1
|
Li J, Li X, He Y, Huang Y, Wang W, Du H, Chen C, Zhu D, Zhou X. Associations of multiple trace elements with bipolar disorder in adolescents: A case-control study. PLoS One 2025; 20:e0322958. [PMID: 40327654 PMCID: PMC12054906 DOI: 10.1371/journal.pone.0322958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a serious mental disorder. Studies have shown an association between trace elements and mental disorders. However, this association has not been thoroughly studied in adolescents with BD. We aimed to investigated the associations between multiple trace elements and adolescent BD. METHOD This case-control study included 144 BD patients with BD and 144 matched controls. Seventeen elements in the participants' urine were measured using inductively coupled plasma mass spectrometry (ICP-MS). Least absolute shrinkage and selection operator (LASSO), multivariate logistic regression, restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR) were used to analyze the association between exposure to single and mixed elements and adolescent BD. RESULTS In the single-element models, titanium, manganese, rubidium, and iodine were negatively associated with adolescent BD. In the multi-element model selected by LASSO, titanium (OR = 0.14, 95% CI: 0.04-0.53), manganese (OR = 0.02, 95% CI: 0.01-0.08), and iodine (OR = 0.06, 95% CI: 0.02-0.22) showed a negative correlation with adolescent BD, while magnesium (OR = 11.24, 95% CI: 1.83-69.12), and nickel (OR = 6.86, 95% CI: 1.55-30.29) displayed a positive correlation. The RCS results showed a non-linear correlation between the elements titanium, manganese, iodine, magnesium, nickel, zinc, strontium and adolescent BD. In addition, the BKMR analysis showed a significant joint effect of multiple elements on adolescent BD when the concentrations of the seven elements were at or above the 55th percentile, compared with their median values. CONCLUSIONS Our findings revealed that urinary titanium, manganese, and iodine were negatively correlated with adolescent BD, whereas urinary magnesium and nickel were positively correlated with adolescent BD. These results provide evidence of an association between urinary trace elements and adolescent BD.
Collapse
Affiliation(s)
- Jie Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yajie Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Wenjing Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Hang Du
- Chongqing prevention and treatment center for occupational diseases, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Manna S, Firdous SM. Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review. Biometals 2025; 38:419-463. [PMID: 39987289 DOI: 10.1007/s10534-025-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
Collapse
Affiliation(s)
- Sanjib Manna
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
3
|
Zhou X, Xia X, Li L, Ye Y, Chen Q, Ke M, Cui Q, He Y, Chen Y, Lin S, Liu W, Wang J. Evaluation of Heavy Metals and Essential Minerals in the Hair of Children with Autism Spectrum Disorder and Their Association with Symptom Severity. Biol Trace Elem Res 2025:10.1007/s12011-025-04588-z. [PMID: 40153150 DOI: 10.1007/s12011-025-04588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 03/30/2025]
Abstract
The exact cause of Autism spectrum disorder (ASD) remains unclear. The accumulation of heavy metals and the imbalance of trace elements are believed to play a key role in the pathogenesis of ASD. This study aimed to compare the levels of trace elements and heavy metals in the hair of 1-16-year-old children with varying ASD severity. We included a control group of 57 children, as well as 124 children with autism, consisting of 53 with mild to moderate autism and 71 with severe autism. Questionnaires and hair samples were collected, and 21 chemical elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Children with severe autism showed significantly higher levels of the trace elements copper (Cu) and heavy metals vanadium (V), cobalt (Co), nickel (Ni), arsenic (As), cadmium (Cd), and lead (Pb) in their bodies compared to the control group. Boys with severe autism showed significantly higher levels of Cu, As, Cd, and Pb compared to the control group, while girls with severe autism exhibited significantly lower levels of potassium (K) and increased levels of Pb. Severely autistic children under 7 years old had significantly increased levels of Mn, Cu, V, Co, Ni, As, Cd, and Pb. Children with severe autism aged 7-16 years typically showed significantly higher levels of Cu and As. These findings underscore the importance of heavy metals and essential minerals as environmental factors in the severity of ASD disease.
Collapse
Affiliation(s)
- Xulan Zhou
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xiaochun Xia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Liming Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yaohui Ye
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Qihui Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Mingyue Ke
- Department of Laboratory Medicine, Siming District Center for Disease Control and Prevention, Xiamen, China
| | - Qian Cui
- Department of Laboratory Medicine, Siming District Center for Disease Control and Prevention, Xiamen, China
| | - Yuling He
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yiting Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Shaoqing Lin
- Department of Medical Record, Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Wenlong Liu
- Department of Child Development and Behavior, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Juan Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
4
|
Hafezi A, Beglari S, Aghamohammad S, Rohani M. Impact of Native Probiotics on Autophagy and Oxidative Stress in Nickel-Exposed Mice: Insights Into the Gut-Brain Axis. Brain Behav 2025; 15:e70399. [PMID: 40022284 PMCID: PMC11870836 DOI: 10.1002/brb3.70399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The gut-brain axis plays a crucial role in mitigating the adverse effects of environmental agents such as nickel exposure. Nickel, recognized as a heavy metal, poses significant concerns for public health because of its impact on neurological disorders and oxidative stress; consequently, it is prioritized for evaluations of its effects on biological pathways. This study investigates the potential of native probiotic strains to modulate inflammatory and autophagy signaling pathways, which are vital for combating oxidative stress. METHODS Twenty male NMRI mice were divided into 4 groups randomly and were gavaged with NiCl2, followed by administration of a probiotic cocktail that consisted of 4 native probiotic Lactobacillus spp. and Bifidobacterium spp. Brain tissues from these treated mice were collected to analyze the expression of autophagy-related genes involved in phagophore, autophagosome, and autolysosome formation using quantitative real-time polymerase chain reaction (qPCR). RESULTS Our findings demonstrated that treatment with this cocktail of native probiotic Lactobacillus spp. and Bifidobacterium spp. significantly increased the expression of autophagy genes compared to the control group exposed to NiCl2 alone. Specifically, there was a notable upregulation in genes associated with autophagic processes, indicating that these probiotic strains effectively activated autophagy pathways in response to nickel-induced oxidative stress. CONCLUSION The beneficial effects of our native probiotic strains were confirmed through enhanced expression of autophagy genes and reduced neuroinflammation, suggesting their potential as therapeutic agents in mitigating the adverse impacts of nickel exposure on brain health via modulation of the gut-brain axis.
Collapse
Affiliation(s)
- Asal Hafezi
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Shokufeh Beglari
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mahdi Rohani
- Department of BacteriologyPasteur Institute of IranTehranIran
| |
Collapse
|
5
|
Schildroth S, Claus Henn B, Geller RJ, Wesselink AK, Upson K, Vines AI, Vinceti M, Harmon QE, Baird DD, Wegienka G, Wise LA. A prospective study of a whole blood metal mixture and depressive symptoms among Black women from Detroit, Michigan. Neurotoxicology 2025; 108:94-104. [PMID: 40032041 DOI: 10.1016/j.neuro.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Exposure to metals has been previously associated with depressive symptoms, but few studies have considered potential effects of metal mixtures. In addition, few previous studies have been conducted among Black women, who are disproportionately at risk for exposure to some metals and greater depression incidence and severity. We analyzed data from the Study of Environment, Lifestyle, and Fibroids (SELF), a prospective cohort study of reproductive-aged Black women from Detroit, to examine associations between a mixture of metals, metalloids, and trace elements ("metals") and depressive symptoms (n = 1450). SELF participants self-identified as Black or African American and were 23-34 years of age at enrollment. We collected covariate information on structured questionnaires and whole blood samples at baseline. We quantified 17 metals in whole blood using inductively coupled plasma mass spectrometer triple quadruple or Direct Mercury Analyzer-80. Participants reported depressive symptoms on the Center for Epidemiologic Studies Depression Scale (CES-D) at the 20-month follow-up visit, where higher CES-D scores reflected greater depressive symptoms. We used quantile-based g-computation to estimate the cumulative association of the metal mixture with CES-D scores, adjusting for age, household income, educational attainment, body mass index, smoking status, alcohol intake, and parity. We estimated beta coefficients (with 95 % confidence intervals [CI]) as the percent difference in CES-D scores per quartile increase in all metals. A one-quartile increase in the metal mixture was associated with 14.8 % lower (95 % CI=-26.7 %, -1.1 %) CES-D scores, reflecting lower depressive symptoms. The mixture association was driven by nickel, copper, cesium, molybdenum, and lead. Other neurotoxic metals (cadmium, arsenic, mercury, chromium) were associated with greater depressive symptoms. Findings from this study suggest that exposure to a mixture of metals may affect depressive symptoms in Black women, with individual metals acting in opposing directions.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Ruth J Geller
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Kristen Upson
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Anissa I Vines
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Marco Vinceti
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Quaker E Harmon
- National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - Donna D Baird
- National Institute of Environmental Health Sciences, Durham, NC, USA.
| | | | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Hong S, Wu S, Wan Z, Wang C, Guan X, Fu M, Liu C, Wu T, Zhong G, Zhou Y, Xiao Y, You Y, Chen S, Wang Y, Zhao H, Zhang Y, Lin J, Bai Y, Guo H. Associations between multiple metals exposure and cognitive function in the middle-aged and older adults from China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 263:120038. [PMID: 39305974 DOI: 10.1016/j.envres.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
The rapidly rising risk of cognitive decline is a serious challenge for the elderly. As the wide-distributed environmental chemicals, the effects of metals exposure on cognitive function have attracted much attention, but the results remain inclusive. This study aimed to investigate the roles of multiple metals co-exposure on cognition. We included a total of 6112 middle-aged and older participants, detected their plasma levels of 23 metals by using inductively coupled plasma mass spectrometry, and assessed their cognitive function by using the Mini-Mental State Examination (MMSE). The results showed that increased plasma levels of iron (Fe) and zinc (Zn) were positively associated with MMSE score, but the increased levels of nickel (Ni) and lead (Pb) were associated with decreased MMSE score (all FDR < 0.05). Subjects exposed to both high levels of Ni and Pb showed the lowest MMSE score [β (95% CI) = -0.310 (-0.519, -0.100)], suggesting that Ni and Pb had a synergistic toxic effect on cognitive function. In addition, the hazardous roles of Ni and Pb were mainly found among subjects with low plasma level of Zn, but were not significant among those with high-Zn level [Ni: β (95% CI) = -0.281 (-0.546, -0.015) vs. -0.146 (-0.351, 0.058); Pb: β (95% CI) = -0.410 (-0.651, -0.169) vs. -0.060 (-0.275, 0.155)], which suggested that Zn could attenuate the adverse effects of Pb and Ni on cognitive function. The cognitive function was gradually decreased among subjects with increased number of adverse exposures to the above four metals (Ptrend < 0.001). In conclusion, our findings revealed the individual, interactive, and combined effects of Fe, Ni, Pb, and Zn on cognitive function, which may provide new perspectives on cognitive protection, but further prospective cohort studies and biological researches are needed to validate these findings.
Collapse
Affiliation(s)
- Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Sheng Wu
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430015, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Lin
- Community Health Service Center of Shuiguohu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, 511416, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
8
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Zhang J, Gao Y, Li Y, Liu D, Sun W, Liu C, Zhao X. Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. BIOLOGY 2024; 13:655. [PMID: 39336083 PMCID: PMC11429462 DOI: 10.3390/biology13090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
Although the human body needs nickel as a trace element, too much nickel exposure can be hazardous. The effects of nickel on cells include inducing oxidative stress, interfering with DNA damage repair, and altering epigenetic modifications. Glucose metabolism and lipid metabolism are closely related to oxidative stress; however, their role in nickel-induced damage needs further study. In Institute of Cancer Research (ICR) mice, our findings indicated that nickel stress increased the levels of blood lipid indicators (triglycerides, high-density lipoprotein, and cholesterol) by about 50%, blood glucose by more than two-fold, and glycated serum protein by nearly 20%. At the same time, nickel stress increased oxidative stress (malondialdehyde) and inflammation (Interleukin 6) by about 30% in the kidney. Based on next-generation sequencing technology, we detected and analyzed differentially expressed genes in the kidney caused by nickel stress. Bioinformatics analysis and experimental verification showed that nickel inhibited the expression of genes related to lipid metabolism and the AMPK and PPAR signaling pathways. The finding that nickel induces kidney injury and inhibits key genes involved in lipid metabolism and the AMPK and PPAR signaling pathways provides a theoretical basis for a deeper understanding of the mechanism of nickel-induced kidney injury.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yahong Gao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yuewen Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
| | - Dongdong Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Wenpeng Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Xiujuan Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
10
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
11
|
Panicker RR, Sivaramakrishna A. Studies on synthesis and influence of sterically driven Ni(II)-terpyridine (NNN) complexes on BSA/DNA binding and anticancer activity. J Inorg Biochem 2024; 257:112553. [PMID: 38759263 DOI: 10.1016/j.jinorgbio.2024.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 μm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.
Collapse
Affiliation(s)
- Rakesh R Panicker
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
El Brouzi MY, Lamtai M, Fath N, Rezqaoui A, Zghari O, El Hamzaoui A, Ibouzine-Dine L, El Hessni A, Mesfioui A. Exploring the neuroprotective role of melatonin against nickel-induced neurotoxicity in the left hippocampus. Biometals 2024:10.1007/s10534-024-00618-w. [PMID: 39060834 DOI: 10.1007/s10534-024-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Previous studies have demonstrated that the hippocampus, a crucial region for memory and cognitive functions, is particularly vulnerable to adverse effects of exposure to heavy metals. Nickel (Ni) is a neurotoxic agent that, primarily induces oxidative stress, a process known to contribute to cellular damage, which consequently affects neurological functions. The antioxidant properties of melatonin are a promising option for preventing the adverse effects of Ni, especially by protecting cells against oxidative stress and related damage. In our investigation of the potential neuroprotective effects of melatonin against Ni-induced neurotoxicity, we chose to administer melatonin through intraperitoneal injection in rats following an intrahippocampal injection of Ni into the left hippocampus. This approach allows us a targeted investigation into the influence of melatonin on the neurotoxic effects of Ni, particularly within the crucial context of the hippocampus. In the present study, we demonstrated that melatonin efficiency reduced lactate dehydrogenase level, and preserved antioxidant enzyme activities in Ni-exposed hippocampal tissue. It also mitigated the decline in superoxide dismutase and catalase activities. On the other hand, melatonin could act directly by reducing reactive oxygen species Ni-induced overproduction. Taking to gather these two potential mechanisms of action could be responsible for the adverse effect of Ni on the behavioral alteration observed in our study. This study provides significant insights into the potential of melatonin to mitigate the detrimental effects of Ni on the brain, particularly into the hippocampal region, suggesting its possible implications for the treatment of neurological disorders related to Ni exposure.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
- Physiology and Pathophysiology Laboratory, Department of Biology, Faculty of Sciences, Mohamed V University, Rabat, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Laila Ibouzine-Dine
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
13
|
Thiel A, Michaelis V, Restle M, Figge S, Simon M, Schwerdtle T, Bornhorst J. Single is not combined: The role of Co and Ni bioavailability on toxicity mechanisms in liver and brain cells. CHEMOSPHERE 2024; 357:142091. [PMID: 38648987 DOI: 10.1016/j.chemosphere.2024.142091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The two trace elements cobalt (Co) and nickel (Ni) are widely distributed in the environment due to the increasing industrial application, for example in lithium-ion batteries. Both metals are known to cause detrimental health impacts to humans when overexposed and both are supposed to be a risk factor for various diseases. The individual toxicity of Co and Ni has been partially investigated, however the underlying mechanisms, as well as the interactions of both remain unknown. In this study, we focused on the treatment of liver carcinoma (HepG2) and astrocytoma (CCF-STTG1) cells as a model for the target sites of these two metals. We investigated their effects in single and combined exposure on cell survival, cell death mechanisms, bioavailability, and the induction of oxidative stress. The combination of CoCl2 and NiCl2 resulted in higher Co levels with subsequent decreased amount of Ni compared to the individual treatment. Only CoCl2 and the combination of both metals led to RONS induction and increased GSSG formation, while apoptosis and necrosis seem to be involved in the cell death mechanisms of both CoCl2 and NiCl2. Collectively, this study demonstrates cell-type specific toxicity, with HepG2 representing the more sensitive cell line. Importantly, combined exposure to CoCl2 and NiCl2 is more toxic than single exposure, which may originate partly from the respective cellular Co and Ni content. Our data imply that the major mechanism of joint toxicity is associated with oxidative stress. More studies are needed to assess toxicity after combined exposure to elements such as Co and Ni to advance an improved hazard prediction for less artificial and more real-life exposure scenarios.
Collapse
Affiliation(s)
- Alicia Thiel
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Vivien Michaelis
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Marco Restle
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Sabrina Figge
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany.
| |
Collapse
|
14
|
Tyczyńska M, Gędek M, Brachet A, Stręk W, Flieger J, Teresiński G, Baj J. Trace Elements in Alzheimer's Disease and Dementia: The Current State of Knowledge. J Clin Med 2024; 13:2381. [PMID: 38673657 PMCID: PMC11050856 DOI: 10.3390/jcm13082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in trace element concentrations are being wildly considered when it comes to neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. This study aims to present the role that trace elements play in the central nervous system. Moreover, we reviewed the mechanisms involved in their neurotoxicity. Low zinc concentrations, as well as high levels of copper, manganese, and iron, activate the signalling pathways of the inflammatory, oxidative and nitrosative stress response. Neurodegeneration occurs due to the association between metals and proteins, which is then followed by aggregate formation, mitochondrial disorder, and, ultimately, cell death. In Alzheimer's disease, low Zn levels suppress the neurotoxicity induced by β-amyloid through the selective precipitation of aggregation intermediates. High concentrations of copper, iron and manganese cause the aggregation of intracellular α-synuclein, which results in synaptic dysfunction and axonal transport disruption. Parkinson's disease is caused by the accumulation of Fe in the midbrain dopaminergic nucleus, and the pathogenesis of multiple sclerosis derives from Zn deficiency, leading to an imbalance between T cell functions. Aluminium disturbs the homeostasis of other metals through a rise in the production of oxygen reactive forms, which then leads to cellular death. Selenium, in association with iron, plays a distinct role in the process of ferroptosis. Outlining the influence that metals have on oxidoreduction processes is crucial to recognising the pathophysiology of neurodegenerative diseases and may provide possible new methods for both their avoidance and therapy.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Marta Gędek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Adam Brachet
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Wojciech Stręk
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| |
Collapse
|
15
|
Bjørklund G, Đorđević AB, Hamdan H, Wallace DR, Peana M. Metal-induced autoimmunity in neurological disorders: A review of current understanding and future directions. Autoimmun Rev 2024; 23:103509. [PMID: 38159894 DOI: 10.1016/j.autrev.2023.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Autoimmunity is a multifaceted disorder influenced by both genetic and environmental factors, and metal exposure has been implicated as a potential catalyst, especially in autoimmune diseases affecting the central nervous system. Notably, metals like mercury, lead, and aluminum exhibit well-established neurotoxic effects, yet the precise mechanisms by which they elicit autoimmune responses in susceptible individuals remain unclear. Recent studies propose that metal-induced autoimmunity may arise from direct toxic effects on immune cells and tissues, coupled with indirect impacts on the gut microbiome and the blood-brain barrier. These effects can activate self-reactive T cells, prompting the production of autoantibodies, inflammatory responses, and tissue damage. Diagnosing metal-induced autoimmunity proves challenging due to nonspecific symptoms and a lack of reliable biomarkers. Treatment typically involves chelation therapy to eliminate excess metals and immunomodulatory agents to suppress autoimmune responses. Prevention strategies include lifestyle adjustments to reduce metal exposure and avoiding occupational and environmental risks. Prognosis is generally favorable with proper treatment; however, untreated cases may lead to autoimmune disorder progression and irreversible organ damage, particularly in the brain. Future research aims to identify genetic and environmental risk factors, enhance diagnostic precision, and explore novel treatment approaches for improved prevention and management of this intricate and debilitating disease.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | | | - Halla Hamdan
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - David R Wallace
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy.
| |
Collapse
|
16
|
Cristaldi A, Oliveri Conti G, Pellitteri R, La Cognata V, Copat C, Pulvirenti E, Grasso A, Fiore M, Cavallaro S, Dell'Albani P, Ferrante M. In vitro exposure to PM 2.5 of olfactory Ensheathing cells and SH-SY5Y cells and possible association with neurodegenerative processes. ENVIRONMENTAL RESEARCH 2024; 241:117575. [PMID: 37925127 DOI: 10.1016/j.envres.2023.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
PM2.5 exposure represents a risk factor for the public health. PM2.5 is able to cross the blood-alveolar and blood-brain barriers and reach the brain through three routes: nasal olfactory pathway, nose-brain pathway, blood-brain barrier pathway. We evaluated the effect of PM2.5 to induce cytotoxicity and reduced viability on in vitro cultures of OECs (Olfactory Ensheathing Cells) and SH-SY5Y cells. PM2.5 samples were collected in the metropolitan area of Catania, and the gravimetric determination of PM2.5, characterization of 10 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs) were carried out for each sample. PM2.5 extracts were exposed to cultures of OECs and SH-SY5Y cells for 24-48-72 h, and the cell viability assay (MTT) was evaluated. Assessment of mitochondrial and cytoskeleton damage, and the assessment of apoptotic process were performed in the samples that showed lower cell viability. We have found an annual average value of PM2.5 = 16.9 μg/m3 and a maximum value of PM2.5 = 27.6 μg/m3 during the winter season. PM2.5 samples collected during the winter season also showed higher concentrations of PAHs and trace elements. The MTT assay showed a reduction in cell viability for both OECs (44%, 62%, 64%) and SH-SY5Y cells (16%, 17%, 28%) after 24-48-72 h of PM2.5 exposure. Furthermore, samples with lower cell viability showed a decrease in mitochondrial membrane potential, increased cytotoxicity, and also impaired cellular integrity and induction of the apoptotic process after increased expression of vimentin and caspase-3 activity, respectively. These events are involved in neurodegenerative processes and could be triggered not only by the concentration and time of exposure to PM2.5, but also by the presence of trace elements and PAHs on the PM2.5 substrate. The identification of more sensitive cell lines could be the key to understanding how exposure to PM2.5 can contribute to the onset of neurodegenerative processes.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy.
| | - Rosalia Pellitteri
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Valentina La Cognata
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Alfina Grasso
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Sebastiano Cavallaro
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Paola Dell'Albani
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy
| |
Collapse
|
17
|
Kublay İZ, Koçoğlu ES, Oflu S, Arvas B, Yolaçan Ç, Bakırdere S. Trace nickel determination in seawater matrix using combination of dispersive liquid-liquid microextraction and triethylamine-assisted Mg(OH) 2 method. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:861. [PMID: 37335378 DOI: 10.1007/s10661-023-11435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
In order to eliminate the effects of seawater matrix on the precise/accurate determination of elements, new and efficient analytical procedure requires. In this study, co-precipitation method based on the triethylamine (TEA)-assisted Mg(OH)2 was performed to eliminate side-effects of seawater medium on the determination with flame atomic absorption spectrometry (FAAS) prior to the preconcentration of nickel by an optimized dispersive liquid-liquid microextraction (DLLME) method. Under the optimum conditions of the presented method, the limit of detection and quantification (LOD, LOQ) values obtained for nickel were found as 16.1 and 53.8 μg kg-1, respectively. Seawater samples collected from West Antarctic region were used for real sample applications to check the accuracy and applicability of developed method, and satisfying recovery results (86-97%) were obtained. In addition to this, the digital image-based colorimetric detection system and the UV-Vis system were applied to confirm the applicability of the developed DLLME-FAAS method in other analytical systems.
Collapse
Affiliation(s)
- İrem Zehra Kublay
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Elif Seda Koçoğlu
- Central Research Laboratory, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Sude Oflu
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Büşra Arvas
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Çiğdem Yolaçan
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Sezgin Bakırdere
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, 06670, Ankara, Türkiye.
| |
Collapse
|
18
|
Cesak O, Vostalova J, Vidlar A, Bastlova P, Student V. Carnosine and Beta-Alanine Supplementation in Human Medicine: Narrative Review and Critical Assessment. Nutrients 2023; 15:nu15071770. [PMID: 37049610 PMCID: PMC10096773 DOI: 10.3390/nu15071770] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The dipeptide carnosine is a physiologically important molecule in the human body, commonly found in skeletal muscle and brain tissue. Beta-alanine is a limiting precursor of carnosine and is among the most used sports supplements for improving athletic performance. However, carnosine, its metabolite N-acetylcarnosine, and the synthetic derivative zinc-L-carnosine have recently been gaining popularity as supplements in human medicine. These molecules have a wide range of effects—principally with anti-inflammatory, antioxidant, antiglycation, anticarbonylation, calcium-regulatory, immunomodulatory and chelating properties. This review discusses results from recent studies focusing on the impact of this supplementation in several areas of human medicine. We queried PubMed, Web of Science, the National Library of Medicine and the Cochrane Library, employing a search strategy using database-specific keywords. Evidence showed that the supplementation had a beneficial impact in the prevention of sarcopenia, the preservation of cognitive abilities and the improvement of neurodegenerative disorders. Furthermore, the improvement of diabetes mellitus parameters and symptoms of oral mucositis was seen, as well as the regression of esophagitis and taste disorders after chemotherapy, the protection of the gastrointestinal mucosa and the support of Helicobacter pylori eradication treatment. However, in the areas of senile cataracts, cardiovascular disease, schizophrenia and autistic disorders, the results are inconclusive.
Collapse
Affiliation(s)
- Ondrej Cesak
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Ales Vidlar
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Petra Bastlova
- Department of Rehabilitaion, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
| | - Vladimir Student
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| |
Collapse
|
19
|
Potentially toxic elements in the brains of people with multiple sclerosis. Sci Rep 2023; 13:655. [PMID: 36635465 PMCID: PMC9837144 DOI: 10.1038/s41598-022-27169-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Potentially toxic elements such as lead and aluminium have been proposed to play a role in the pathogenesis of multiple sclerosis (MS), since their neurotoxic mechanisms mimic many of the pathogenetic processes in MS. We therefore examined the distribution of several potentially toxic elements in the autopsied brains of people with and without MS, using two methods of elemental bio-imaging. Toxicants detected in the locus ceruleus were used as indicators of past exposures. Autometallography of paraffin sections from multiple brain regions of 21 MS patients and 109 controls detected inorganic mercury, silver, or bismuth in many locus ceruleus neurons of both groups, and in widespread blood vessels, oligodendrocytes, astrocytes, and neurons of four MS patients and one control. Laser ablation-inductively coupled plasma-mass spectrometry imaging of pons paraffin sections from all MS patients and 12 controls showed that combinations of iron, silver, lead, aluminium, mercury, nickel, and bismuth were present more often in the locus ceruleus of MS patients and were located predominantly in white matter tracts. Based on these results, we propose that metal toxicants in locus ceruleus neurons weaken the blood-brain barrier, enabling multiple interacting toxicants to pass through blood vessels and enter astrocytes and oligodendroglia, leading to demyelination.
Collapse
|
20
|
Unveiling the Metal-Dependent Aggregation Properties of the C-terminal Region of Amyloidogenic Intrinsically Disordered Protein Isoforms DPF3b and DPF3a. Int J Mol Sci 2022; 23:ijms232315291. [PMID: 36499617 PMCID: PMC9738585 DOI: 10.3390/ijms232315291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Double-PHD fingers 3 (DPF3) is a BAF-associated human epigenetic regulator, which is increasingly recognised as a major contributor to various pathological contexts, such as cardiac defects, cancer, and neurodegenerative diseases. Recently, we unveiled that its two isoforms (DPF3b and DPF3a) are amyloidogenic intrinsically disordered proteins. DPF3 isoforms differ from their C-terminal region (C-TERb and C-TERa), containing zinc fingers and disordered domains. Herein, we investigated the disorder aggregation properties of C-TER isoforms. In agreement with the predictions, spectroscopy highlighted a lack of a highly ordered structure, especially for C-TERa. Over a few days, both C-TERs were shown to spontaneously assemble into similar antiparallel and parallel β-sheet-rich fibrils. Altered metal homeostasis being a neurodegeneration hallmark, we also assessed the influence of divalent metal cations, namely Cu2+, Mg2+, Ni2+, and Zn2+, on the C-TER aggregation pathway. Circular dichroism revealed that metal binding does not impair the formation of β-sheets, though metal-specific tertiary structure modifications were observed. Through intrinsic and extrinsic fluorescence, we found that metal cations differently affect C-TERb and C-TERa. Cu2+ and Ni2+ have a strong inhibitory effect on the aggregation of both isoforms, whereas Mg2+ impedes C-TERb fibrillation and, on the contrary, enhances that of C-TERa. Upon Zn2+ binding, C-TERb aggregation is also hindered, and the amyloid autofluorescence of C-TERa is remarkably red-shifted. Using electron microscopy, we confirmed that the metal-induced spectral changes are related to the morphological diversity of the aggregates. While metal-treated C-TERb formed breakable and fragmented filaments, C-TERa fibrils retained their flexibility and packing properties in the presence of Mg2+ and Zn2+ cations.
Collapse
|