1
|
Liu W, Zhao Y, Zhao X, Guo H, Yang Y, Moussian B, Zhang J. The pore canal protein snsl is required for cuticular lipids transport and cuticle barrier function in the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 181:104314. [PMID: 40280450 DOI: 10.1016/j.ibmb.2025.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/04/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Lipids are important components of the insect cuticle protecting against desiccation and xenobiotic penetration. Delivery of lipids to the cuticular surface occurs through pore canals, which are a nano-canal system formed by the epidermis, running through the procuticle and terminating at the epicuticle, where they ramify as wax-canals. The molecular mechanisms of cuticular lipids deposition in insects are poorly understood. Here, we identified the pore canal protein Snsl (Snustorr snarlik) in the migratory locust Locusta migratoria (LmSnsl) and investigated its function in cuticular lipid transport and cuticle barrier construction. We found that LmSnsl was specifically expressed in the integument and had a high expression level before ecdysis when a new cuticle is formed. Silencing of LmSnsl by RNA interference (RNAi) caused a lethal phenotype during or shortly after molting. In addition, RNAi against LmSnsl resulted in a decrease in cuticular lipids and in the accumulation of internal lipids. The pore canals of dsLmSnsl animals are deformed and contain less luminal material. Furthermore, we found that cuticle permeability to xenobiotics was enhanced in dsLmSnsl-treated nymphs that were, consistently, more susceptible to insecticides. These animals were also prone to pathogen invasion suggesting that cuticle lipids act in pathogen defense. Taken together, our results indicate that the locust Snsl protein is needed for pore canal integrity required for the transport of lipids from the epidermis to the cuticle to constitute a barrier against xenobiotics and pathogens.
Collapse
Affiliation(s)
- Weimin Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Yiyan Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Xiaoming Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China.
| | - Hongfang Guo
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, 06903, France.
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China.
| |
Collapse
|
2
|
Wang B, Yi M, Wang M, Wang H, Tang Z, Zhao H, Wei P, Liao X, Xue W, Pan L, Shi L. Cuticle thickening mediates insecticide penetration resistance in Spodoptera litura. J Adv Res 2025:S2090-1232(25)00125-0. [PMID: 39999921 DOI: 10.1016/j.jare.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Long-term and extensive use of chemical pesticides has led to the development of resistance in many important agricultural pests. The mechanisms of resistance formation in pests are complex and variable, and unraveling the resistance mechanisms is the key to control resistant pests. Insect cuticle, as the first line of defense for insecticides, plays a non-negligible role in insecticide penetration resistance. Although penetration resistance is widespread in insects, the multiple molecular mechanisms that impede insecticide penetration are unclear, especially in Spodoptera litura. OBJECTIVES This study aims to reveal the molecular mechanisms of insecticide penetration resistance in S. litura. METHODS The structure and thickness of cuticle were analyzed by TEM, and the role of cuticle in penetration resistance was determined by different application methods. The molecular mechanism of cuticular proteins overexpression was analyzed using RNAi, TEM, dual-luciferase assay and EMSA from cis- and trans-acting factors. In addition, the relationship between the chitin synthetic pathway and insecticide resistance was explored through enzyme activity, inhibitor assay, molecular docking and RNAi. Furthermore, the role of 20E in penetration resistance was analyzed. RESULTS The cuticle of the resistant populations was significantly thickened and accompanied by extrusion, which contributed significantly to indoxacarb resistance. Constitutive upregulation of trans-acting factor SlituFTZ-F1 co-regulates the overexpression of SlituCP26 with cis-acting elements in the SlituCP26 promoter (74 bp insertion), affecting the cuticle thickness‑mediated indoxacarb penetration resistance. Meanwhile, the overexpression of key genes in the chitin synthesis pathway increased the chitin content, which combined with SlituCP26 to participate in indoxacarb resistance. Moreover, 20E affected the SlituFTZ-F1-mediated regulatory pathway and chitin biosynthesis pathway in indoxacarb resistance. CONCLUSION This study comprehensively elucidated the molecular mechanism of cuticle thickening mediating penetration resistance to indoxacarb and confirmed its existence in the field populations of S. litura.
Collapse
Affiliation(s)
- Bingjie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Minghui Yi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Mengyu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hengji Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zi Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Peng Wei
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenxin Xue
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Li Z, Li Q, Peng Q, Smagghe G, Li G. RNAi of nuclear receptor E78 inhibits the cuticle formation in the molting process of spider mite, Tetranychus urticae. PEST MANAGEMENT SCIENCE 2025; 81:809-818. [PMID: 39400455 DOI: 10.1002/ps.8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The two-spotted spider mite, Tetranychus urticae, is an important pest mite in agriculture worldwide. E78, as a member of the nuclear receptor superfamily and a downstream responsive gene of ecdysteroids, plays a crucial role in regulating physiological behaviors such as development and reproduction in insects. However, its function in mites remains unclear. The aim of this study was to explore how E78 functions in the molting process of spider mites. RESULTS In this study, reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments to analyze the expression pattern of TuE78 during the development of Tetranychus urticae, demonstrated that the expression level of TuE78 was higher during the molting state than that after the completion of molting, and it reached a peak expression level when the deutonymph mites entered the molting stage. RNA interference (RNAi)-mediated gene-silencing of TuE78 resulted in 95% deutonymph mite molt failure. A series of analysis under a light microscope, and scanning and transmission electron microscopy revealed that RNAi mites died within the exuvium without ecdysis, and that apolysis had started but the new cuticle was thin and the typical cuticular lamellae were absent, indicating blockage of the post-apolysial processes and explaining molt failure. Hence, transcriptome sequencing confirmed that the expression of cuticle protein and lipid metabolism-related genes was significantly affected after TuE78 silencing. CONCLUSION This study demonstrated that TuE78 participates in the molting process of Tetranychus urticae by regulating the post-apolysial processes with the formation of new cuticle and successful ecdysis. This in turn suggests the potential of TuE78 as a target for pest mite control and provides a theoretical basis for further exploration of the molecular regulatory mechanism of spider mite molting. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuo Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Qingyan Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Qixiang Peng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Gang Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Guo M, Qu X, Cheng S, Wang H, Xue Y, Shen J, Wang D. The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii. INSECT SCIENCE 2025. [PMID: 39822144 DOI: 10.1111/1744-7917.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins. When double-stranded RNA is delivered epidermally, AgSgAbd-2-like is knocked down, resulting in molting defects and mortality. The expression of AgSgAbd-2-like is comparatively low prior to molting and increases following molting. Ecdysone signaling consistently suppresses AgSgAbd-2-like. Histologically, the endocuticle and whole cuticle are thinner in AgSgAbd-2-like RNA interference (RNAi) aphids, which is a leading cause of molting defects and mortality. Furthermore, knockdown of any other homolog of ESGs, including AgSgAbd-4, AgSgAbd-4-like, AgSgAbd-8-like, and AgSgAbd-9-like, results in molting defects and death, like that by AgSgAbd-2-like RNAi. These results indicate that the melon aphid ESGs are conserved in cuticle formation and could be potential targets for RNAi-based pest management.
Collapse
Affiliation(s)
- Mingyu Guo
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xueting Qu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shenhang Cheng
- School of Synthetic Biology, Shanxi University, Taiyuan, China
| | - Haiqi Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Xue
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Lu ZJ, Xia T, Zhang C, He Q, Zhong H, Fu SC, Yuan XF, Liu XQ, Liu YX, Chen W, Yi L, Yu HZ. Characterization of an RR-2 cuticle protein DcCP8 and its potential application based on SPc nanoparticle-wrapped dsRNA in Diaphorina citri. PEST MANAGEMENT SCIENCE 2024; 80:6262-6275. [PMID: 39092895 DOI: 10.1002/ps.8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The insect cuticle consists of chitin fibers and a protein matrix, which plays an important role in protecting the body from invasion of various pathogens and prevents water loss. Periodic synthesis and degradation of the cuticle is required for the growth and development of insects. Key genes involved in cuticle formation have long been considered a potential target for pest control. RESULTS In this study, a member of the RR-2 subfamily of cuticular protein 8 (DcCP8) was identified from the Diaphorina citri genome database. Immunofluorescence analysis suggested that DcCP8 was mainly located in the Diaphorina citri exocuticle and can be induced to up-regulate 12 h following 20-hydroxyecdysone (20E) treatment. Silencing of DcCP8 by RNA interference (RNAi) significantly disrupted the metamorphosis to the adult stage, and improved the permeability of the cuticle. Transmission electron microscopy (TEM) analysis revealed that the synthesis of the exocuticle was impressed after silencing of DcCP8. Furthermore, the recombinant DcCP8 protein exhibited chitin-binding properties in vitro, down-regulation of DcCP8 significantly inhibited expression levels of chitin metabolism-related genes. Additionally, a sprayable RNAi method targeting DcCP8 based on star polycation (SPc) nanoparticles-wrapped double-stranded RNA (dsRNA) significantly increased Diaphorina citri mortality. Transcriptome sequencing further confirmed that genes associated with the endocytic pathway and immune response were up-regulated in Diaphorina citri after SPc treatment. CONCLUSIONS The current study indicated that DcCP8 is critical for the formation of Diaphorina citri exocuticles, and lays a foundation for Diaphorina citri control based on large-scale dsRNA nanoparticles. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shang-Cheng Fu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Fang Yuan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Qiang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Ying-Xue Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
6
|
Wu T, Dong Q, Tang X, Zhu X, Deng D, Ding Y, Ahmad S, Zhang W, Mao Z, Zhao X, Ge L. CYP303A1 regulates molting and metamorphosis through 20E signaling in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Int J Biol Macromol 2024; 281:136234. [PMID: 39366602 DOI: 10.1016/j.ijbiomac.2024.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Cytochrome P450s play a crucial role in the breakdown of external substances and perform important activities in the hormone system of insects. It has been understood that P450s were essential in the metabolism of ecdysteroids. CYP303A1 is a highly conserved CYP in most insects, but its specific physiological functions remain poorly understood in Nilaparvata lugens Stål. In this study, NlCYP303A1 was identified and highly expressed in the pre-molt stages, predominantly in the cuticle-producing tissues. Silencing of NlCYP303A1 caused a lethal phenotype with a molting defect. Moreover, the 20E titers, the expression levels of Halloween genes, and critical genes associated with the 20E signaling pathway in N. lugens nymphs were significantly decreased with the silencing NlCYP303A1. We further performed additional backfilling of 20E to rescue the RNAi effects on NlCYP303A1. The gene expression levels that were previously reduced caused by silencing NlCYP303A1 were significantly elevated. However, the molting defects of nymphs were not effectively improved. The results demonstrated NlCYP303A1 plays a crucial role in the molting and metamorphosis of N. lugens by regulating the 20E signaling pathway and cuticular formation, enhances the understanding of the functional role of CYP 2 clans, and identifies candidate gene for RNAi-based control of N. lugens.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xuhui Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Wen Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Ziyue Mao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Sun T, Jin Y, Rao Z, Liyan W, Tang R, Zaryab KM, Li M, Li Z, Wang Y, Xu J, Han R, Cao L. Knockdown of Thitarodes host genes influences dimorphic transition of Ophiocordyceps sinensis in the host hemolymph. Front Cell Infect Microbiol 2024; 14:1451628. [PMID: 39397862 PMCID: PMC11466941 DOI: 10.3389/fcimb.2024.1451628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
The Chinese cordyceps, a unique parasitic complex of Thitarodes/Hepialus ghost moths and Ophiocordyceps sinensis fungus in the Tibetan Plateau, is a highly valuable biological resource for medicine and health foods in Asian countries. Efficient system for artificial cultivation of Chinese cordyceps relies on understanding the gene functions involved in the induction of growing blastospores into hyphae in the larval hemolymph of insect host, during O. sinensis infection. Transcriptome analysis and ribonucleic acid interference (RNA interference) method were employed to identify the key differentially expressed genes and to demonstrate their functions in Thitarodes xiaojinensis. Key larval genes critical for O. sinensis blastospore development or filamentation were identified. Nine of the 20 top upregulated genes encoded cuticles proteins, indicating that these proteins highly activated when the larval hemolymph was full of blastospores. Small interfering RNA (siRNA) knockdown of five larval genes such as Flightin, larval cuticle protein LCP-30, 26-hydroxylase (CYP18A1), cuticle protein 18.6, isoform B, and probable chitinase 3 significantly stimulated the dimorphic transition from blastospores to prehyphae in O. sinensis in the larval hemolymph after 120 h after injection. The expressions of these genes determined by quantitative real-time PCR were suppressed in various levels from 38.64% to 91.54%, compared to the controls. These results demonstrated that injection of the siRNAs of key upregulated genes into the larval hemolymph containing high load of blastospores caused the gene silence in T. xiaojinensis larvae and induced the fungal transition from blastospores to prehyphae, providing novel knowledge on the regulation of O. sinensis fungal dimorphism by Thitarodes host and cues for further study of Thitarodes biology and commercial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Tanqi Sun
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongling Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wang Liyan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Khalid Muhammad Zaryab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingyan Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Zhenhao Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Ying Wang
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Jing Xu
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Richou Han
- Research Centre, Zhejiang Yuewangshengcao Biotechnological Company Limited, Zhejiang, Jinhua, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Jin KY, Wang XP, Di YQ, Zhao YM, Wang JX, Zhao XF. The transcription factor RUNT-like regulates pupal cuticle development via promoting a pupal cuticle protein transcription. PLoS Genet 2024; 20:e1011393. [PMID: 39264939 PMCID: PMC11392391 DOI: 10.1371/journal.pgen.1011393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024] Open
Abstract
Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.
Collapse
Affiliation(s)
- Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Wang X, Zhao D, Wang Q, Liu Y, Lu X, Guo W. Identification and Functional Analysis of V-ATPaseA and C Genes in Hyphantria cunea. INSECTS 2024; 15:515. [PMID: 39057248 PMCID: PMC11277301 DOI: 10.3390/insects15070515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps that play multifaceted roles across various organisms. Despite their widespread significance, the functional implications of V-ATPase genes in Hyphantria cunea, an invasive forest pest with a global presence, have yet to be elucidated. In this study, two specific V-ATPase genes from H. cunea were identified and analyzed, namely HcV-ATPase A (accession number: OR217451) and HcV-ATPase C (accession number: OR217452). Phylogenetic analysis and multiple sequence alignment reveal that HcV-ATPase A shares the highest amino acid sequence similarity with SfV-ATPase A, while HcV-ATPase C is most similar to HaV-ATPase C. Spatiotemporal expression profiles, determined via RT-qPCR, demonstrate that both HcV-ATPase A and HcV-ATPase C are expressed throughout all larval developmental stages, with HcV-ATPase A predominantly expressed in the midgut and HcV-ATPase C showing high expression in the epidermis. RNA interference (RNAi) targeting of these genes significantly suppressed their expression by 62.7% and 71.0% 120 h post-injection, leading to halted larval growth and increased mortality rates of 61.7% and 46.7%, respectively. Further investigations using immunohistochemistry, hematoxylin and eosin (HE) staining, and transmission electron microscopy (TEM) revealed that gene silencing induced vesiculation and subsequent losses or sloughing of intestinal parietal cells, alongside an increase in the number of autophagic cells. Additionally, the silencing of HcV-ATPase A and C genes resulted in a reduced gut epidermal cell layer thickness and further increases in goblet cell numbers. Importantly, RNAi of HcV-ATPase A and C did not affect the expression levels of one another, suggesting independent functional pathways. This study provides foundational insights into the role of V-ATPase in H. cunea and identifies potential targets for the biocontrol of its larvae, contributing to the understanding of V-ATPase mechanisms and their application in pest management strategies.
Collapse
Affiliation(s)
- Xiaojie Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (X.W.); (D.Z.); (Q.W.); (Y.L.); (W.G.)
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (X.W.); (D.Z.); (Q.W.); (Y.L.); (W.G.)
| | - Qian Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (X.W.); (D.Z.); (Q.W.); (Y.L.); (W.G.)
| | - Yanan Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (X.W.); (D.Z.); (Q.W.); (Y.L.); (W.G.)
| | - Xiujun Lu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (X.W.); (D.Z.); (Q.W.); (Y.L.); (W.G.)
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (X.W.); (D.Z.); (Q.W.); (Y.L.); (W.G.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Chen J, Wu Y, Chen J, Lu H, Cheng G, Tu ZJ, Liao C, Han Q. Roles of a newly lethal cuticular structural protein, AaCPR100A, and its upstream interaction protein, G12-like, in Aedes aegypti. Int J Biol Macromol 2024; 268:131704. [PMID: 38670198 DOI: 10.1016/j.ijbiomac.2024.131704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Mosquitoes form a vital group of vector insects, which can transmit various diseases and filarial worms. The cuticle is a critical structure that protects mosquitoes from adverse environmental conditions and penetration resistance. Thus, cuticle proteins can be used as potential targets for controlling the mosquito population. In the present study, we found that AaCPR100A is a structural protein in the soft cuticle, which has flexibility and elasticity allowing insects to move or fly freely, of Aedes aegypti. RNA interference (RNAi) of AaCPR100A caused high mortality in Aedes aegypti larvae and adults and significantly decreased the egg hatching rate. Transmission electron microscopy (TEM) analysis revealed that the larval microstructure had no recognizable endocuticle in AaCPR100A-deficient mosquitoes. A yeast two-hybrid assay was performed to screen proteins interacting with AaCPR100A. We verified that the G12-like protein had the strongest interaction with AaCPR100A using yeast two-hybrid and GST pull-down assays. Knockdown of G12-like transcription resulted in high mortality in Ae. aegypti larvae, but not in adults. Interestingly, RNAi of G12-like rescued the high mortality of adults caused by decreased AaCPR100A expression. Additionally, adults treated with G12-like dsRNA were found to be sensitive to low temperature, and their eggshell formation and hatching were decreased. Overall, our results demonstrated that G12-like may interacts with AaCPR100A, and both G12-like and AaCPR100A are involved in Ae. aegypti cuticle development and eggshell formation. AaCPR100A and G12-like can thus be considered newly potential targets for controlling the Ae. aegypti mosquito.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Yuchen Wu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Jiukai Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Haoran Lu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhijian Jake Tu
- Department of Biochemistry and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, China.
| |
Collapse
|
11
|
Wu S, Tong X, Peng C, Luo J, Zhang C, Lu K, Li C, Ding X, Duan X, Lu Y, Hu H, Tan D, Dai F. The BTB-ZF gene Bm-mamo regulates pigmentation in silkworm caterpillars. eLife 2024; 12:RP90795. [PMID: 38587455 PMCID: PMC11001300 DOI: 10.7554/elife.90795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.
Collapse
Affiliation(s)
- Songyuan Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenxing Peng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Jiangwen Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chenghao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xin Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Xiaohui Duan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Yaru Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Duan Tan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
12
|
Dong W, Song CY, Liu MQ, Gao YH, Zhao ZW, Zhang XB, Moussian B, Zhang JZ. Osiris17 is essential for stable integrin localization and function during insect wing epithelia remodeling. Int J Biol Macromol 2024; 263:130245. [PMID: 38367779 DOI: 10.1016/j.ijbiomac.2024.130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of βPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of βPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and βPS integrins and partially rescued the detachment phenotype in flies with reduced βPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| | - Chen-Yang Song
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Meng-Qi Liu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Ying-Hao Gao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Zhang-Wu Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Xu-Bo Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| | - Bernard Moussian
- INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d(')Azur, 06108 Nice, France.
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Zhang Q, Xia T, Wang AY, Liu Y, Li NY, Yi L, Lu ZJ, Yu HZ. Alternative splicing of chitin deacetylase 2 regulates chitin and fatty acid metabolism in Asian citrus psyllid, Diaphorina citri. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22050. [PMID: 37622383 DOI: 10.1002/arch.22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Chitin plays an important role in the development and molting of insects. The key genes involved in chitin metabolism were considered promising targets for pest control. In this study, two splice variants of chitin deacetylase 2 (CDA2) from Diaphorina citri were identified, including DcCDA2a and DcCDA2b. Bioinformatics analysis revealed that DcCDA2a and DcCDA2b encoded 550 and 544 amino acid residues with a signal peptide, respectively. Spatio-temporal expression patterns analysis showed that DcCDA2a and DcCDA2b were highly expressed in D. citri wing and nymph stages. Moreover, DcCDA2a and DcCDA2b expression levels were induced by 20-hydroxyecdysone (20E). Silencing DcCDA2a by RNA interference (RNAi) significantly disrupted the D. citri molting and increased D. citri mortality and malformation rate, whereas inhibition of DcCDA2b resulted in a semimolting phenotype. Furthermore, silencing DcCDA2a and DcCDA2b significantly suppressed D. citri chitin and fatty acid metabolism. Our results indicated that DcCDA2 might play crucial roles in regulating D. citri chitin and fatty acid metabolism, and it could be used as a potential target for controlling D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ai-Yun Wang
- Department of Citrus Pest Control, Fruit Bureau of Xinfeng County, Ganzhou, China
| | - Yan Liu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ning-Yan Li
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Long Yi
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Zhan-Jun Lu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Hai-Zhong Yu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| |
Collapse
|
14
|
Meng LW, Yuan GR, Chen ML, Zheng LS, Dou W, Peng Y, Bai WJ, Li ZY, Vontas J, Wang JJ. Cuticular competing endogenous RNAs regulate insecticide penetration and resistance in a major agricultural pest. BMC Biol 2023; 21:187. [PMID: 37667263 PMCID: PMC10478477 DOI: 10.1186/s12915-023-01694-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The continuously developing pesticide resistance is a great threat to agriculture and human health. Understanding the mechanisms of insecticide resistance is a key step in dealing with the phenomenon. Insect cuticle is recently documented to delay xenobiotic penetration which breaks the previous stereotype that cuticle is useless in insecticide resistance, while the underlying mechanism remains scarce. RESULTS Here, we find the integument contributes over 40.0% to insecticide resistance via different insecticide delivery strategies in oriental fruit fly. A negative relationship exists between cuticle thickening and insecticide penetration in resistant/susceptible, also in field strains of oriental fruit fly which is a reason for integument-mediated resistance. Our investigations uncover a regulator of insecticide penetration that miR-994 mimic treatment causes cuticle thinning and increases susceptibility to malathion, whereas miR-994 inhibitor results in opposite phenotypes. The target of miR-994 is a most abundant cuticle protein (CPCFC) in resistant/susceptible integument expression profile, which possesses capability of chitin-binding and influences the cuticle thickness-mediated insecticide penetration. Our analyses find an upstream transcriptional regulatory signal of miR-994 cascade, long noncoding RNA (lnc19419), that indirectly upregulates CPCFC in cuticle of the resistant strain by sponging miR-994. Thus, we elucidate the mechanism of cuticular competing endogenous RNAs for regulating insecticide penetration and demonstrate it also exists in field strain of oriental fruit fly. CONCLUSIONS We unveil a regulatory axis of lnc19419 ~ miR-994 ~ CPCFC on the cuticle thickness that leads to insecticide penetration resistance. These findings indicate that competing endogenous RNAs regulate insecticide resistance by modulating the cuticle thickness and provide insight into the resistance mechanism in insects.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Wen-Jie Bai
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Zhen-Yu Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y, Moussian B, Zhu KY, Zhang J. Lipophorin receptor is required for the accumulations of cuticular hydrocarbons and ovarian neutral lipids in Locusta migratoria. Int J Biol Macromol 2023; 236:123746. [PMID: 36806776 DOI: 10.1016/j.ijbiomac.2023.123746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Lipophorin is the most abundant lipoprotein particle in insect hemolymph. Lipophorin receptor (LPR) is a glycoprotein that binds to the lipophorin and mediates cellular uptake and metabolism of lipids by endocytosis. However, the roles of LPR in uptake of lipids in the integument and ovary remain unknown in the migratory locust (Locusta migratoria). In present study, we characterized the molecular properties and biological roles of LmLPR in L. migratoria. The LmLPR transcript level was high in the first 2 days of the adults after eclosion, then gradually declined. LmLPR was predominately expressed in fat body, ovary and integument. Using immuno-detection methods, we revealed that LmLPR was mainly localized in the membrane of oenocytes, epidermal cells, fat body cells and follicular cells. RNAi-mediated silencing of LmLPR led to a slight decrease of the cuticle hydrocarbon contents but with little effect on the cuticular permeability. However, the neutral lipid content was significantly decreased in the ovary after RNAi against LmLPR, which led to a retarded ovarian development. Taken together, our results indicated that LmLPR is involved in the uptake and accumulation of lipids in the ovary and plays a crucial role in ovarian development in L. migratoria. Therefore, LmLPR could be a promising RNAi target for insect pest management by disrupting insect ovarian development.
Collapse
Affiliation(s)
- Yiyan Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hongfang Guo
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis CEDEX, France
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
16
|
Zhao X, Su Y, Shao T, Fan Z, Cao L, Liu W, Zhang J. Cuticle protein gene LmCP8 is involved in the structural development of the ovipositor in the migratory locust Locusta migratoria. INSECT MOLECULAR BIOLOGY 2022; 31:747-759. [PMID: 35822263 DOI: 10.1111/imb.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The ovipositor comprises the external genitalia of female insects, which plays an important role in the mating and ovipositing process of insects. However, it remains rudimentary of regional gene expression and physiological function in the ovipositor during structural development. Here, we analysed the basic structure and characteristics of the ovipositor in the migratory locust Locusta migratoria. RNA-seq analysis revealed the specialization of chitin metabolism, lipids synthesis and transport, tanning and cuticular protein genes in the ovipositor. Among them, two cuticle protein genes, LmCP8 and LmACP79, were identified, which are specifically expressed in the ovipositor. Functional analysis based on RNA interference showed that deficiency of LmCP8 affected the structural development of the ovipositor resulting in the retention of a large number of remaining unproduced oocysts in the ovary of the locusts. Our results provide a fundamental resource to investigate the structural development and physiological function of the ovipositor in L. migratoria.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yazhi Su
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Ti Shao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Zhiyan Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Lili Cao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Xie J, Peng G, Wang M, Zhong Q, Song X, Bi J, Tang J, Feng F, Gao H, Li B. RR-1 cuticular protein TcCPR69 is required for growth and metamorphosis in Tribolium castaneum. INSECT SCIENCE 2022; 29:1612-1628. [PMID: 35312233 DOI: 10.1111/1744-7917.13038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Cuticle is not only critical for protecting insects from noxious stimuli but is also involved in a variety of metabolic activities. Cuticular proteins (CPs) affect cuticle structure and mechanical properties during insect growth, reproduction, and environmental adaptation. Here, we describe the identification and characterization of a member of the RR-1 subfamily of CPs with an R&R consensus (CPR) in Tribolium castaneum (TcCPR69). Although it was previously reported to be highly expressed in the wings, we found that knocking down TcCPR69 by RNA interference (RNAi) did not cause obvious wing abnormalities but markedly disrupted the growth and metamorphosis of beetles with 100% cumulative mortality; additionally, the chitin content of the pharate adult was decreased and the new abdominal cuticle was significantly thinner before molting. TcCPR69 showed chitin-binding ability and the expression levels of key genes involved in chitin metabolism (trehalase [TcTRE], chitin synthase [TcCHSA and TcCHSB], and chitinase [TcCHT5 and TcCHT10]) were also decreased by TcCPR69 knockdown. TcCPR69 gene expression peaked shortly after molting and was increased 2.61 fold at 12 h after 20-hydroxyecdysone (20E) injection. This was reversed by RNAi of the ecdysone-related genes ecdysone receptor (TcECR) and fushi tarazu transcription factor 1 (TcFTZ-F1). These results indicate that TcCPR69 is positively regulated by 20E signaling to contribute to cuticle formation and maintain chitin accumulation during the growth and metamorphosis of beetles.
Collapse
Affiliation(s)
- Jia Xie
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Guifang Peng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Miao Wang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qisheng Zhong
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Feng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
18
|
Ye S, Yu X, Chen H, Zhang Y, Wu Q, Tan H, Song J, Saqib HSA, Farhadi A, Ikhwanuddin M, Ma H. Full-Length Transcriptome Reconstruction Reveals the Genetic Mechanisms of Eyestalk Displacement and Its Potential Implications on the Interspecific Hybrid Crab (Scylla serrata ♀ × S. paramamosain ♂). BIOLOGY 2022; 11:biology11071026. [PMID: 36101407 PMCID: PMC9312322 DOI: 10.3390/biology11071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary The eyestalk is a key organ in crustaceans that produces neurohormones and regulates a range of physiological functions. Eyestalk displacement was discovered in some first-generation (F1) offspring of the novel interspecific hybrid crab (Scylla serrata ♀ × S. paramamosain ♂). To uncover the genetic mechanism underlying eyestalk displacement and its potential implications, high-quality transcriptome was reconstructed using single-molecule real-time (SMRT) sequencing. A total of 37 significantly differential alternative splicing (DAS) events (17 up-regulated and 20 down-regulated) and 1475 significantly differential expressed transcripts (DETs) (492 up-regulated and 983 down-regulated) were detected in hybrid crabs with displaced eyestalks (DH). The most significant DAS events and DETs were annotated as being endoplasmic reticulum chaperone BiP and leucine-rich repeat protein lrrA-like isoform X2. In addition, the top ten significant gene ontology (GO) terms were related to the cuticle or chitin. Overall, this study highlights the underlying genetic mechanisms of eyestalk displacement and provide useful knowledge for mud crab (Scylla spp.) crossbreeding. Abstract The lack of high-quality juvenile crabs is the greatest impediment to the growth of the mud crab (Scylla paramamosain) industry. To obtain high-quality hybrid offspring, a novel hybrid mud crab (S. serrata ♀ × S. paramamosain ♂) was successfully produced in our previous study. Meanwhile, an interesting phenomenon was discovered, that some first-generation (F1) hybrid offspring’s eyestalks were displaced during the crablet stage I. To uncover the genetic mechanism underlying eyestalk displacement and its potential implications, both single-molecule real-time (SMRT) and Illumina RNA sequencing were implemented. Using a two-step collapsing strategy, three high-quality reconstructed transcriptomes were obtained from purebred mud crabs (S. paramamosain) with normal eyestalks (SPA), hybrid crabs with normal eyestalks (NH), and hybrid crabs with displaced eyestalks (DH). In total, 37 significantly differential alternative splicing (DAS) events (17 up-regulated and 20 down-regulated) and 1475 significantly differential expressed transcripts (DETs) (492 up-regulated and 983 down-regulated) were detected in DH. The most significant DAS events and DETs were annotated as being endoplasmic reticulum chaperone BiP and leucine-rich repeat protein lrrA-like isoform X2. In addition, the top ten significant GO terms were related to the cuticle or chitin. Overall, high-quality reconstructed transcriptomes were obtained for the novel interspecific hybrid crab and provided valuable insights into the genetic mechanisms of eyestalk displacement in mud crab (Scylla spp.) crossbreeding.
Collapse
Affiliation(s)
- Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Xiaoyan Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Huiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Qingyang Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Huaqiang Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Jun Song
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Ardavan Farhadi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; (S.Y.); (X.Y.); (H.C.); (Y.Z.); (Q.W.); (H.T.); (J.S.); (H.S.A.S.); (A.F.)
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China;
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Correspondence: ; Tel.: +86-754-86503471
| |
Collapse
|
19
|
Yu H, Yi L, Lu Z. Silencing of Chitin-Binding Protein with PYPV-Rich Domain Impairs Cuticle and Wing Development in the Asian Citrus Psyllid, Diaphorina citri. INSECTS 2022; 13:insects13040353. [PMID: 35447795 PMCID: PMC9027310 DOI: 10.3390/insects13040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Molting is extremely important for insect growth and development, which is accompanied the degradation of old cuticle and synthesis of new cuticle. Chitin and proteins, as major components of insect cuticle, maintain the rigidity of the exoskeleton. The functions of chitin-binding proteins have not, to date, been characterized in Diaphorina citri. In the current study, we identified a cuticle protein (DcCP64) according to chitin column purification and LC-MS/MS analysis. Silencing of DcCP64 induced an abnormal phenotype and increased the permeability of the abdomen and wings. Additionally, the mortality and malformation rate significantly increased, and the molting rate decreased after inhibition of DcCP64. Transcriptome sequencing analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in MAPK and FoxO signaling pathways. Our results provide a basis for further functional research on DcCP64 in D. citri. Abstract Chitin is a major component of the arthropod exoskeleton, always working together with chitin-binding proteins to maintain the functions of extracellular structures. In the present study, we identified a cuticle protein 64 from Diaphorina citri using a chitin-binding assay. Bioinformatics analysis revealed that DcCP64 contained eight conserved PYPV motifs but lacked a Rebers–Riddiford (R–R) consensus and other chitin-binding domains. RT-qPCR analysis suggested that DcCP64 had the highest expression level in the wing and fifth-instar nymph stage. Knockdown of DcCP64 by RNA interference (RNAi) resulted in a malformed-wing phenotype, higher mortality and decreased molting rate. Furthermore, transcriptomics analysis revealed that 1244 differentially expressed genes (DEGs) were up-regulated and 580 DEGs were down-regulated, compared with dsDcCP64 groups and dsGFP groups. KEGG enrichment analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in the MAPK and FoxO signaling pathways. Moreover, inhibition of DcCP64 significantly affected the cuticle surface, and increased the permeability of the abdomen and wings. Further chitin- and cellulose-binding assay confirmed the chitin-binding properties of recombinant DcCP64 in vitro. These results indicate that DcCP64 might play an important role in the cuticle and wing development of D. citri.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| |
Collapse
|
20
|
Zhao X, Shao T, Su Y, Zhang J, Gou X, Liu W, Zhang J. Cuticle Protein LmACP19 Is Required for the Stability of Epidermal Cells in Wing Development and Morphogenesis of Locusta migratoria. Int J Mol Sci 2022; 23:ijms23063106. [PMID: 35328528 PMCID: PMC8950940 DOI: 10.3390/ijms23063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Insect wing consists of a double layer of epidermal cells that produce and secrete the dorsal and ventral cuticular components. It is important for the stability of epidermal cells during wing development and morphogenesis, but its specific gene expression and physiological function during this process remain unclear. In our previous work, a wing cuticle protein gene LmACP19 was identified in Locusta migratoria based on transcriptomic data. Here, we report on its roles in wing development and morphogenesis. LmACP19 encodes a chitin-binding protein belonging to RR-2 subfamily of CPR family, which is highly homologous to CP19-like proteins in other insect species. RT-qPCR analysis revealed that LmACP19 is highly expressed in wing pads of fifth-instar nymphs, and its encoded protein is located in two layers of epidermal cells but not in the cuticle. Suppression of LmACP19 by RNA interference led to abnormal wing pad and wing morphogenesis with curved, unclosed, and wrinkled phenotypes during nymph-to-nymph and nymph-to-adult transition, respectively. Furthermore, deficiency of LmACP19 affected arrangement of epidermal cells, resulting in apoptosis. Our results indicate that LmACP19 is indispensable for wing development and normal morphological structure by maintaining the stability of epidermal cells during L. migratoria molting.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- Correspondence: (X.Z.); (J.Z.)
| | - Ti Shao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yazhi Su
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jing Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xin Gou
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- Correspondence: (X.Z.); (J.Z.)
| |
Collapse
|
21
|
Fan Y, Abbas M, Liu X, Wang Y, Song H, Li T, Ma E, Zhu KY, Zhang J. Increased RNAi Efficiency by dsEGFP-Induced Up-Regulation of Two Core RNAi Pathway Genes (OfDicer2 and OfAgo2) in the Asian Corn Borer (Ostrinia furnacalis). INSECTS 2022; 13:insects13030274. [PMID: 35323572 PMCID: PMC8948962 DOI: 10.3390/insects13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/07/2022]
Abstract
Simple Summary RNA interference (RNAi) has shown great potentials as a novel technology for insect pest management. However, numerous studies have shown that the efficiency of RNAi varies substantially among different insect species. For example, as a major insect pest of corn, the Asian corn borer (Ostrinia furnacalis) showed very low RNAi efficiency. Therefore, it is necessary to develop new strategies for enhancing RNAi efficiency in insects with low RNAi efficiency. In this study, six core RNAi pathway genes were identified and characterized from O. furnacalis transcriptome database. After dsEGFP was injected into O. furnacalis, the expression of the core RNAi pathway genes (OfDicer2 and OfAgo2) was significantly up-regulated in response to the exposure of dsEGFP. As a result, the RNAi efficiency against the target genes in certain tissues of O. furnacalis was significantly improved. These results suggest that RNAi efficiency can be improved by inducing the expression of key RNAi pathway genes in O. furnacalis. Abstract RNA interference (RNAi) is a sequence-specific gene silencing mechanism that holds great promise for effective management of agricultural pests. Previous studies have shown that the efficacy of RNAi varies among different insect species, which limits its wide spread application in the field of crop protection. In this study, we identified and characterized six core RNAi pathway genes including OfDicer1, OfDicer2, OfR2D2, OfAgo1, OfAgo2, and OfAgo3 from the transcriptomic database of the Asian corn borer (Ostrinia furnacalis). Domain analysis showed that the six deduced proteins contained the necessary functional domains. Insect developmental stage- and tissue-specific expression analysis showed that five genes were expressed in all the stages and tissues examined except OfAgo3, which showed low expression in larvae, and high expression in pupae and adults and in the midgut. RT-qPCR was performed to examine the response of these six genes to exogenous double-stranded RNA (dsRNA). Interestingly, the transcript levels of OfDicer2 and OfAgo2 were significantly enhanced after the injection of dsEGFP at different time points and tissues investigated. Consequently, the RNAi efficiency in targeting the insect endogenous genes can be greatly enhanced in the hemolymph or midgut. Taken together, our investigations suggest that RNAi efficiency can be enhanced by pre-injection of dsRNA to induce the RNAi core machinery genes, which could be a useful strategy to improving RNAi efficiency for studying gene functions under laboratory conditions.
Collapse
Affiliation(s)
- Yunhe Fan
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Huifang Song
- Faculty of Biological Science and Technology, Changzhi University, Changzhi 046000, China;
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (K.Y.Z.); (J.Z.)
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (Y.F.); (M.A.); (X.L.); (Y.W.); (T.L.); (E.M.)
- Correspondence: (K.Y.Z.); (J.Z.)
| |
Collapse
|
22
|
Murata S, Rivera J, Noh MY, Hiyoshi N, Yang W, Parkinson DY, Barnard HS, Arakane Y, Kisailus D, Arakaki A. Unveiling characteristic proteins for the structural development of beetle elytra. Acta Biomater 2022; 140:467-480. [PMID: 34954417 DOI: 10.1016/j.actbio.2021.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Beetles possess a set of highly modified and tanned forewings, elytra, which are lightweight yet rigid and tough. Immediately after eclosion, the elytra are initially thin, pale and soft. However, they rapidly expand and subsequently become hardened and often dark, resulting from both pigmentation and sclerotization. Here, we identified changes in protein composition during the developmental processes of the elytra in the Japanese rhinoceros beetle, Trypoxylus dichotomus. Using mass spectrometry, a total of 414 proteins were identified from both untanned and tanned elytra, including 31 cuticular proteins (CPs), which constitute one of the major components of insect cuticles. Moreover, CPs containing Rebers and Riddiford motifs (CPR), the most abundant CP family, were separated into two groups based on their expression and amino acid sequences, such as a Gly-rich sequence region and Ala-Ala-Pro repeats. These protein groups may play crucial roles in elytra formation at different time points, likely including self-assembly of chitin nanofibers that control elytral macro and microstructures and dictate changes in other properties (i.e., mechanical property). Clarification of the protein functions will enhance the understanding of elytra formation and potentially benefit the development of lightweight materials for industrial and biomedical applications. STATEMENT OF SIGNIFICANCE: The beetle elytron is a light-weight natural bio-composite which displays high stiffness and toughness. This structure is composed of chitin fibrils and proteins, some of which are responsible for architectural development and hardening. This work, which involves insights from molecular biology and materials science, investigated changes in proteomic, architectural, and localized mechanical characteristics of elytra from the Japanese rhinoceros beetle to understand molecular mechanisms driving elytra development. In the present study, we identified a set of new protein groups which are likely related to the structural development of elytra and has potential for new pathways for processing green materials.
Collapse
Affiliation(s)
- Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Jesus Rivera
- Materials Science and Engineering Program, University of California at Riverside, CA 92521, USA
| | - Mi Yong Noh
- Department of Forestry, Chonnam National University, Gwangju 500-757, South Korea
| | - Naoya Hiyoshi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wen Yang
- Department of Materials Science and Engineering, University of California at Irvine, CA 92697, USA
| | | | | | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju 500-757, South Korea
| | - David Kisailus
- Materials Science and Engineering Program, University of California at Riverside, CA 92521, USA; Department of Materials Science and Engineering, University of California at Irvine, CA 92697, USA
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
23
|
Dai ML, Ye WT, Jiang XJ, Feng P, Zhu QY, Sun HN, Li FC, Wei J, Li B. Effect of Tachinid Parasitoid Exorista japonica on the Larval Development and Pupation of the Host Silkworm Bombyx mori. Front Physiol 2022; 13:824203. [PMID: 35250625 PMCID: PMC8889078 DOI: 10.3389/fphys.2022.824203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
The Tachinidae are natural enemies of many lepidopteran and coleopteran pests of crops, forests, and fruits. However, host-tachinid parasitoid interactions have been largely unexplored. In this study, we investigated the effects of tachinids on host biological traits, using Exorista japonica, a generalist parasitoid, and the silkworm Bombyx mori, its lepidopteran host, as models. We observed that E. japonica parasitoidism did not affect silkworm larval body weight gain and cocooning rate, whereas they caused shortened duration of molting from the final instar to the pupal stage, abnormal molting from larval to pupal stages, and a subsequent decrease in host emergence rate. Moreover, a decrease in juvenile hormone (JH) titer and an increase in 20-hydroxyecdysone (20E) titer in the hemolymph of parasitized silkworms occurred. The transcription of JH and 20E responsive genes was downregulated in mature parasitized hosts, but upregulated in parasitized prepupae while Fushi tarazu factor 1 (Ftz-f1), a nuclear receptor essential in larval ecdysis, showed dramatically reduced expression in parasitized hosts at both the mature and prepupal stages. Moreover, the transcriptional levels of BmFtz-f1 and its downstream target genes encoding cuticle proteins were downregulated in epidermis of parasitized hosts. Meanwhile, the content of trehalose was decreased in the hemolymph, while chitin content in the epidermis was increased in parasitized silkworm prepupae. These data reveal that the host may fine-tune JH and 20E synthesis to shorten developmental duration to combat established E. japonica infestation, while E. japonica silences BmFtz-f1 transcription to inhibit host pupation. This discovery highlights the novel target mechanism of tachinid parasitoids and provides new clues to host/tachinid parasitoid relationships.
Collapse
Affiliation(s)
- Min-Li Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Wen-Tao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | | | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qing-Yu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hai-Na Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- *Correspondence: Jing Wei,
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- Bing Li,
| |
Collapse
|
24
|
Liu XJ, Liang XY, Guo J, Shi XK, Merzendorfer H, Zhu KY, Zhang JZ. V-ATPase subunit a is required for survival and midgut development of Locusta migratoria. INSECT MOLECULAR BIOLOGY 2022; 31:60-72. [PMID: 34528734 DOI: 10.1111/imb.12738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The vacuolar-type H+ -ATPase (V-ATPase) is an ATP-dependent proton pump, which regulates various cellular processes. To date, most functional studies on V-ATPases of insects have focused on subunits of the V1 complex, and there is little information on the VO genes. In this study, two cDNA sequences of LmV-ATPase a were identified in Locusta migratoria. RT-qPCR analysis revealed that LmV-ATPase a1 and LmV-ATPase a2 are differentially expressed in various tissues and developmental stages. Injection of dsRNA for the common region of LmV-ATPase a1 and LmV-ATPase a2 into third-instar nymphs resulted in a significant suppression of LmV-ATPase a. The injected nymphs ceased feeding, lost body weight and finally died at a mortality of 98.6%. Furthermore, aberrations of midgut epithelial cells, the accumulation of electron-lucent vesicles in the cytoplasm, and a partially damaged brush border were observed in dsLmV-ATPase a-injected nymphs using transmission electron microscopy. Especially, the mRNA level of wingles, and notch genes were dramatically down-regulated in the dsLmV-ATPase a-injected nymphs. Taken together, our results suggest that LmV-ATPase a is required for survival and midgut development of L. migratoria. Hence, this gene could be a good target for RNAi-based control against locusts.
Collapse
Affiliation(s)
- X-J Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - X-Y Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - J Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - X-K Shi
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - H Merzendorfer
- Institute of Biology, University of Siegen, Siegen, Germany
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - J-Z Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
25
|
Cuticular protein genes showing peaks at different stages are probably regulated by different ecdysone responsive transcription factors during larval-pupal transformation. Gene 2022; 809:146002. [PMID: 34648919 DOI: 10.1016/j.gene.2021.146002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 01/18/2023]
Abstract
We aimed to explain the reason and function of the successive expression of ecdysone-responsive transcription factors (ERTFs) and related cuticular protein (CP) genes during transformation from larva to pupa. The regulation of the expression of CP genes by ERTFs was examined by in vitro wing disc culture and reporter assay using a gene gun transduction system. Two CP genes that showed expression peaks at different stages-BmorCPG12 at W3L and BmorCPH2 at P0 stage-were selected and examined. Reporter constructs conveying putative BHR3, ßFTZ-F1, BHR39, and E74A binding sites of BmorCPG12 and BmorCPH2 showed promoter activity when introduced into wing discs. In the present study, we showed the functioning of the putative BHR3 and E74A binding sites, together with putative ßFTZ-F1 binding sites, on the activation of CP genes, and different ERTF binding sites functioned in one CP gene. From these, we conclude that BHR3, ßFTZ-F1, and E74A that are successively expressed bring about the successive expression of CP genes, resulting in insect metamorphosis. In addition to this, reporter constructs conveying putative BHR39 binding sites of BmorCPG12 and BmorCPH2 showed negative regulation.
Collapse
|
26
|
Fan YH, Song HF, Abbas M, Wang YL, Li T, Ma EB, Cooper AMW, Silver K, Zhu KY, Zhang JZ. A dsRNA-degrading nuclease (dsRNase2) limits RNAi efficiency in the Asian corn borer (Ostrinia furnacalis). INSECT SCIENCE 2021; 28:1677-1689. [PMID: 33140888 DOI: 10.1111/1744-7917.12882] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of RNA interference (RNAi) varies substantially among different insect species. Rapid degradation of double-stranded RNA (dsRNA) by dsRNA-degrading nucleases (dsRNases) has been implicated to cause low RNAi efficiency in several insect species. In this study, we identified four dsRNase genes (OfdsRNase1, OfdsRNase2, OfdsRNase3 and OfdsRNase4) from the Asian corn borer (Ostrinia furnacalis) transcriptome database. Bioinformatic analyses showed that each deduced protein sequence contained endonuclease NS domains and signal peptides. Gene expression analysis revealed that OfdsRNase2 was exclusively expressed in the midgut of larvae. RNAi efficiency was investigated in 2-d-old fifth-instar larvae (high expression of dsRNase2) and 2-d-old pupae (low expression of dsRNase2) by feeding or injecting dsRNA targeting a marker gene that encodes the lethal giant larvae protein (OfLgl). Our results showed that OfLgl only partially silenced the expression of OfLgl in pupae, but not in larvae, suggesting that OfdsRNase2 could contribute to lower RNAi efficiency in larval stages. This hypothesis was supported by our RNAi-of-RNAi experiment using a tissue culture technique where the silencing efficiency against the reporter gene, OfHex1, was significantly improved after knockdown of OfdsRNase2. When double luciferase assays were performed to evaluate the role of the four dsRNases in vitro, only OfdsRNase2 expressed in S2 cells significantly affected RNAi efficiency by degrading dsRNA. Taken together, our results suggested that the degradation of dsRNA by OfdsRNase2 in the midgut contributed to low RNAi efficiency in O. furnacalis larvae.
Collapse
Affiliation(s)
- Yun-He Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Hui-Fang Song
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yan-Li Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - En-Bo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
27
|
Ye C, Song Z, Wu T, Zhang W, Saba NU, Xing L, Su X. Endocuticle is involved in caste differentiation of the lower termite. Curr Zool 2021; 67:489-499. [PMID: 34616947 PMCID: PMC8489109 DOI: 10.1093/cz/zoab005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
Caste differentiation in termites is one of the most conspicuous examples of facultative polyphenism in animals. It is clear that specific cuticular formation occurs in hard exocuticles during caste differentiation. However, the developmental pattern of the soft endocuticle in the differentiation pathways of castes is unknown. To reveal whether the endocuticle is involved in caste differentiation, we compared the exocuticle and endocuticle thickness of individuals in 2 pathways (nymph line and worker line) of caste differentiation in the termite Reticulitermes aculabialis. The endocuticle protein genes were identified by transcriptome analysis and the expression patterns of these genes were confirmed in caste differentiation. We found that the endocuticle structure showed dynamic changes in 2 pathways, and the first difference in endocuticle structure occurred after larvae differentiation bifurcated into workers and nymphs. The thinning of the endocuticle was a significant event from nymphs developing into alates with the thickest exocuticle and thinnest endocuticle. The thickest endocuticle layers were found in the heads of the workers and the ultrastructure of the endocuticle in the heads was more complex than that in the thorax-abdomens. Six endocuticle protein genes were identified and annotated as endocuticle structural glycoproteins SgAbd-2, SgAbd-9, and Abd-5. The expression levels of endocuticle protein genes changed dramatically during caste development and the expression levels in neotenic reproductives (secondary reproductives) were significantly higher than those in alates (primary reproductives). These results reveal the roles of endocuticles in caste differentiation and adaptation to the environment.
Collapse
Affiliation(s)
- Chenxu Ye
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhuanzhuan Song
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Taoyu Wu
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wenxiu Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Noor us Saba
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Lianxi Xing
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaohong Su
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
28
|
Chen X, Yang L, Huang R, Li S, Jia Q. Matrix metalloproteinases are involved in eclosion and wing expansion in the American cockroach, Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103551. [PMID: 33556555 DOI: 10.1016/j.ibmb.2021.103551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are the major proteinases that process or degrade numerous extracellular matrix (ECM) components and are evolutionarily conserved from nematodes to humans. During molting in insects, the old cuticle is removed and replaced by a new counterpart. Although the regulatory mechanisms of hormones and nutrients in molting have been well studied, very little is known about the roles of ECM-modifying enzymes in this process. Here, we found that MMPs are necessary for imaginal molting of the American cockroach, Periplaneta americana. Inhibition of Mmp activity via inhibitor treatment led to the failure of eclosion and wing expansion. Five Mmps genes were identified from the P. americana genome, and PaMmp2 played the dominant roles during molting. Further microscopic investigations showed that newly formed adult cuticles were attenuated and that then chitin content was reduced upon Mmp inhibition. Transcriptomic analysis of the integument demonstrated that multiple signaling and metabolic pathways were changed. Microscopic investigation of the wings showed that epithelial cells were restrained together because they were incapable of degrading the ECM upon Mmp inhibition. Transcriptomic analysis of the wing identified dozens of possible genes functioned in wing expansion. This is the first study to show the essential roles of Mmps in the nymph-adult transition of hemimetabolous insects.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Run Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
29
|
The transcription factor of the Hippo signaling pathway, LmSd, regulates wing development in Locusta migratoria. Int J Biol Macromol 2021; 179:136-143. [PMID: 33667555 DOI: 10.1016/j.ijbiomac.2021.02.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
Scalloped (Sd) is transcription factor that regulates cell proliferation and organ growth in the Hippo pathway. In the present research, LmSd was identified and characterized, and found to encode an N-terminal TEA domain and a C-terminal YBD domain. qRT-PCR showed that the LmSd transcription level was highest in the fifth-instar nymphs and very little was expressed in embryos. Tissue-specific analyses showed that LmSd was highly expressed in the wing. Immunohistochemistry indicated that LmSd was highly abundant in the head, prothorax, and legs during embryonic development. LmSd dsRNA injection resulted in significantly down-regulated transcription and protein expression levels compared with dsGFP injection. Gene silencing of LmSd resulted in deformed wings that were curved, wrinkled, and failed to fully expand. Approximately 40% of the nymphs had wing pads that were not able to close normally during molting from fifth-instar nymphs into adults. After silencing of LmSd, the transcription levels of cell division genes were suppressed and the expression levels of apoptosis genes were significantly up-regulated. Our results reveal that LmSd plays an important role in wing formation and development by controlling cell proliferation and inhibiting apoptosis.
Collapse
|
30
|
Fang C, Ye Z, Gai T, Lu K, Dai F, Lu C, Tong X. DIA-based proteome reveals the involvement of cuticular proteins and lipids in the wing structure construction in the silkworm. J Proteomics 2021; 238:104155. [PMID: 33610826 DOI: 10.1016/j.jprot.2021.104155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Wing discs of Bombyx mori (B. mori) are transformed into wings during metamorphosis via dramatic morphological and structural changes. Mutations in genes related to the wings cause the adults to have altered wing shapes or abnormal wing colour. At present, there are more than 20 wing mutants recorded in the silkworm. However, the key factors that influence B. mori wing development are still unclear. Here, we used the strains +Wes/+Wes and Wes/+Wes that are typical for the normal wing and shriveled wing phenotypes, respectively, to identify differentially expressed proteins by label-free data-independent acquisition (DIA). Ten enriched GO terms and 9 KEGG pathways were identified based on the 3993 proteins in the wings. Among the identified and quantified proteins, 370 differentially expressed proteins (DEPs) were detected (P-value <0.01, |log2FC| > 0.58). Mapping of the DEPs to the reference canonical pathways in KEGG showed that the top 20% of the pathways were related to fatty acid, cutin, suberin and wax biosynthesis, protein processing in endoplasmic reticulum, protein export, etc. Of the 370 DEPs, 238 were down-regulated, and 132 were up-regulated of Wes/+Wes compared with +Wes/+Wes. Numerous cuticular proteins were down-regulated, and fatty metabolism enzymes were up-regulated, in Wes/+Wes compared with +Wes/+Wes. SIGNIFICANCE: The comparative analysis of proteomes suggested that cuticular proteins and fatty metabolism enzymes are the main abnormally expressed proteins in the pupal wings of Wes/+Wes, leading to curly and shrunken wings after moth transformation. Our results also identify the substances affecting the development of silkworm wings from the perspective of proteins. The information from this study is important for further research on the molecular mechanisms of wing development in lepidopteran insects, and these differentially expressed genes may be targets for Lepidoptera pest control.
Collapse
Affiliation(s)
- Chunyan Fang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Zhanfeng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| |
Collapse
|
31
|
Wu L, Zhang ZF, Yu Z, Yu R, Ma E, Fan YL, Liu TX, Feyereisen R, Zhu KY, Zhang J. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:3541-3550. [PMID: 32419293 DOI: 10.1002/ps.5914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cuticular hydrocarbons (CHCs) have a critical role in preventing desiccation and penetration of xenobiotics in insects. Previous studies have shown that cytochrome P450 subfamily 4G (CYP4G) enzymes are oxidative decarbonylases, essential for CHC biosynthesis. However, it is unclear whether there are functional differences between the two CYP4G genes in most insects. In Locusta migratoria, we identified two CYP4G genes (LmCYP4G62 and LmCYP4G102). LmCYP4G102 plays a critical role in the synthesis of CHCs, but the function of LmCYP4G62 is unknown. RESULTS We identified, characterized, and compared two LmCYP4G genes, based on L. migratoria transcriptomic and genomic databases. RT-qPCR showed that both were highly expressed in tissues with which oenocytes are associated, the integument and fat body. Immunostaining indicated that LmCYP4G62 and LmCYP4G102 were highly abundant in oenocytes in these tissues. However, the two enzymes had a different subcellular distribution, with LmCYP4G62 localized on the plasma membrane and LmCYP4G102 dispersed throughout the oenocyte cytoplasm, presumably on the endoplasmic reticulum. RNA interference-mediated gene silencing against each of the two genes resulted in reduced CHC contents, in all classes for LmCYP4G102, but mostly shorter chain CHCs for LmCYP4G62. Silencing of both genes resulted in increased insecticide penetration through the cuticle, and increased locust susceptibility to desiccation and insecticides. CONCLUSION Our studies suggest that both LmCYP4G62 and LmCYP4G102 contribute to hydrocarbon biosynthesis and play key roles in protecting locusts from water loss and insecticide penetration, but they are not fully redundant. Further, the two LmCYP4G genes might be used as new targets for insect pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Rongrong Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen1017, Denmark
- Department of Plant and Crops, Ghent University, Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
32
|
Zhao X, Zhang J, Yang J, Niu N, Zhang J, Yang Q. Mucin family genes are essential for the growth and development of the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103404. [PMID: 32428561 DOI: 10.1016/j.ibmb.2020.103404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Mucins are highly glycosylated proteins that are characterized by a higher proportion of threonine, serine, and proline residues in their sequences. Although mucins in humans and vertebrates have been implicated in many biological processes, their roles in growth and development in invertebrates such as in insects remain largely unknown. Based on bioinformatic analyses, we identified eight mucin or mucin-like genes in the migratory locust, Locusta migratoria. RNA interference against these genes demonstrated that three Lmmucin genes were essential for the survival of L. migratoria nymphs, and one Lmmucin was required for adult wing development. Indeed, knockdown of Lmhemomucin and Lmmucin-12 caused lethal phenotypes, with an observed defect of the gastric caeca in which cells were detached from cell junctions. Deficiency of LmIIM3 resulted in lethality of nymphs, with defects of the peritrophic membrane in midgut. Suppression of Lmmucin-17 greatly impaired the structural integrity of the wing cuticle during nymph-adult molting. The present study revealed the significance of mucin and mucin-like genes in insect growth and development, using the orthopteran insect locust as a model.
Collapse
Affiliation(s)
- Xiaoming Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jing Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jiapeng Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|