1
|
Xie J, Ali A, Li Y, Zhuang Z, Liu X. Functional investigation of CYP304F1 in Tuta absoluta (Lepidoptera: Gelechiidae) by RNA interference. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:381-390. [PMID: 39671380 DOI: 10.1093/jee/toae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024]
Abstract
Tuta absoluta has developed resistance to many biological insecticides, causing substantial agricultural and economic losses annually. P450s have been the most extensively studied enzymes in the context of insecticide metabolism in insect pests, and the detoxification metabolism of P450s in T. absoluta against biological insecticides remains poorly understood. In T. absoluta, CYP304F1 was screened from the comparative transcriptome of 2 regional populations in Xinjiang, China. The objective of the present study was to characterize and analyze CYP304F1 of T. absoluta and explore its role in detoxification of spinetoram as well as the growth and development of T. absoluta. Following cloning and sequence analysis of the target gene, it was named CYP304F1. Expression levels of CYP304F1 were then determined after spinetoram exposure and across various developmental instars and tissues. Finally, dsCYP304F1 was synthesized and utilized to assess the effects of post-RNAi on larval spinetoram susceptibility, growth, and development. Sequence analysis revealed that CYP304F1 harbors conserved domains characteristic of P450 proteins, exhibiting high conservation within the Lepidoptera clade. Treatment with an LC50 dose of spinetoram significantly upregulated CYP304F1 expression in T. absoluta larvae. Silencing CYP304F1 significantly enhanced larval susceptibility to spinetoram and prolonged leaf-mining duration and developmental time from the 2nd instar to 4th instar by 40% and 17.6%, respectively, compared to controls. And feeding on dsCYP304F1-treated leaves for 6 days resulted in 71% larval mortality. These results suggested that CYP304F1 played a crucial role in detoxification of spinetoram as well as in the growth and development of T. absoluta larvae.
Collapse
Affiliation(s)
- Jingang Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Amjad Ali
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yuan Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ziyan Zhuang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Tzotzos G. Properties of "Stable" Mosquito Cytochrome P450 Enzymes. INSECTS 2025; 16:184. [PMID: 40003814 PMCID: PMC11855896 DOI: 10.3390/insects16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The use of insecticides is widespread in the control of debilitating mosquito-borne diseases. P450 enzymes (CYPs) play essential roles in mosquito physiological function but also in the enzymatic detoxification of xenobiotics. Broadly speaking, CYPs can be classified as "stable", meaning those that have no or very few paralogs, and "labile", constituting gene families with many paralogous members. The evolutionary dichotomy between "stable" and "labile" P450 genes is fuzzy and there is not a clear phylogenetic demarcation between P450s involved in detoxification and P450s involved in essential metabolic processes. In this study, bioinformatic methods were used to explore differences in the sequences of "stable" and "labile" P450s that may facilitate their functional classification. Genomic and sequence data of Anopheles gambiae (Agam), Aedes aegypti (Aaeg), and Culex quinquefasciatus (Cqui) CYPs were obtained from public databases. The results of this study show that "stable" CYPs are encoded by longer genes, have longer introns and more exons, and contain a higher proportion of hydrophobic amino acids than "labile" CYPs. Compared to "labile" CYPs, a significantly higher proportion of "stable" CYPs are associated with biosynthetic and developmental processes.
Collapse
Affiliation(s)
- George Tzotzos
- Visiting Research Fellow, Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60100 Ancona, Italy
| |
Collapse
|
3
|
Zeng B, Hayward AJ, Pym A, Duarte A, Garrood WT, Wu SF, Gao CF, Zimmer C, Mallott M, Davies TGE, Nauen R, Bass C, Troczka BJ. Differentially spliced mitochondrial CYP419A1 contributes to ethiprole resistance in Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104260. [PMID: 39842700 DOI: 10.1016/j.ibmb.2025.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
The brown planthopper Nilaparvata lugens is one of the most economically important pests of cultivated rice in Southeast Asia. Extensive use of insecticide treatments, such as imidacloprid, fipronil and ethiprole, has resulted in the emergence of multiple resistant strains of N. lugens. Previous investigation of the mechanisms of resistance to imidacloprid and ethiprole demonstrated that overexpression and qualitative changes in the cytochrome P450 gene CYP6ER1 lead to enhanced metabolic detoxification of these compounds. Here, we present the identification of a secondary mechanism enhancing ethiprole resistance mediated by differential splicing and overexpression of CYP419A1, a planthopper-specific, mitochondrial P450 gene. Although metabolic resistance to insecticides is usually mediated by overexpression of P450 genes belonging to either CYP 3 or 4 clades, we validate the protective effect of over-expression of CYP419A1, in vivo, using transgenic Drosophila melanogaster. Additionally, we report some unusual features of both the CYP419A1 gene locus and protein, which include, altered splicing associated with resistance, a non-canonical heme-binding motif and an extreme 5' end extension of the open reading frame. These results provide insight into the molecular mechanisms underpinning resistance to insecticides and have applied implications for the control of a highly damaging crop pest.
Collapse
Affiliation(s)
- B Zeng
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - A J Hayward
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - A Pym
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - A Duarte
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - W T Garrood
- Insect Molecular Genomics Group, Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - S-F Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People's Republic of China
| | - C-F Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, People's Republic of China
| | - C Zimmer
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - M Mallott
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - T G E Davies
- Insect Molecular Genomics Group, Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - R Nauen
- Bayer AG, Bayer CropScience Division R&D, Monheim am Rhein, 40789, Germany
| | - C Bass
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| | - B J Troczka
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
4
|
Shi Y, Su T, Yu Z, Mei W, Wu Y, Yang Y. F116I mutation in CYP9A25 associated with resistance to emamectin benzoate in Spodoptera litura. PEST MANAGEMENT SCIENCE 2025; 81:247-254. [PMID: 39340129 DOI: 10.1002/ps.8427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The F116V mutation in the substrate recognition site 1 (SRS1) of Spodoptera exigua CYP9A186 has been demonstrated to confer ~200-fold resistance to emamectin benzoate (EB). In this study, a novel mutation (F116I) in CYP9A25, orthologous to CYP9A186, was detected in a field population of Spodoptera litura (YJ22) collected from Yuanjiang, Yunnan province, China in 2022. The association of this mutation with EB resistance was investigated. RESULTS Two homozygous strains, YJ22-116F (wild-type at 116 position of CYP9A25) and YJ22-116I (mutant) were isolated from YJ22 through two rounds of crossing and DNA genotyping. Compared with YJ22-116F, the mutant strain YJ22-116I exhibited 31.8-fold resistance to EB. Resistance in YJ22-116I was shown to be incompletely dominant, and genetically linked with the F116I mutation. Further, heterologous expression and in vitro metabolism assays confirmed that the recombinant CYP9A25 protein with 116I mutation obtained metabolic capability against EB, whereas the wild-type CYP9A25 protein (with 116F) did not metabolize EB. Molecular modeling showed that the F116I mutation within SRS1 reduces the steric hindrance to substrate entry and improves ligand-binding interactions. CONCLUSION The causal association between the F116I mutation in CYP9A25 and medium-level EB resistance in S. litura has been verified. This finding is critical for the field monitoring of such mutations and thus for developing adaptive resistance management tactics for field populations of S. litura. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ting Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhifeng Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Li C, Zhao X, Liu W, Wen L, Deng Y, Shi W, Zhou N, Song R, Hu E, Guo Q, Gailike B. Biological Characteristics of the Cytochrome P 450 Family and the Mechanism of Terpinolene Metabolism in Hyalomma asiaticum (Acari: Ixodidae). Int J Mol Sci 2024; 25:11467. [PMID: 39519019 PMCID: PMC11546871 DOI: 10.3390/ijms252111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The CYP450 enzyme is a superfamily enzyme ubiquitously found in nearly all organisms, playing a vital role in the metabolism of both endogenous and exogenous compounds, and in biosynthesis. Unfortunately, an understanding of its classification, functions, expression characteristics, and other biological traits in Hyalomma asiaticum, a vector for Crimean-Congo Hemorrhagic Fever, as well as of the genes implicated in its natural product metabolism, is lacking. Towards this end, this study has identified 120 H. asiaticum CYP450 genes via transcriptome data in the face of a joint genome threat from terpinolene. The proteins these genes encode are of higher molecular weight, devoid of a signal peptide, and composed of unstable hydrophobic proteins principally containing 1-3 variable transmembrane regions. Phylogenetic evolution classifies these H. asiaticum CYP450 genes into four subfamilies. These genes all encompass complete CYP450 conserved domains, and five specific conserved motifs, albeit with different expression levels. GO and KEGG annotation findings suggest a widespread distribution of these CYP450 genes in many physiological systems, predominantly facilitating lipid metabolism, terpenoid compound metabolism, and polyketone compound metabolism, as well as cofactor and vitamin metabolism at a cellular level. Molecular docking results reveal a hydrophobic interaction between the ARG-103, ARG-104, LEU-106, PHE-109, and ILE-119 amino acid residues in CYP3A8, which is primarily expressed in the fat body, and terpinolene, with a notably up-regulated expression, with affinity = -5.6 kcal/mol. The conservation of these five key amino acid residues varies across 12 tick species, implying differences in terpinolene metabolism efficacy among various tick species. This study thereby fills an existing knowledge gap regarding the biological characteristics of H. asiaticum CYP450 genes and paves the way for further research into the functions of these particular genes.
Collapse
Affiliation(s)
- Caishan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xueqing Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Licui Wen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuqian Deng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenyu Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Na Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Ruiqi Song
- School of Medicine, Shihezi University, Shihezi 832003, China;
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
- Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Bayinchahan Gailike
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
6
|
Li H, Huang X, Yang L, Liu H, Liu B, Lu Y. Behavioral, Physiological, and Molecular Mechanisms Underlying the Adaptation of Helicoverpa armigera to the Fruits of a Marginal Host: Walnut ( Juglans regia). PLANTS (BASEL, SWITZERLAND) 2024; 13:2761. [PMID: 39409631 PMCID: PMC11478790 DOI: 10.3390/plants13192761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced Helicoverpa armigera to feed on the marginal host walnut (Juglans regia). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, and molecular mechanisms underlying the local adaptation of this pest to walnut fruits. The green husk and shell generally contained higher levels of phytochemicals than the kernel. Bioassays revealed that the phytochemical-rich green husk and shell were less preferred, reduced larval fitness and growth, and elevated the activity of detoxification enzymes compared to the nutrient-rich kernel, which were further supported by a larger number of upregulated detoxification genes in insects fed green husks or shells based on transcriptome sequencing. Together, these data suggest that P450 genes (LOC110371778) may be crucial to H. armigera adaptation to the phytochemicals of walnuts. Our findings provide significant insight into the adaptation of H. armigera to walnut, an alternative host of lower quality. Meanwhile, our study provides a theoretical basis for managing resistance to H. armigera larvae in walnut trees and is instrumental in developing comprehensive integrated pest management strategies for this pest in walnut orchards and other agricultural systems.
Collapse
Affiliation(s)
- Haiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
- Scientific Observing Experimental Station of Crop Pest in Korla, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Long Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Haining Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| |
Collapse
|
7
|
Yu SJ, Wang L, Ding LL, Pan Q, Li SC, Liu L, Cong L, Ran C. A down-regulated cytochrome P450 in Neoseiulus barkeri Hughes (Acari: Phytoseiidae) can dechlorinate and hydroxylate chlorpyrifos without producing chlorpyrifos-oxon. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135163. [PMID: 38996679 DOI: 10.1016/j.jhazmat.2024.135163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Selection of chemical-resistant predatory mites is a good alternative to balance the contradiction between chemical control and biological control. Previously, a resistant strain of Neoseiulus barkeri for chlorpyrifos was obtained. In the current study, two up-regulated (NbCYP3A6, NbCYP3A16) and one down-regulated (NbCYP3A24) P450s were screened through differential expression analysis and other detoxification-related genes such as CCEs, GST, etc. were not found. 3D modelling and molecular docking indicated that the chlorine at position 5 on the pyridine ring of chlorpyrifos, as well as a methyl group, were closest to the heme iron of the enzymes (less than 5 Å). Three active recombinant P450 proteins were heterologously expressed and metabolized with chlorpyrifos in vitro. HPLC assay showed that only NbCYP3A24 could metabolize chlorpyrifos, with a metabolism rate of 21.60 %. Analysis of the m/z of metabolites by LC-MS/MS showed that chlorine at the 5C position of chlorpyrifos was stripped and hydroxylated, whereas chlorpyrifos-oxon, a common product of oxidation by P450, was not found. Knockdown of the NbCYP3A24 gene in the susceptiblestrain did reduce the susceptibility of N. barkeri to chlorpyrifos, suggesting that the biological activity of the metabolite may be similar to chlorpyrifos-oxon, thus enhancing the inhibitory effect on the target.
Collapse
Affiliation(s)
- Shi-Jiang Yu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li Wang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
8
|
Zhou C, Zheng X, Wang L, Yue B, DU C, Liu X. The first chromosome-level genome assembly and transcriptome sequencing provide insights into cantharidin production of the blister beetles. Integr Zool 2024; 19:929-940. [PMID: 37881135 DOI: 10.1111/1749-4877.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Blister beetles (Coleoptera: Meloidae) produce a natural defensive toxin cantharidin (CTD), which has been used for various cancer treatments and other diseases. Currently, the lack of chromosome-level reference genomes in Meloidae limits further understanding of the mechanism of CTD biosynthesis and environmental adaptation. In this study, the chromosome-level genome assembly of Mylabris phalerata was generated based on PacBio and Hi-C sequencing. This reference genome was about 136.68 Mb in size with contig N50 of 9.17 Mb and composed of 12 chromosomes. In comparison to six other Coleoptera insects, M. phalerata exhibited multiple expanded gene families enriched in juvenile hormone (JH) biosynthetic process pathway, farnesol dehydrogenase activity, and cytochrome P450, which may be related to CTD biosynthesis. Consistently, the transcriptomic analysis suggested the "terpenoid backbone biosynthesis" pathway and "the juvenile hormone" as putative core pathways of CTD biosynthesis and presented eight up-regulated differential expression genes in male adults as candidate genes. It is possible that the restricted feeding niche and lifestyle of M. phalerata were the cause of the gene family's contraction of odorant binding proteins. The ABC transporters (ABCs) related to exporting bound toxins out of the cell and the resistance to the self-secreted toxins (e.g. CTD) were also contracted, possibly due to other self-protection strategies in M. phalerata. A foundation of understanding CTD biosynthesis and environmental adaptation of blister beetles will be established by our reference genome and discoveries.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Lei Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, P. R. China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Chao DU
- Baotou Teachers College, Baotou, P. R. China
| | - Xu Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, P. R. China
| |
Collapse
|
9
|
North HL, Fu Z, Metz R, Stull MA, Johnson CD, Shirley X, Crumley K, Reisig D, Kerns DL, Gilligan T, Walsh T, Jiggins CD, Sword GA. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Mol Biol Evol 2024; 41:msae129. [PMID: 38941083 PMCID: PMC11259193 DOI: 10.1093/molbev/msae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Zhen Fu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Richard Metz
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Matt A Stull
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Xanthe Shirley
- Animal and Plant Health Inspection Service, United States Department of Agriculture, College Station, TX, USA
| | - Kate Crumley
- Agrilife Extension, Texas A&M University, Wharton, TX, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, NC, 27962, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Todd Gilligan
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Tom Walsh
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Xiong T, Yu M, Zhu J, Tian K, Li M, Qiu X. Functional characterization of Helicoverpa assulta CYP6B6 in insecticide metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105857. [PMID: 38685236 DOI: 10.1016/j.pestbp.2024.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The oriental tobacco budworm Helicoverpa assulta (Lepidoptera: Noctuidae) is a specialist pest that may cause serious damages to important crops such as chili pepper and tobacco. Various man-made insecticides have been applied to control the infestation of this pest. To understand how this pest copes with insecticides, it is required to identify key players involved in insecticide transformation. In this study, a P450 gene of CYP6B subfamily was identified in the oriental tobacco budworm, and its expression pattern was revealed. Moreover, the activities of HassCYP6B6 against 12 insecticides were explored using recombinant enzymes produced in the facile Escherichia coli. Data from metabolic experiments showed that HassCYP6B6 was able to metabolize conventional insecticides including organophosporates (diazinon, malathion, phoxim), carbamate propoxur, and pyrethroid esfenvalerate, while no significant metabolism was observed towards new-type pesticides such as neonicotinoids (acetamiprid, imidacloprid), diamides (chlorantraniliprole, cyantraniliprole), macrocyclic lactone (emamectin benzoate, ivermectin), and metaflumizone. Structures of metabolites were proposed based on mass spectrometry analyses. The results demonstrate that HassCYP6B6 plays important roles in the transformation of multiple insecticides via substrate-dependent catalytic mechanisms including dehydrogenation, hydroxylation and oxidative desulfurization. The findings have important applied implications for the usage of insecticides.
Collapse
Affiliation(s)
- Tengfei Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingyue Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Rahman MM, Omoto C, Kim J. Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance. INSECTS 2024; 15:146. [PMID: 38535342 PMCID: PMC10971460 DOI: 10.3390/insects15030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 01/04/2025]
Abstract
Genome-wide long non-coding RNAs (lncRNAs) in low, moderate, and high pyrethroid insecticide-resistant and -susceptible strains of Helicoverpa armigera were identified in this study. Using 45 illumina-based RNA-sequencing datasets, 8394 lncRNAs were identified. In addition, a sublethal dose of deltamethrin was administered to a Korean-resistant strain (Kor-T). The average length of lncRNAs was approximately 531 bp, and the expression ratio of lncRNAs was 28% of the total RNA. The identified lncRNAs were divided into six categories-intronic, intergenic, sense, antisense, cis-RNA, and trans-RNA-based on their location and mechanism of action. Intergenic and intronic lncRNA transcripts were the most abundant (38% and 33%, respectively). Further, 828 detoxification-related lncRNAs were selected using the Gene Ontology analysis. The cytochrome P450-related lncRNA expression levels were significantly higher in susceptible strains than in resistant strains. In contrast, cuticle protein-related lncRNA expression levels were significantly higher in all resistant strains than in susceptible strains. Our findings suggest that certain lncRNAs contribute to the downregulation of insecticide resistance-related P450 genes in susceptible strains, whereas other lncRNAs may be involved in the overexpression of cuticle protein genes, potentially affecting the pyrethroid resistance mechanism.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba 13418-900, Brazil;
| | - Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department of Plant Medicine, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Li W, Yang W, Shi Y, Yang X, Liu S, Liao X, Shi L. Comprehensive analysis of the overexpressed cytochrome P450-based insecticide resistance mechanism in Spodoptera litura. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132605. [PMID: 37748309 DOI: 10.1016/j.jhazmat.2023.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cytochrome P450s play critical roles in the metabolic resistance of insecticides in insects. Previous findings showed that enhanced P450 activity was an important mechanism mediating indoxacarb resistance, and multiple P450 genes were upregulated in indoxacarb resistant strains of Spodoptera litura. However, the functions of these P450 genes in insecticide resistance remain unknown. Here, the P450 inhibitor PBO effectively decreased the resistance of S. litura to indoxacarb. Ten upregulated P450 genes were characterized, all of which were overexpressed in response to indoxacarb induction. Knockdown of nine P450 genes decreased cell viability against indoxacarb, and further silencing of three genes (CYP339A1, CYP340G2, CYP321A19) in larvae enhanced the sensitivity to indoxacarb. Transgenic overexpression of these three genes increased resistance to indoxacarb in Drosophila melanogaster. Moreover, molecular modeling and docking predicted that these three P450 proteins could bind tightly to indoxacarb and N-decarbomethoxylated metabolite (DCJW). Interestingly, these three P450 genes may also mediate cross-resistance to chlorantraniliprole, λ-cyhalothrin and imidacloprid. Additionally, heterologous expression and metabolic assays confirmed that three recombinant P450s could effectively metabolize indoxacarb and DCJW. This study strongly demonstrates that multiple overexpressed mitochondrial and microsomal P450 genes were involved in insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Wenlin Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiyu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
13
|
Li L, Zuo Y, Shi Y, Yang Y, Wu Y. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104042. [PMID: 38030045 DOI: 10.1016/j.ibmb.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Insect cytochrome P450s play important roles in the detoxification of xenobiotics and the metabolic resistance to insecticides. However, the approach for in vivo validation of the contribution of specific candidate P450s to resistance is still limited in most non-model insect species. Previous studies with heterologous expression and in vitro functional assays have confirmed that a natural substitution (F116V) in the substrate recognition site 1 (SRS1) of the CYP9A186 of Spodoptera exigua is a gain-of-function mutation, which results in detoxification capability of and thus high-level resistance to both emamectin benzoate (EB) and abamectin. In this study, we established an effective piggyBac-based transformation system in the serious agricultural pest Helicoverpa armigera and overexpressed in vivo a resistance P450 allele, CYP9A186-F116V, from another lepidopteran pest Spodoptera exigua. Bioassays showed that transgenic H. armigera larvae expressing CYP9A186-F116V obtained 358-fold and 38.6-fold resistance to EB and abamectin, respectively. In contrast, a transgenic line of Drosophila melanogaster overexpressing this P450 variant only confers ∼20-fold resistance to the two insecticides. This bias towards the resistance level revealed that closely related species might provide a more appropriate cellular environment for gene expression and subsequent toxicokinetics of insecticides. These results not only present an alternative method for in vivo functional characterization of P450s in H. armigera and other phylogenetically close species but also provide a valuable genetic engineering toolkit for the genetic manipulation of H. armigera.
Collapse
Affiliation(s)
- Lin Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Liu S, Fu B, Zhang C, He C, Gong P, Huang M, Du T, Liang J, Wei X, Yang J, Yin C, Ji Y, Xue H, Hu J, Wang C, Zhang R, Du H, Yang X, Zhang Y. 20E biosynthesis gene CYP306A1 confers resistance to imidacloprid in the nymph stage of Bemisia tabaci by detoxification metabolism. PEST MANAGEMENT SCIENCE 2023; 79:3883-3892. [PMID: 37226658 DOI: 10.1002/ps.7569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Difference in physiology level between the immature and mature stages of insects likely contribute to different mechanisms of insecticide resistance. It is well acknowledged that insect 20-hydroxyecdysone (20E) plays an important role in many biological processes in the immature stage, whether 20E confers insecticide resistance at this specific stage is still poorly understood. By gene cloning, reverse transcription quantitative real-time PCR, RNA interference (RNAi) and in vitro metabolism experiments, this study aimed to investigate the potential role of 20E-related genes in conferring imidacloprid (IMD) resistance in the immature stage of the whitefly Bemisia tabaci Mediterranean. RESULTS After identification of low to moderate IMD resistance in the whitefly, we found CYP306A1 of the six 20E-related genes was overexpressed in the nymph stage of the three resistant strains compared to a laboratory reference susceptible strain, but not in the adult stage. Further exposure to IMD resulted in an increase in CYP306A1 expression in the nymph stage. These results together imply that CYP306A1 may be implicated in IMD resistance in the nymph stage of the whitefly. RNAi knockdown of CYP306A1 increased the mortality of nymphs after treatment with IMD in bioassay, suggesting a pivotal role of CYP306A1 in conferring IMD resistance in the nymph stage. Additionally, our metabolism experiments in vivo showed that the content of IMD reduced by 20% along with cytochrome P450 reductase and heterologously expressed CYP306A1, which provides additional evidence for the important function of CYP306A1 in metabolizing IMD that leads to the resistance. CONCLUSION This study uncovers a novel function of the 20E biosynthesis gene CYP306A1 in metabolizing imidacloprid, thus contributing to such resistance in the immature stage of the insect. These findings not only advance our understanding of 20E-mediated insecticide resistance, but also provide a new target for sustainable pest control of global insect pests such as whitefly. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaonan Liu
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengjia Zhang
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Hunan Agricultural Biotechnology Research Institute, Changsha, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Li W, Zou J, Yang X, Yang M, Jiang P, Wang X, Huang C, He Y. Identification of metabolizing enzyme genes associated with xenobiotics and odorants in the predatory stink bug Arma custos based on transcriptome analysis. Heliyon 2023; 9:e18657. [PMID: 37576196 PMCID: PMC10412767 DOI: 10.1016/j.heliyon.2023.e18657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
The predatory stink bug, Arma custos, is a highly effective beneficial predator of crop pests. The lack of gene information related to xenobiotic detoxification and odorant degrading enzymes in the predator stink bugs to date has limited our ability for more in-depth studies of biological control. Hence, we conducted de novo assembly of the A. custos transcriptome from guts, antennae, and other tiussue samples of 5th instar larvae using Illumina sequencing technology. A total of 91, 50 and 23 genes of cytochrome P450 monooxygenases (CYPs), carboxyl/choline esterases (CCEs) and glutathione S-transferases (GSTs) genes were identified, respectively. Gene expansions of CYP3 and CYP4 clans and the hormone and pheromone processing CCE class were found in A. custos. Analysis of tissue-specific expression patterns showed that 37 CYPs, 14 CCEs and 8 GSTs were enriched in guts, and 6 CYPs, 5 CCEs and 2 GSTs were up-regulated in antennae, suggesting their potential roles on xenobiotics detoxification and ordorant degradation. Gene information data presented here could be useful for a deeper understanding of the ecology, physiology and behavior of this beneficial species and could be helpful to improve their bio-control efficiency.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Jingmiao Zou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 563000, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Po Jiang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 563000, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Pan X, Ding JH, Zhao SQ, Shi HC, Miao WL, Wu FA, Sheng S, Zhou WH. Identification and functional study of detoxification-related genes in response to tolfenpyrad stress in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105503. [PMID: 37532323 DOI: 10.1016/j.pestbp.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.
Collapse
Affiliation(s)
- Xin Pan
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Jian-Hao Ding
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shuai-Qi Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Hui-Cong Shi
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Wang-Long Miao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| | - Wei-Hong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| |
Collapse
|
17
|
Liu J, Hua J, Wang Y, Guo X, Luo S. Caterpillars Detoxify Diterpenoid from Nepeta stewartiana by the Molting Hormone Gene CYP306A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37331015 DOI: 10.1021/acs.jafc.3c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Herbivorous insects are well known for detoxifying a broad range of the defense compounds produced by the plants that they feed on, but knowledge of the mechanisms of detoxification is still very limited. Here, we describe a system in which two species of lepidopteran caterpillars metabolize an abietane diterpene from the plants of Nepeta stewartiana Diels to an oxygenated derivative that is less active biologically. We found that this transformation could be catalyzed by a cytochrome P450 enzyme in caterpillars, which are associated with molting. Most interestingly, abietane diterpene targets the molting-associated gene CYP306A1 to alter the content of molting hormones in the insect at specific developmental stages and competitively inhibit molting hormone metabolism. These findings identify the mechanism by which caterpillars are able to detoxify abietane diterpenoid through hydroxylation at the C-19 position, which may be opening up exciting research questions into the mechanisms of interaction between plants and insects.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
18
|
Wang A, Yang Y, Zhou Y, Zhang Y, Xue C, Zhao Y, Zhao M, Zhang J. A microRNA, PC-5p-30_205949, regulates triflumezopyrim susceptibility in Laodelphax striatellus (Fallén) by targeting CYP419A1 and ABCG23. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105413. [PMID: 37105639 DOI: 10.1016/j.pestbp.2023.105413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators of gene expression and have been shown to be associated with insecticide resistance in insects. In this research, we show that a miRNA, PC-5p-30_205949, is involved in triflumezopyrim susceptibility via regulating expressive abundance of cytochrome P450 CYP419A1 and ATP-binding cassette transporters ABCG23 in the small brown planthopper (SBPH), Laodelphax striatellus (Fallén). Triflumezopyrim treatment significantly reduced the abundance of PC-5p-30_205949, feeding of agomir-PC-5p-30_205949 significantly increased the sensitivity of SBPH to triflumezopyrim, and its spatiotemporal expression profiles showed that PC-5p-30_205949 were expressed at all developmental stages and were highly expressed in head tissue. By software prediction and dual luciferase reporter assay, the target genes of PC-5p-30_205949 were identified as two detoxification metabolism genes CYP419A1 and ABCG23. The relative expressions of CYP419A1 and ABCG23 were significantly up-regulated after 24 h, 48 h and 72 h with triflumezopyrim exposure. CYP419A1 was highly expressed in the 4th-instar nymphs and male adults, with the highest expression level in fat body. ABCG23 was highly expressed in female adults, and had the highest expression in head. Furthermore, silencing of CYP419A1 and ABCG23 by RNA interference significantly increased the mortality of SBPH to triflumezopyrim, and molecular docking showed that CYP419A1 and ABCG23 could stably bind to triflumezopyrim with binding free energies of -171.5622 and - 103.3402 kcal mol-1, respectively. These results suggest that SBPH has a strategy to enhance the resistance to triflumezopyrim by attenuating the expression of PC-5P-30_205949, thereby activating the detoxification metabolic pathway by targeting CYP419A1 and ABCG23.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yun Zhou
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongxin Zhao
- Shandong Province Yuncheng County Agricultural and Rural Bureau, Yuncheng, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China; Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China.
| |
Collapse
|
19
|
Lu J, Zhang H, Wang Q, Huang X. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. INSECTS 2023; 14:212. [PMID: 36835781 PMCID: PMC9966863 DOI: 10.3390/insects14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) have a variety of functions, including involvement in the metabolism of exogenous substances and the synthesis and degradation of endogenous substances, which are important for the growth and development of insects. Pseudoregma bambucicola is a social aphid that produces genetically identical but morphologically and behaviorally distinct first-instar soldiers and normal nymphs within colonies. In this study, we identified 43 P450 genes based on P. bambucicola genome data. Phylogenetic analysis showed that these genes were classified into 4 clans, 13 families, and 23 subfamilies. The CYP3 and CYP4 clans had a somewhat decreased number of genes. In addition, differential gene expression analysis based on transcriptome data showed that several P450 genes, including CYP18A1, CYP4G332, and CYP4G333, showed higher expression levels in soldiers compared to normal nymphs and adult aphids. These genes may be candidates for causing epidermal hardening and developmental arrest in soldiers. This study provides valuable data and lays the foundation for the study of functions of P450 genes in the social aphid P. bambucicola.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Molecular Mechanisms Underlying Metabolic Resistance to Cyflumetofen and Bifenthrin in Tetranychus urticae Koch on Cowpea. Int J Mol Sci 2022; 23:ijms232416220. [PMID: 36555861 PMCID: PMC9787285 DOI: 10.3390/ijms232416220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tetranychus urticae Koch (T. urticae) is one of the most tremendous herbivores due to its polyphagous characteristics, and is resistant to most acaricides. In this study, enzyme-linked immunosorbent assay (ELISA), transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) were carried out to analyze the mechanisms of T. urticae metabolic resistance to cyflumetofen and bifenthrin on cowpea. The enzyme activity of UDP-glucuronosyltransferases (UGTs) and carboxylesterases (CarEs) in the cyflumetofen-resistant (R_cfm) strain significantly decreased, while that of cytochrome P450 monooxygenases (P450s) significantly increased. Meanwhile, the activities of glutathione-S-transferases (GSTs), CarEs and P450s in the bifenthrin-resistant (R_bft) strain were significantly higher than those in the susceptible strain (Lab_SS). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, in the R_cfm mite strain, two carboxyl/cholinesterase (CCE) genes and two P450 genes were upregulated and one gene was downregulated, namely CYP392E7; in the R_bft mite strain, eleven CCE, nine UGT, two P450, four GST and three ABC genes were upregulated, while four CCE and three P450 genes were downregulated. Additionally, 94 differentially expressed genes (DEGs) were common to the two resistant groups. Specifically, TuCCE46 and TuCCE70 were upregulated in both resistant groups. Furthermore, the qRT-PCR validation data were consistent with those from the transcriptome sequencing analysis. Specifically, TuCCE46 (3.37-fold) was significantly upregulated in the R_cfm strain, while in the R_bft strain, TeturUGT22 (5.29-fold), teturUGT58p (1.74-fold), CYP392A11 (2.89-fold) and TuGSTd15 (5.12-fold) were significantly upregulated and TuCCE01 (0.13-fold) and CYP392A2p (0.07-fold) were significantly downregulated. Our study indicates that TuCCE46 might play the most important role in resistance to cyflumetofen, and TuCCE01, teturUGT58p, teturUGT22, CYP392A11, TuGSTd15, TuGSTm09 and TuABCG-13 were prominent in the resistance to bifenthrin. These findings provide further insight into the critical genes involved in the metabolic resistance of T. urticae to cyflumetofen and bifenthrin.
Collapse
|
21
|
Xu L, Li B, Liu H, Zhang H, Liu R, Yu H, Li D. CRISPR/Cas9-Mediated Knockout Reveals the Involvement of CYP304F1 in β-Cypermethrin and Chlorpyrifos Resistance in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11192-11200. [PMID: 36043880 DOI: 10.1021/acs.jafc.2c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functions of insect CYP2 clan P450s in insecticide resistance are relatively less reported. In Spodoptera litura, a gene from the CYP2 clan (CYP304F1) was validated to be up-regulated significantly in a pyrethroid- and organophosphate-resistant population (QJ) than a susceptible population by RNA-Seq and qRT-PCR. Spatial-temporal expression indicated the high expression of CYP304F1 in the fourth, fifth, and sixth instar larvae and the metabolism-related tissue fat body and malpighian tubules. CYP304F1 was knocked out by CRISPR/Cas9, and a homozygous population (QJ-CYP304F1) with a G-base deletion at exon 2 was obtained after selection. Bioassay results showed that the LD50 values to β-cypermethrin and chlorpyrifos in the QJ-CYP304F1 population decreased significantly, and the resistance ratio was both 1.81-fold in the QJ population compared with that in the QJ-CYP304F1 population. The toxicity of fenvalerate, cyhalothrin, or phoxim showed no significant change. These results suggested that CYP304F1 is involved in β-cypermethrin and chlorpyrifos resistance in S. litura.
Collapse
Affiliation(s)
- Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Bo Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongyu Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
22
|
Feyereisen R. The P450 genes of the cat flea, Ctenocephalides felis: a CYPome in flux. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100032. [PMID: 36003260 PMCID: PMC9387431 DOI: 10.1016/j.cris.2022.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 10/26/2022]
Abstract
The genome of the cat flea, an ectoparasite of major veterinary importance and the first representative of the Siphonaptera, is highly unusual among arthropod genomes in showing a variable size and a very large number of gene duplications (Driscoll et al., 2020). The cat flea is the target of several classes of insecticides, justifying the description of its CYPome, the complement of P450s that are an important family of detoxification enzymes. 103 P450 genes were annotated on the nine chromosomes, with an additional 12 genes on small, extrachromosomal scaffolds. Only 34 genes were found as single sequences, with 47 duplicated two to four-fold. This included duplication of genes that are mostly single copy P450 genes in other arthropods. Large clusters of mitochondrial clan P450s were observed, resulting in a CYP12 bloom within this clan to 34 genes, a number of mitochondrial P450s not seen in other animals so far. The variable geometry of the cat flea CYPome poses a challenge to the study of P450 function in this species, and raises the question of the underlying causes of single copy control versus multicopy licence of P450 genes.
Collapse
Affiliation(s)
- René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
23
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|