects rely heavily on their olfactory system for various behaviors, including foraging, mating, and oviposition. Numerous studies have demonstrated that insects can adjust their olfactory behaviors in response to different physiological states and environmental conditions. This flexibility allows them to perceive and process odorants according to different conditions. The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive and invasive pest causing significant economic losses to fruit and vegetable crops worldwide. The olfactory behavior of B. dorsalis exhibits strong plasticity, resulting in its successful invasion. To enhance our understanding of B. dorsalis' olfactory behavior and explore potential strategies for behavior control, we have reviewed recent literature on its olfactory plasticity and potential molecular mechanisms.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Zhang Y, Liu W, Luo Z, Yuan J, Wuyun Q, Zhang P, Wang Q, Yang M, Liu C, Yan S, Wang G. Odorant Receptor BdorOR49b Mediates Oviposition and Attraction Behavior of Bactrocera dorsalis to Benzothiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7784-7793. [PMID: 38561632 DOI: 10.1021/acs.jafc.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Wuyun Q, Zhang Y, Yuan J, Zhang J, Ren C, Wang Q, Yan S, Liu W, Wang G. A classic screening marker does not affect antennal electrophysiology but strongly regulates reproductive behaviours in Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2024; 33:136-146. [PMID: 37877756 DOI: 10.1111/imb.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The key phenotype white eye (white) has been used for decades to selectively remove females before release in sterile insect technique programs and as an effective screening marker in genetic engineering. Bactrocera dorsalis is a representative tephritid pest causing damage to more than 150 fruit crops. Yet, the function of white in important biological processes remains unclear in B. dorsalis. In this study, the impacts of the white gene on electrophysiology and reproductive behaviour in B. dorsalis were tested. The results indicated that knocking out Bdwhite disrupted eye pigmentation in adults, consistent with previous reports. Bdwhite did not affect the antennal electrophysiology response to 63 chemical components with various structures. However, reproductive behaviours in both males and females were significantly reduced in Bdwhite-/- . Both pre-copulatory and copulation behaviours were significantly reduced in Bdwhite-/- , and the effect was male-specific. Mutant females significantly delayed their oviposition towards γ-octalactone, and the peak of oviposition behaviour towards orange juice was lost. These results show that Bdwhite might not be an ideal screening marker in functional gene research aiming to identify molecular targets for behaviour-modifying chemicals. Instead, owing to its strong effect on B. dorsalis sexual behaviours, the downstream genes regulated by Bdwhite or the genes from white-linked areas could be alternate molecular targets that promote the development of better behavioural modifying chemical-based pest management techniques.
Collapse
Affiliation(s)
- QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jinxi Yuan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Cong Ren
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen, China
| | - Guirong Wang
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen, China
| |
Collapse
|
9
|
Cucini C, Boschi S, Funari R, Cardaioli E, Iannotti N, Marturano G, Paoli F, Bruttini M, Carapelli A, Frati F, Nardi F. De novo assembly and annotation of Popillia japonica's genome with initial clues to its potential as an invasive pest. BMC Genomics 2024; 25:275. [PMID: 38475721 PMCID: PMC10936072 DOI: 10.1186/s12864-024-10180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.
Collapse
Affiliation(s)
- Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Sara Boschi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Elena Cardaioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Nicola Iannotti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Francesco Paoli
- Council for Agricultural Research and Agricultural Economy Analysis (CREA), Florence, Italy
| | - Mirella Bruttini
- Department of Medical Biotechnologies, Medical Biotech Hub and Competence Centre, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
10
|
Chen R, Ai D, Wang G, Wang B. Comparative transcriptome analysis of the antenna and proboscis reveals feeding state-dependent chemosensory genes in Eupeodes corollae. Open Biol 2024; 14:230208. [PMID: 38195061 PMCID: PMC10776234 DOI: 10.1098/rsob.230208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
The physiological state of an insect can affect its olfactory system. However, the molecular mechanism underlying the effect of nutrition-dependent states on odour-guided behaviours in hoverflies remains unclear. In this study, comparative transcriptome analysis of the antenna and proboscis from Eupeodes corollae under different feeding states was conducted. Compared with the previously published antennal transcriptome, a total of 32 novel chemosensory genes were identified, including 4 ionotropic receptors, 17 gustatory receptors, 9 odorant binding proteins and 2 chemosensory proteins. Analysis of differences in gene expression between different feeding states in male and female antennae and proboscises revealed that the expression levels of chemosensory genes were impacted by feeding state. For instance, the expression levels of EcorOBP19 in female antennae, EcorOBP6 in female proboscis, and EcorOR6, EcorOR14, EcorIR5 and EcorIR84a in male antennae were significantly upregulated after feeding. On the other hand, the expression levels of EcorCSP7 in male proboscis and EcorOR40 in male antennae were significantly downregulated. These findings suggest that nutritional state plays a role in the adaptation of hoverflies' olfactory system to food availability. Overall, our study provides important insights into the plasticity and adaptation of chemosensory systems in hoverflies.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People’s Republic of China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
11
|
Zhang Y, Wuyun Q, Wang Q, Luo Z, Yuan J, Zhang J, Yan S, Liu W, Wang G. MFS Transporter Bdorwp Does Not Affect Antennal Electrophysiology but Regulates Reproductive Behaviors in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910823 DOI: 10.1021/acs.jafc.3c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Developing behavioral modifying chemicals through molecular targets is a promising way to improve semiochemical-based technology for pest management. Identifying molecular targets that affect insect behavior largely relies on functional genetic techniques such as deletions, insertions, and substitutions. Selectable markers have thus been developed to increase the efficiency of screening for successful editing events. However, the effect of selectable markers on relevant phenotypic traits needs to be considered. In this study, we cloned the wp gene ofBactrocera dorsalis. Knocking out Bdorwp causes white pupae phenotypes. Reproductive behaviors in both males and females were strongly regulated by Bdorwp. Remarkably, Bdorwp did not affect the antennal electrophysiology response to 63 chemical components with various structures. It is recommended to indirectly apply Bdorwp as a selectable marker in functional gene research on behavioral modifying chemicals. Moreover, Bdorwp could also be a potential molecular target for developing new insecticides for tephritid species control.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen 518120, China
| | - Jie Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen 518120, China
| | - Guirong Wang
- Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen 518120, China
| |
Collapse
|
12
|
Guo T, Feng S, Zhang Y, Li W, Qin Y, Li Z. Chromosome-level genome assembly of Bactrocera correcta provides insights into its adaptation and invasion mechanisms. Genomics 2023; 115:110736. [PMID: 39491176 DOI: 10.1016/j.ygeno.2023.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Bactrocera correcta is an invasive polyphagous pest with significant ecological and economic implications. Understanding its genetic characteristics and the molecular mechanisms that drive its rapid adaptation to new environments requires genomic information. In this study, we successfully assembled the chromosome-level genome of B. correcta using PacBio long-read sequencing, Illumina sequencing, and chromatin conformation capture (Hi-C) methods. The final genome assembly spans a total length of 702.65 Mb. We managed to anchor approximately 86.88% of the assembled contigs into 6 linkage groups, ranging from 17.97 Mb to 166.49 Mb. Additionally, our analysis predicted a total of 21,015 genes, with repetitive sequences accounting for 58.22% of the genome. We further identified retroelements and DNA transposons as the major contributors to the larger size of the B. correcta genome, constituting 36.06% and 30.92% of the repetitive sequences, respectively. Our divergence time estimation placed B. correcta's split from other Bactrocera species at around 5.99-16.71 million years ago. Through gene family analyses, we discovered significant expansions in sensing-related gene families (IR, GR), heat shock proteins (HSP60), and resistance-related gene families (ABC) in B. correcta compared to its closest relatives. Transcriptomic analysis revealed substantial upregulation of HSP genes, especially those from the HSP20 subfamily, in response to high temperatures. The availability of this reference genome serves as a foundation for the identification of precise target genes in B. correcta, facilitating molecular prevention and control strategies.
Collapse
Affiliation(s)
- Tengda Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shiqian Feng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weisong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yujia Qin
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
13
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. PLoS One 2023; 18:e0293018. [PMID: 37874813 PMCID: PMC10597520 DOI: 10.1371/journal.pone.0293018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents an intriguing initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation of olfactory receptors caused by prolonged odor exposure is pervasive across taxa and can be accompanied by the activation of xenobiotic responses.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
14
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532230. [PMID: 36993705 PMCID: PMC10055012 DOI: 10.1101/2023.03.12.532230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents a potentially potent initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation caused by prolonged odor exposure is pervasive across taxa and accompanied by the activation of xenobiotic responses. Furthermore, odor-evoked transcriptomics create a potential screening tool for filtering and identification of chemosensory and xenobiotic targets of interest.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
15
|
Zhu X, Zheng C, Dong X, Wang K, Zhang H, Yi W, Ye Z, Xue H, Bu W. Chromosome-level genome of the bean bug Megacopta cribraria in native range, provides insights into adaptation and pest management. Int J Biol Macromol 2023; 237:123989. [PMID: 36921825 DOI: 10.1016/j.ijbiomac.2023.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
Megacopta cribraria, a bean pest causing tremendous economic losses in Asia, was discovered in North America in 2009. Although M. cribraria has become the focus of research on biological invasion and pest management, the lack of genomic resources limits in-depth studies. Here, we report the first chromosome-level genome of M. cribraria using Illumina, PacBio, and Hi-C data. The assembled genome size was 699.65 Mb, with a contig N50 of 1.43 Mb and a scaffold N50 of 109.27 Mb. >97.51 % of bases were successfully anchored to six chromosomes. Through genome annotation, a total of 13,308 coding genes were predicted, 96.3 % of which were successfully accessed function. Expanded gene families were involved in proteolysis, protein metabolism and nitrogen metabolism reflected the underlying genome basis for host adaptation during evolution. Transcriptome analysis revealed different gene expression patterns in antenna, mouthpart, head, leg, wing, and carcass body of the adult M. cribraria, respectively. Moreover, the expression profiles of the odorant receptor genes indicated the potential target genes for pest control. The high-quality chromosome-level genome will benefit further research on the adaptation, evolution, and population genetics of the M. cribraria that will assist in the pest management and tracking the biological invasion routes.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chenguang Zheng
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Xue Dong
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Kaibin Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Haiguang Zhang
- College of Life Sciences, Linyi University, Middle Part of Shuangling Road, Linyi 276000, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Zhen Ye
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Huaijun Xue
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenjun Bu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
16
|
Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly. Commun Biol 2023; 6:176. [PMID: 36792777 PMCID: PMC9932091 DOI: 10.1038/s42003-023-04551-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a notorious pest of fruit crops. Gravid females locate suitable oviposition sites by detecting host plant volatiles. Here, we demonstrate that 1-octen-3-ol, a volatile from mango, guides the oviposition behavior of female flies. Two odorant receptors (BdorOR7a-6 and BdorOR13a) are identified as key receptors for 1-octen-3-ol perception by qPCR analysis, heterologous expression in Xenopus laevis oocytes and HEK 293 cells followed by in vitro binding assays, as well as CRISPR/Cas9 genome editing in B. dorsalis. Molecular docking and site-directed mutagenesis are used to determine major binding sites for 1-octen-3-ol. Our results demonstrate the potential of 1-octen-3-ol to attract gravid females and molecular mechanism of its perception in B. dorsalis. BdorOR7a-6 and BdorOR13a can therefore be used as molecular targets for the development of female attractants. Furthermore, our site-directed mutagenesis data will facilitate the chemical engineering of 1-octen-3-ol to generate more efficient attractants.
Collapse
|
17
|
Liu WB, Li HM, Wang GR, Cao HQ, Wang B. Conserved Odorant Receptor, EcorOR4, Mediates Attraction of Mated Female Eupeodes corollae to 1-Octen-3-ol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1837-1844. [PMID: 36682010 DOI: 10.1021/acs.jafc.2c06132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odorant receptors (ORs) in insects are crucial for the detection of chemical signals. However, the functions of the conserved OR genes among insect species are rarely studied. In this study, we analyzed a well-conserved OR clade in Diptera insects and cloned a gene from this clade, EcorOR4, in the hoverfly Eupeodes corollae. Real-time quantitative PCR showed that EcorOR4 was highly expressed in the antennae and upregulated in the mated females, and in vitro functional characterization showed that EcorOR4 was narrowly tuned to 1-octen-3-ol. Electroantennogram assays revealed that the antennal response of mated females to 1-octen-3-ol was significantly higher than that of mated males, but no significant differences were observed between male and female virgins. Finally, a Y-tube olfactometer bioassay showed that 1-octen-3-ol is an attractant for only mated female E. corollae adults. These results demonstrate that EcorOR4 is involved in the detection of 1-octen-3-ol and that this compound may affect the host-finding and oviposition behavior in female E. corollae.
Collapse
Affiliation(s)
- Wen-Biao Liu
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui-Min Li
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hai-Qun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Wang Y, Fang G, Xu P, Gao B, Liu X, Qi X, Zhang G, Cao S, Li Z, Ren X, Wang H, Cao Y, Pereira R, Huang Y, Niu C, Zhan S. Behavioral and genomic divergence between a generalist and a specialist fly. Cell Rep 2022; 41:111654. [DOI: 10.1016/j.celrep.2022.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/03/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
|
19
|
Xu L, Jiang HB, Tang KY, Yan Y, Schetelig MF, Wang JJ. CRISPR-mediated mutagenesis of the odorant receptor co-receptor (Orco) gene disrupts olfaction-mediated behaviors in Bactrocera dorsalis. INSECT SCIENCE 2022; 29:1275-1286. [PMID: 34986270 DOI: 10.1111/1744-7917.12997] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 12/01/2021] [Indexed: 05/14/2023]
Abstract
Olfaction plays an essential role in insect behavior such as host location, foraging, mating, and oviposition. The odorant receptor co-receptor (Orco) is an obligatory odorant receptor and indispensable in odor perception. Here, we characterized the Orco gene from the oriental fruit fly, Bactrocera dorsalis (Hendel), a notorious agriculture pest. The olfactory deficiency mutants were generated by editing the BdorOrco gene using the CRISPR/Cas9 system. Electroantennograms (EAG) and olfactory preference assays confirmed that BdorOrco-/- mutant flies had reduced perception of methyl eugenol, β-caryophyllene, and ethyl acetate. Oviposition bioassays showed that the eggs laid by BdorOrco-/- females mediated by benzothiazole and 1-octen-3-ol were significantly decreased. In addition, BdorOrco-/- mutant flies took a significantly longer time to locate the food source compared with wild type (WT) flies. Altogether, our data indicated that Orco is essential for multiple physiological processes in B. dorsalis, and it expands our understanding of the function of insect Orco.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Kai-Yue Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Giessen, Germany
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Giessen, Germany
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Identification of Candidate Chemosensory Gene Families by Head Transcriptomes Analysis in the Mexican Fruit Fly, Anastrepha ludens Loew (Diptera: Tephritidae). Int J Mol Sci 2022; 23:ijms231810531. [PMID: 36142444 PMCID: PMC9500802 DOI: 10.3390/ijms231810531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on the Mexican fruit fly Anastrepha ludens Loew, a priority pest of quarantine importance in Mexico and other countries. This work represents the first effort to identify, classify and characterize the six chemosensory gene families by analyzing two head transcriptomes of sexually immature and mature adults of A. ludens from laboratory-reared and wild populations, respectively. We identified 120 chemosensory genes encoding 31 Odorant-Binding Proteins (OBPs), 5 Chemosensory Proteins (CSPs), 2 Sensory Neuron Membrane Proteins (SNMPs), 42 Odorant Receptors (ORs), 17 Ionotropic Receptors (IRs), and 23 Gustatory Receptors (GRs). The 120 described chemosensory proteins of the Mexican fruit fly significantly contribute to the genetic databases of insects, particularly dipterans. Except for some OBPs, this work reports for the first time the repertoire of olfactory proteins for one species of the genus Anastrepha, which provides a further basis for studying the olfactory system in the family Tephritidae, one of the most important for its economic and social impact worldwide.
Collapse
|
21
|
Shi W, Ye H, Roderick G, Cao J, Kerdelhué C, Han P. Role of Genes in Regulating Host Plants Expansion in Tephritid Fruit Flies (Diptera) and Potential for RNAi-Based Control. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35983691 PMCID: PMC9389179 DOI: 10.1093/jisesa/ieac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Host plant expansion is an important survival strategy for tephritids as they expand their range. Successful host expansion requires tephritids to adapt to the chemical and nonchemical properties of a novel host fruit, such as fruit color, phenology, and phytochemicals. These plant properties trigger a series of processes in tephritids, with each process having its own genetic basis, which means that various genes are involved in regulating host plant expansion by tephritids. This review summarizes current knowledge on the categories and roles of genes involved in host plant expansion in several important tephritid species, including genes related to chemoreception (olfactory and gustation), vision, digestion, detoxification, development, ribosomal and energy metabolism. Chemoreception- and detoxification- and digestion-related genes are stimulated by volatile chemicals and secondary chemicals of different hosts, respectively, which are involved in the regulation of nervous signal transduction that triggers behavioral, physical, and chemical responses to the novel host fruit. Vision-, nerve-, and development-related genes and metabolism-associated genes are activated in response to nonchemical stimuli from different hosts, such as color and phenology, to regulate a comprehensive adaptation of the extending host for tephritids. The chemical and nonchemical signals of hosts activate ribosomal and energy-related genes that result in the basic regulation of many processes of host expansion, including detoxification and development. These genes do not regulate novel host use individually, but multiple genes regulate multilevel adaptation to novel host fruits via multiple mechanisms. These genes may also be potential target genes for RNAi-based control of tephritid pests.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Hui Ye
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Jun Cao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Carole Kerdelhué
- INRAE, CBGP (INRAE, CIRAD, RD, Montpellier Supagro, University Montpellier), Montpellier, France
| | - Peng Han
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
22
|
Jiang F, Liang L, Wang J, Zhu S. Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms. Commun Biol 2022; 5:25. [PMID: 35017661 PMCID: PMC8752857 DOI: 10.1038/s42003-021-02966-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bactrocera dorsalis is an invasive polyphagous pest causing considerable ecological and economic damage worldwide. We report a high-quality chromosome-level genome assembly and combine various transcriptome data to explore the molecular mechanisms of its rapid adaptation to new environments. The expansions of the DDE transposase superfamily and key gene families related to environmental adaptation and enrichment of the expanded and unique gene families in metabolism and defence response pathways explain its environmental adaptability. The relatively high but not significantly different expression of heat-shock proteins, regardless of the environmental conditions, suggests an intrinsic mechanism underlying its adaptation to high temperatures. The mitogen-activated protein kinase pathway plays a key role in adaptation to new environments. The prevalence of duplicated genes in its genome explains the diversity in the B. dorsalis complex. These findings provide insights into the genetic basis of the invasiveness and diversity of B. dorsalis, explaining its rapid adaptation and expansion. Jiang et al. sequence the genome of Bactrocera dorsalis, a destructive and invasive agricultural pest. Insights from this chromosome-level assembly shed light on molecular adaptations that allow for the global invasion and expansion of this pest.
Collapse
Affiliation(s)
- Fan Jiang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Liang Liang
- Academy of Agricultural Planning and Engineering, MARA, Beijing, 100125, China
| | - Jing Wang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China. .,Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Hainan, 572025, China.
| |
Collapse
|
23
|
Ono H. Functional characterization of an olfactory receptor in the Oriental fruit fly, Bactrocera dorsalis, that responds to eugenol and isoeugenol. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110696. [PMID: 34800681 DOI: 10.1016/j.cbpb.2021.110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Most insects utilize a diverse array of olfactory cues for host finding and reproduction behaviors. Males of several Dacini fruit fly species (Tephritidae) are selectively attracted to certain phytochemicals to acquire sex pheromone precursors. Despite the importance of olfaction, only a limited number of olfactory receptors (ORs) in Dacini fruit flies have been characterized. In this study, I focused on the OR94b-2 subfamily, because a clade consisting of these homologs was distinctly localized from other OR clades in a constructed phylogenetic tree. To deorphanize the ORs, I used plant essential oils to screen ligands. Using heterologous expression in Xenopus oocytes, I analyzed the functional properties of BdorOR94b-2 and ZcucOR94b-2 from the Oriental fruit fly, Bactrocera dorsalis, and the melon fruit fly, Zeugodacus cucurbitae, respectively. I found that cinnamon leaf oil evoked responses in oocytes expressing BdorOR94b-2 and the corresponding co-receptor BdorORCO. Gas chromatography-mass spectrometry analysis indicated that eugenol is a major component of cinnamon leaf oil. In accordance with the response to cinnamon leaf oil containing eugenol, BdorOR94b-2/BdorORCO revealed a weak but significant response to eugenol. BdorOR94b-2/BdorORCO also responded to isoeugenol, but not to other related aromatic semiochemicals such as known male-specific attractants and sex pheromones. In contrast, ZcucOR94b-2/ZcucORCO did not respond to any of the phenolic compounds tested, including eugenol analogs. Therefore, BdorOR94b-2/BdorORCO is narrowly tuned to eugenol analogs, whereas ZcucOR94b-2/ZcucORCO likely binds to other compound(s).
Collapse
Affiliation(s)
- Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
24
|
Scolari F, Valerio F, Benelli G, Papadopoulos NT, Vaníčková L. Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives. INSECTS 2021; 12:insects12050408. [PMID: 33946603 PMCID: PMC8147262 DOI: 10.3390/insects12050408] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
The Dipteran family Tephritidae (true fruit flies) comprises more than 5000 species classified in 500 genera distributed worldwide. Tephritidae include devastating agricultural pests and highly invasive species whose spread is currently facilitated by globalization, international trade and human mobility. The ability to identify and exploit a wide range of host plants for oviposition, as well as effective and diversified reproductive strategies, are among the key features supporting tephritid biological success. Intraspecific communication involves the exchange of a complex set of sensory cues that are species- and sex-specific. Chemical signals, which are standing out in tephritid communication, comprise long-distance pheromones emitted by one or both sexes, cuticular hydrocarbons with limited volatility deposited on the surrounding substrate or on the insect body regulating medium- to short-distance communication, and host-marking compounds deposited on the fruit after oviposition. In this review, the current knowledge on tephritid chemical communication was analysed with a special emphasis on fruit fly pest species belonging to the Anastrepha, Bactrocera, Ceratitis, and Rhagoletis genera. The multidisciplinary approaches adopted for characterising tephritid semiochemicals, and the real-world applications and challenges for Integrated Pest Management (IPM) and biological control strategies are critically discussed. Future perspectives for targeted research on fruit fly chemical communication are highlighted.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy
- Correspondence: (F.S.); (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.)
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy;
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Nikos T. Papadopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece;
| | - Lucie Vaníčková
- Department of Chemistry and Biochemistry, Faculty of AgriSciences Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Correspondence: (F.S.); (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.)
| |
Collapse
|
25
|
Xiao Y, Sun L, Wang Q, An XK, Huang XZ, Khashaveh A, Li ZY, Zhang YJ. Host plants transfer induced regulation of the chemosensory genes repertoire in the alfalfa plant bug Adelphocoris lineolatus (Goeze). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100798. [PMID: 33581507 DOI: 10.1016/j.cbd.2021.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The alfalfa plant bug Adelphocoris lineolatus, an economically important pest, has representative behavioral characteristics with host plants transfer. Olfactory system is essential for insects to perceive ever-changing chemical signals in the external environment, and chemosensory genes play crucial roles in signals reception and transduction. In this work, we compared the differences in chemosensory genes expression before and after host plants transfer by constructing 12 antennal transcriptomes of male and female bugs, respectively. The results showed that the expression levels of most chemosensory genes in A. lineolatus changed to adapt to the transformation of the hosts plant. More remarkable, female bugs had more up-regulated chemosensory genes than males. Differentially expressed genes (DEGs) analysis revealed three odorant binding proteins (OBPs), three chemosensory proteins (CSPs), eight odorant receptors (ORs) and one ionotropic receptor (IR) showed significant differences when the host plant transferred. There were complex characteristics of up- and down- regulated genes in male and female adults, among which OBP19 showed higher expression in females exposing to the new host plant alfalfa, suggesting this OBP may be associated with the localization of the oviposition site. The OR54 and OR82 were up-regulated in both genders, indicating their possible roles in recognizing some alfalfa-specific volatiles. These findings will provide valuable insights in biological functions of chemosensory genes in A. lineolatus and facilitate the development of new targets for novel strategies to control the alfalfa plant bug and other herbivores.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Tea Quality and Safety Control, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin-Zheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Ono H, Hee AKW, Jiang H. Recent Advancements in Studies on Chemosensory Mechanisms Underlying Detection of Semiochemicals in Dacini Fruit Flies of Economic Importance (Diptera: Tephritidae). INSECTS 2021; 12:106. [PMID: 33530622 PMCID: PMC7911962 DOI: 10.3390/insects12020106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022]
Abstract
Dacini fruit flies mainly contain two genera, Bactrocera and Zeugodacus, and include many important pests of fruits and vegetables. Their life cycle is affected by various environmental cues. Among them, multiple characteristic semiochemicals have remarkable effects on their reproductive and host-finding behaviors. Notably, floral fragrances released from so-called fruit fly orchids strongly attract males of several Dacini fruit fly species. Focusing on the strong attraction of male flies to particular chemicals, natural and synthetic lures have been used for pest management. Thus, the perception of semiochemicals is important to understand environmental adaptation in Dacini fruit flies. Since next-generation sequencers are available, a large number of chemosensory-related genes have been identified in Dacini fruit flies, as well as other insects. Furthermore, recent studies have succeeded in the functional analyses of olfactory receptors in response to semiochemicals. Thus, characterization of molecular components required for chemoreception is under way. However, the mechanisms underlying chemoreception remain largely unknown. This paper reviews recent findings on peripheral mechanisms in the perception of odors in Dacini fruit flies, describing related studies in other dipteran species, mainly the model insect Drosophilamelanogaster. Based on the review, important themes for future research have also been discussed.
Collapse
Affiliation(s)
- Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Alvin Kah-Wei Hee
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia;
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
27
|
Li HM, Liu WB, Yang LL, Cao HQ, Pelosi P, Wang GR, Wang B. Aromatic Volatiles and Odorant Receptor 25 Mediate Attraction of Eupeodes corollae to Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12212-12220. [PMID: 33103425 DOI: 10.1021/acs.jafc.0c03854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flowering plants attract pollinators with volatile chemicals that include aromatic compounds. Syrphid flies are the largest group of flower visitors in Diptera, but little is known about how they detect floral scents at the molecular level. Here, electroantennogram (EAG) recordings from the antennae of Eupeodes corollae were used to measure responses from 14 aromatic compounds. To identify odorant receptors (ORs) of E. corollae tuned to aromatic volatiles, we analyzed functional profiles of Drosophila melanogaster odorant receptors (ORs), DmelOR46a and DmelOR71a, which are narrowly tuned to phenolic compounds and represent the orthologues of E. corollae OR25 and OR28, respectively. The two genes that are expressed in the antennae of both sexes were functionally characterized. EcorOR25 is narrowly tuned to several structurally related floral scent volatiles, including eugenol, p-cresol, and methyl eugenol. Finally, choice behavior assays showed that eugenol and methyl eugenol were attractants for both sexes of E. corollae adults. This study identified the odorant receptors used by E. corollae to detect aromatic volatiles, suggesting environmentally friendly strategies to attract these beneficial insects.
Collapse
Affiliation(s)
- Hui-Min Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wen-Biao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lu-Lu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Hai-Qun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße 24, 3430 Tulln, Austria
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- Guangdong Laboratory of Linnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| |
Collapse
|
28
|
Wu Z, Cui Y, Ma J, Qu M, Lin J. Analyses of chemosensory genes provide insight into the evolution of behavioral differences to phytochemicals in Bactrocera species. Mol Phylogenet Evol 2020; 151:106858. [DOI: 10.1016/j.ympev.2020.106858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
|
29
|
Li H, Ren L, Xie M, Gao Y, He M, Hassan B, Lu Y, Cheng D. Egg-Surface Bacteria Are Indirectly Associated with Oviposition Aversion in Bactrocera dorsalis. Curr Biol 2020; 30:4432-4440.e4. [PMID: 32946751 DOI: 10.1016/j.cub.2020.08.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
Finding a suitable oviposition site is a challenging task for a gravid female fly, because the hatched maggots have limited mobility, making it difficult to find an alternative host. The oriental fruit fly, Bactrocera dorsalis, oviposits on many types of fruits. Maggots hatching in a fruit that is already occupied by conspecific worms will face food competition. Here, we showed that maggot-occupied fruits deter B. dorsalis oviposition and that this deterrence is based on the increased β-caryophyllene concentration in fruits. Using a combination of bacterial identification, volatile content quantification, and behavioral analyses, we demonstrated that the egg-surface bacteria of B. dorsalis, including Providencia sp. and Klebsiella sp., are responsible for this increase in the β-caryophyllene contents of host fruits. Our research shows a type of tritrophic interaction between micro-organisms, insects, and insect hosts, which will provide considerable insight into the evolution of insect behavioral responses to volatile compounds.
Collapse
Affiliation(s)
- Huijing Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Lu Ren
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Mingxue Xie
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Yang Gao
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Muyang He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Babar Hassan
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China.
| | - Daifeng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
30
|
Shi W, Roderick G, Zhang GS. Mechanisms of Novel Host Use by Bactrocera tau (Tephritid: Diptera) Revealed by RNA Transcriptomes. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5930888. [PMID: 33078842 PMCID: PMC7751176 DOI: 10.1093/jisesa/ieaa102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Use of novel plant hosts can facilitate the establishment and range expansion of herbivorous invasive species. However, the inherent mechanisms of novel host use are still unclear in many herbivorous species. Here, we examine mechanisms of novel host use in the invasive tephritid fruit fly Bactrocera tau (Walker)(Diptera: Tephritidae) by documenting changes in the RNA transcriptomes associated with a novel host. RNA transcripts of B. tau were obtained with high-throughput sequencing from samples continuously reared on two traditional Cucurbitaceae hosts and a novel host (banana). We found transcriptome variation was strongly associated with feeding on banana. Moreover, B. tau feeding on banana contained more differentially expressed genes (DEGs) and more annotated categories of DEGs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database with 1,595 DEGs and 21 major annotated pathways. The annotated categories of DEGs in individuals reared on banana differed with from those individuals feeding on other hosts and were enriched in oxidative phosphorylation, citrate cycle pathway, and four other carbohydrate pathways. For B. tau feeding on banana, the predominant numbers of upregulated genes in the mitochondrial NADH (56 on average) and a relatively higher numbers of upregulated genes (13 on average) were found in oxidative phosphorylation and the TCA pathway, respectively. Changes in RNA transcriptomes associated with novel host use, especially for genes related to energy and carbohydrate metabolism, help to explain how B. tau can be successful in use of novel hosts and may be useful in developing novel strategies for control of tephritid flies.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA
| | - Gen-Song Zhang
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
31
|
Li L, Gao X, Gui H, Lan M, Zhu J, Xie Y, Zhan Y, Wang Z, Li Z, Ye M, Wu G. Identification and preliminary characterization of chemosensory-related proteins in the gall fly, Procecidochares utilis by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100724. [PMID: 32836214 DOI: 10.1016/j.cbd.2020.100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Chemoreception is critical for insect behaviors such as foraging, host searching and oviposition. The process of chemoreception is mediated by a series of proteins, including odorant-binding proteins (OBPs), gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs). The tephritid stem gall fly, Procecidochares utilis Stone, is a type of egg parasitic insect, which is an effective biological control agent for the invasive weed Ageratina adenophora in many countries. However, the study of molecular components related to the olfactory system of P. utilis has not been investigated. Here, we conducted the developmental transcriptome (egg, first-third instar larva, pupa, female and male adult) of P. utilis using next-generation sequencing technology and identified a total of 133 chemosensory genes, including 40 OBPs, 29 GRs, 24 ORs, 28 IRs, 6 CSPs, and 6 SNMPs. The sequences of these candidate chemosensory genes were confirmed by BLAST, and phylogenetic analysis was performed. Quantitative real-time PCR (qRT-PCR) confirmed that the expression levels of the candidate OBPs varied at the different developmental stages of P. utilis with most OBPs expressed mainly in the pupae, female and male adults but scarcely in eggs and larvae, which was consistent with the differentially expressed genes (DEGs) analysis using the fragments per kilobase per million fragments (FPKM) value. Our results provide a significant contribution towards the knowledge of the set of chemosensory proteins and help advance the use of P. utilis as biological control agents.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Huamin Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Youguo Zhan
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
32
|
Liu Y, Cui Z, Si P, Liu Y, Zhou Q, Wang G. Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103389. [PMID: 32360457 DOI: 10.1016/j.ibmb.2020.103389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Insect sensing of odorants plays important roles in various behaviors, including host location, mate attraction, and oviposition site selection. The odorant receptor (OR) is a key protein in insect environmental odor recognition. Most Diptera studies of ORs have focused on Drosophila and mosquitos, so there little known about ORs in the agricultural pest insects Tephritidae. To understand the olfactory recognition mechanism of Bactrocera minax, we sequenced and analyzed 12 B. minax transcriptomes to identify a total of 59 OR genes. Semi-quantitative reverse transcription PCR (RT-PCR) showed that several BminORs were highly expressed in antennae. Available with a complete open reading frame and expressed in the antennae of both sexes at a higher level than those of other BminORs, BminOR24 was selected for further functional analyses. BminOR24/BminOrco expressed in Xenopus oocytes responded significantly to linalool. The identification of B. minax OR genes lays a foundation for further functional studies of OR genes, and functional characterization of BminOR24 provides insight for improving methods for controlling B. minax, a devastating pest insects.
Collapse
Affiliation(s)
- Yipeng Liu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Pinfa Si
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
33
|
Liu Y, Du L, Zhu Y, Yang S, Zhou Q, Wang G, Liu Y. Identification and sex-biased profiles of candidate olfactory genes in the antennal transcriptome of the parasitoid wasp Cotesia vestalis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100657. [DOI: 10.1016/j.cbd.2020.100657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/21/2019] [Accepted: 01/19/2020] [Indexed: 12/23/2022]
|
34
|
Khashaveh A, An X, Shan S, Xiao Y, Wang Q, Wang S, Li Z, Geng T, Gu S, Zhang Y. Deorphanization of an odorant receptor revealed new bioactive components for green mirid bug Apolygus lucorum (Hemiptera: Miridae). PEST MANAGEMENT SCIENCE 2020; 76:1626-1638. [PMID: 31714013 DOI: 10.1002/ps.5682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Apolygus lucorum is one of the most destructive insect pests in China with a wide range of host plants. Interaction of A. lucorum with surrounding environment heavily relies on chemical communication. Deorphanization of receptors involved in odors detection elevates our understanding of the olfactory system of this pest and may help to develop a chemical ecology-based control strategy. RESULTS AlucOR80, an odorant receptor (OR) in A. lucorum was newly cloned. Gene expression analysis showed that this receptor was mainly expressed in the antennae and head of both sexes but with a male bias. The Xenopus oocytes heterologous expression system coupled with the two-electrode voltage-clamp (TEVC) recording revealed that AlucOR80 was tuned to 21 selected compounds. Furthermore, electroantennogram (EAG) tests confirmed that all 21 ligands of AlucOR80 were electrophysiologically active in antennae of both sexes. Behavioral trials in a three-cage olfactometer indicated that 16 compounds were behaviorally active, amongst which, 12 components were attractants and four components were repellents for adults of both sexes. Butyl butyrate and Dimethyl disulfide (DMDS) were the strongest attractive and repellant compounds, respectively. Importantly, we found the repellency of 1, 8-Cineole, S-(-)-cis-Verbenol and (1S)-(1)-beta-Pinene against adults of A. lucorum. CONCLUSION Although AlucOR80 is a general OR, may play important role in the olfactory perception of A. lucorum. Screening of AlucOR80 ligands by behavioral assay provided valuable insights by which olfactory-based management approaches could be developed by utilizing the behaviorally active components as attractants or repellents. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanning Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Zibo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Geng
- Langfang Scientific Research Trial Station, Chinese Academy of Agricultural Sciences, Langfang, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Liu Y, Cui Z, Wang G, Zhou Q, Liu Y. Cloning and Functional Characterization of Three Odorant Receptors From the Chinese Citrus fly Bactrocera minax (Diptera: Tephritidae). Front Physiol 2020; 11:246. [PMID: 32269531 PMCID: PMC7109250 DOI: 10.3389/fphys.2020.00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Insect olfactory sensing is crucial for finding food, mating, and oviposition preference. Odorant receptors (ORs) play a central role in the transmission of odorant signals into the environment by the peripheral olfactory system. Therefore, the identification and functional study of ORs are essential to better understand olfactory mechanisms in insects. OR studies on Diptera insects are primarily performed on Drosophila and mosquitoes, but few studies have been reported in Tephritidae. In this study, we examined three candidate ORs (BminOR3, BminOR12, and BminOR16) from Bactrocera minax. Our analysis of tissue expression revealed that the three BminORs were expressed in the antennae, with no difference between the male and female. In in vitro heterologous expression system of Xenopus oocytes. BminOR3/BminOrco responded strongly to 1-octen-3-ol, BminOR12/BminOrco responded to eight compounds [methyl salicylate, benzaldehyde, (Z)-3-hexenyl acetate, butyl acrylate, butyl propionate, 1-octanol, (S)-(+)-carvone and benzyl alcohol], and BminOR16/BminOrco slightly responded to undecanol. Our results concluded that BminOR3, BimOR12, and BminOR16 could play an important role in host-finding and oviposition positioning in B. minax.
Collapse
Affiliation(s)
- Yipeng Liu
- College of Life Sciences, Hunan Normal University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and evolution of odorant receptors in beetles (Coleoptera). INSECT MOLECULAR BIOLOGY 2020; 29:77-91. [PMID: 31381201 DOI: 10.1111/imb.12611] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/27/2019] [Accepted: 07/25/2019] [Indexed: 05/10/2023]
Abstract
The insect odorant receptors (ORs) are amongst the largest gene families in insect genomes and the primary means by which insects recognize volatile compounds. The evolution of ORs is thus instrumental in explaining the chemical ecology of insects and as a model of evolutionary biology. However, although ORs have been described from numerous insect species, their analysis within and amongst the insect orders has been hindered by a combination of limited genomic information and a tendency of the OR family toward rapid divergence, gain, and loss. We addressed these issues in the insect order Coleoptera through a targeted genomic annotation effort that included 1181 ORs from one species of the sister order Strepsiptera and 10 species representing the four coleopteran suborders. The numbers of ORs in each species varied from hundreds to fewer than 10, but coleopteran ORs could nevertheless be represented within a scheme of nine monophyletic subfamilies. We observed many radiations and losses of genes amongst OR subfamilies, and the diversity of ORs appeared to parallel the host breadth of the study species. However, some small lineages of ORs persisted amongst many coleopteran families, suggesting receptors of key function that underlie the olfactory ecology of beetles.
Collapse
Affiliation(s)
- R F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - T M Schneider
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - A M Schwartz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - M N Andersson
- Department of Biology, Lund University, Lund, Sweden
| | - D D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
37
|
Xu P, Wang Y, Akami M, Niu CY. Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax. PLoS One 2019; 14:e0222193. [PMID: 31509572 PMCID: PMC6739056 DOI: 10.1371/journal.pone.0222193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022] Open
Abstract
Insects possess highly developed olfactory systems which play pivotal roles in its ecological adaptations, host plant location, and oviposition behavior. Bactrocera minax is an oligophagous tephritid insect whose host selection, and oviposition behavior largely depend on the perception of chemical cues. However, there have been very few reports on molecular components related to the olfactory system of B. minax. Therefore, the transcriptome of B. minax were sequenced in this study, with 1 candidate chemosensory protein (CSP), 21 candidate odorant binding proteins (OBPs), 53 candidate odorant receptors (ORs), 29 candidate ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins (SNMPs) being identified. After that, we sequenced the candidate olfactory genes and performed phylogenetic analysis. qRT-PCR was used to express and characterize 9 genes in olfactory and non-olfactory tissues. Compared with GFP-injected fly (control), dsOBP21-treated B. minax and dsCSP-treated B. minax had lower electrophysiological response to D-limonene (attractant), suggesting the potential involvement of BminOBP21 and BminCSP genes in olfactory perceptions of the fly. Our study establishes the molecular basis of olfaction, tributary for further functional analyses of chemosensory processes in B. minax.
Collapse
Affiliation(s)
- Penghui Xu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaohui Wang
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
38
|
Ono H, Miyazaki H, Mitsuno H, Ozaki K, Kanzaki R, Nishida R. Functional characterization of olfactory receptors in three Dacini fruit flies (Diptera: Tephritidae) that respond to 1-nonanol analogs as components in the rectal glands. Comp Biochem Physiol B Biochem Mol Biol 2019; 239:110346. [PMID: 31499218 DOI: 10.1016/j.cbpb.2019.110346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023]
Abstract
Dacini fruit flies (Tephritidae: Diptera), including destructive pest species, are strongly affected in their reproductive behaviors by semiochemicals. Notably, male lures have been developed for pest management e.g., aromatic compounds for the Oriental fruit fly Bactrocera dorsalis and the melon fruit fly Zeugodacus cucurbitae; terpenic α-ionone analogs for the solanaceous fruit fly, B. latifrons. Other than those specific male attractants, 1-nonanol analogs have been noticed as major aliphatic components in the male rectal gland, which is considered as a secretory organ of male sex pheromones. Although multiple semiochemicals associated with the life cycle of Dacini fruit flies have been identified, their behavioral role(s) and chemosensory mechanisms by which the perception occurs have not been fully elucidated. In this study, we conducted RNA sequencing analysis of the chemosensory organs of B. latifrons and Z. cucurbitae to identify the genes coding for chemosensory receptors. Because the skeletons of male attractants are different among Dacini fruit fly species, we analyzed phylogenetic relationships of candidate olfactory receptors (ORs) among the three species. We found that the OR phylogeny reflects the taxonomic relationships of the three species. We further characterized functional properties of OR74a in the three Dacini species to the 1-nonanol analogs related to components in the rectal glands. The three OR74a homologs responded to 1-nonanol, but their sensitivities differed from each other. The OR74a homologs identified from B. dorsalis and Z. cucurbitae responded significantly to 6-oxo-1-nonanol, but not to 1,3-nonanediol and nonyl acetate, indicating similar binding properties of the homologous ORs.
Collapse
Affiliation(s)
- Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Hitomi Miyazaki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Ritsuo Nishida
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
39
|
Wu Z, Kang C, Qu M, Chen J, Chen M, Bin S, Lin J. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 2019; 20:646. [PMID: 31412763 PMCID: PMC6693287 DOI: 10.1186/s12864-019-6022-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the rectal glands of both male and female adults of B. minax using Illumina sequencing technology, and annotated gene families potentially responsible for chemosensory. Results We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs). Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-qPCR). Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together. Conclusions A large number of chemosensory genes were identified from transcriptomic data. Identification of these candidate genes and their expression profiles in various tissues provide useful information for future studies towards revealing their function in B. minax. Electronic supplementary material The online version of this article (10.1186/s12864-019-6022-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Cong Kang
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mengqiu Qu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Junlong Chen
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shuying Bin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Jintian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
40
|
Chieng ACT, Hee AKW, Wee SL. Involvement of the Antennal and Maxillary Palp Structures in Detection and Response to Methyl Eugenol by Male Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5142394. [PMID: 30351432 PMCID: PMC6197378 DOI: 10.1093/jisesa/iey104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 05/04/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Handel) is one of the most destructive pests of fruits. The discovery of methyl eugenol (ME) as a potent male attractant for this species has led to its successful use in area-wide fruit fly control programs such as male annihilation. While the antenna is recognized as primarily responsible for male flies' detection of attractants such as ME, little is known of the involvement of the maxillary palp. Using behavioral assays involving males with intact and ablated antennae and maxillary palp structures, we seek to ascertain the relative involvement of the maxillary palp in the ability of the male fly to detect ME. In cage bioassays (distance of ≤40 cm from the source), >97% of unmodified males will normally show a response to ME. Here, we showed that 17.6% of males with their antennae ablated were still attracted to ME versus 75.0% of males with their palps ablated. However, none of the antennae-ablated males were able to detect ME over a distance of >100 cm. Furthermore, wind tunnel bioassays showed that maxillary palp-ablated males took a significantly longer time compared to unablated males to successfully detect and eventually feed on ME. These results suggest that although the antennae are necessary for detection of ME over longer distances, at shorter distances, both antennae and maxillary palps are also involved in detecting ME. Hence, those palps may play a larger role than previously recognized in maneuvering males toward lure sources over shorter ranges.
Collapse
Affiliation(s)
- Anna Chui-Ting Chieng
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Alvin Kah-Wei Hee
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
- Corresponding author, e-mail:
| | - Suk-Ling Wee
- Centre of Insect Systematics, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|