1
|
Paolillo M, Ferraro G, Sahu G, Pattanayak PD, Garribba E, Halder S, Ghosh R, Mondal B, Chatterjee PB, Dinda R, Merlino A. Interaction of V VO 2-hydrazonates with lysozyme. J Inorg Biochem 2025; 264:112787. [PMID: 39642703 DOI: 10.1016/j.jinorgbio.2024.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Vanadium compounds (VCs) exhibit a broad range of pharmacological properties, with their most significant medical applications being in the treatment of cancer and diabetes. The therapeutic effects and mode of action of VCs may be associated with their ability to bind proteins and, consequently, understanding the VC-protein interaction is of paramount importance. Among the promising VCs, the VVO2 complex with the aroylhydrazone furan-2-carboxylic acid ((3-ethoxy-2-hydroxybenzylidene)hydrazide, hereafter denoted as VC1), deserves attention, since it exhibits cytotoxicity against various cancer cell lines, including HeLa. The interaction between VC1 and its analogue, denoted as VC2 (the dioxidovanadium(V) complex with (E)-N'-(1-(2-hydroxy-5-methoxyphenyl)ethylidene)furan-2-carbohydrazide), and hen egg white lysozyme (HEWL) was examined by UV-vis spectroscopy, fluorescence, circular dichroism, and X-ray crystallography. The interaction of VC1 and VC2 with HEWL does not alter the protein secondary and tertiary structure. Crystallographic studies indicate that the two metal complexes or V-containing fragments originating from VC1 and VC2 bind the protein via non-covalent interactions. Furthermore, when bound to HEWL, two VC1 molecules and two VC2 molecules form a supramolecular association stabilized by stacking interactions. This type of interaction could favour the binding of similar compounds to proteins and affect their biological activity.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Sourangshu Halder
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
| | - Bipul Mondal
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
2
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Zhang S, Qi J, Jiang H, Chen X, You Z. Improving vanadium removal from contaminated river water in constructed wetlands: The role of arbuscular mycorrhizal fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123804. [PMID: 38493864 DOI: 10.1016/j.envpol.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Industrial activities pose a significant ecological risk to water resources as they pollute surrounding waters with vanadium (V). Although the contribution of plants and substrates to V removal in constructed wetlands (CWs) has been reported, the role of arbuscular mycorrhizal fungi (AMF) is unclear. The aim of the present study was to investigate the role of AMF in V removal in CWs and to elucidate the underlying mechanisms. Reed plants (Phragmites australis) were inoculated with an AMF strain (Rhizophagus irregularis) in CW columns, creating AMF-inoculated (+AMF) and non-inoculated (-AMF) treatments. Three levels of influent V concentrations (low: 0.50 mg L-1, medium: 1.14 mg L-1 and high: 1.52 mg L-1) were examined. The + AMF treatment showed higher V removal (60%-98%) than the control (40%-82%) in all three conditions, although the difference was not significant in some cases. The mean mycorrhizal effects were 75%, 19%, and 28% for low, moderate, and high influent V concentrations, respectively. The +AMF treatment showed a higher GRSP-bonded V concentration (5.5 mg g-1) than the -AMF treatment (4.0 mg g-1). Furthermore, +AMF treatment showed larger plants with higher V concentrations in their tissues, accompanied by increased biological concentration factors and biological accumulation factors. Given the remarkable positive effect of AMF on V removal, our study suggests that treating AMF in CWs is a worthwhile approach.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China.
| | - Jingfan Qi
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China; Yangtze River Innovation Center for Ecological Civilization, 210019, Nanjing, China.
| | - Huafeng Jiang
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China.
| | - Xinlong Chen
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China; Yangtze River Innovation Center for Ecological Civilization, 210019, Nanjing, China.
| | - Zhaoyang You
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China.
| |
Collapse
|
4
|
Gonzalez-Cano SI, Flores G, Guevara J, Morales-Medina JC, Treviño S, Diaz A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen Res 2024; 19:571-577. [PMID: 37721286 PMCID: PMC10581577 DOI: 10.4103/1673-5374.380877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity, leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases, including cardiovascular diseases, osteoporosis, cancer, diabetes, and neurodegeneration. Aging is considered the major risk factor for Parkinson's and Alzheimer's disease develops. Likewise, diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders. Currently, no treatment can effectively reverse these neurodegenerative pathologies. However, some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes. In the previous framework, Vanadium species have demonstrated a notable antidiabetic effect. Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome. The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms. This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain, constituting a therapeutic alternative for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, Ok YS. Vanadium in the Environment: Biogeochemistry and Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14770-14786. [PMID: 37695611 DOI: 10.1021/acs.est.3c04508] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.
Collapse
Affiliation(s)
- Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- International ESG Association (IESGA), Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Papanikolaou M, Simaioforidou AV, Drouza C, Tsipis AC, Miras HN, Keramidas AD, Louloudi M, Kabanos TA. A Combined Experimental and Theoretical Investigation of Oxidation Catalysis by cis-[V IV(O)(Cl/F)(N 4)] + Species Mimicking the Active Center of Metal-Enzymes. Inorg Chem 2022; 61:18434-18449. [PMID: 36357045 PMCID: PMC9682486 DOI: 10.1021/acs.inorgchem.2c02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/12/2022]
Abstract
Reaction of VIVOCl2 with the nonplanar tetradentate N4 bis-quinoline ligands yielded four oxidovanadium(IV) compounds of the general formula cis-[VIV(O)(Cl)(N4)]Cl. Sequential treatment of the two nonmethylated N4 oxidovanadium(IV) compounds with KF and NaClO4 resulted in the isolation of the species with the general formula cis-[VIV(O)(F)(N4)]ClO4. In marked contrast, the methylated N4 oxidovanadium(IV) derivatives are inert toward KF reaction due to steric hindrance, as evidenced by EPR and theoretical calculations. The oxidovanadium(IV) compounds were characterized by single-crystal X-ray structure analysis, cw EPR spectroscopy, and magnetic susceptibility. The crystallographic characterization showed that the vanadium compounds have a highly distorted octahedral coordination environment and the d(VIV-F) = 1.834(1) Å is the shortest to be reported for (oxido)(fluorido)vanadium(IV) compounds. The experimental EPR parameters of the VIVO2+ species deviate from the ones calculated by the empirical additivity relationship and can be attributed to the axial donor atom trans to the oxido group and the distorted VIV coordination environment. The vanadium compounds act as catalysts toward alkane oxidation by aqueous H2O2 with moderate ΤΟΝ up to 293 and product yields of up to 29% (based on alkane); the vanadium(IV) is oxidized to vanadium(V), and the ligands remain bound to the vanadium atom during the catalysis, as determined by 51V and 1H NMR spectroscopies. The cw X-band EPR studies proved that the mechanism of the catalytic reaction is through hydroxyl radicals. The chloride substitution reaction in the cis-[VIV(O)(Cl)(N4)]+ species by fluoride and the mechanism of the alkane oxidation were studied by DFT calculations.
Collapse
Affiliation(s)
- Michael
G. Papanikolaou
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
- Department
of Chemistry, University of Cyprus, Nicosia1678, Cyprus
| | - Anastasia V. Simaioforidou
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| | - Chryssoula Drouza
- Department
of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, 3036Limassol, Cyprus
| | - Athanassios C. Tsipis
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| | | | | | - Maria Louloudi
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| | - Themistoklis A. Kabanos
- Section
of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina45110, Greece
| |
Collapse
|
7
|
Mato-López L, Sar-Rañó A, Fernández MR, Díaz-Prado ML, Gil A, Sánchez-González Á, Fernández-Bertólez N, Méndez J, Valdiglesias V, Avecilla F. Relationship between structure and cytotoxicity of vanadium and molybdenum complexes with pyridoxal derived ligands. J Inorg Biochem 2022; 235:111937. [PMID: 35870443 DOI: 10.1016/j.jinorgbio.2022.111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
In this work four vanadium complexes (compounds 1, 2, 3 and 4) and one molybdenum complex (compound 5) with hydrazone ligands derived from pyridoxal were synthesized and characterized. All compounds are mononuclear species, two of them (compounds 3 and 5) are dioxide complexes and the other three (compounds 1, 2 and 4) monoxide complexes. The vanadium atom of the compound 3 is five-coordinated and all the other compounds have a six coordinated environment polyhedron. The poses for the potential intercalation of the compounds 2 and 3 with DNA were obtained by using AutoDock software. Optimizations were also performed at PM6-D3H4 semi-empirical level whereas the study of the nature of the interaction was carried out by means of the Energy Decomposition Analysis and the Non-Covalent Interaction index by using in both cases Density Functional Theory computations. The cytotoxicity in lung cancer cells (A549 cell line) of all the compounds was also evaluated. After 24 h of treatment, vanadium complexes showed high values of IC50, between 419.93 ± 22.58 and 685.88 ± 46.55 μM. After 48 h, the results showed that the compound 3 had the lowest IC50 value, 65.32 ± 9.95 μM, and the compound 2 the highest value, 375.28 ± 32.09 μM. The molybdenum complex showed the lowest IC50 value at 48 h (11.22 ± 1.34 μM). The toxicity of the compounds 3, 4 and 5 was tested in vivo, using zebrafish model, and the molybdenum complex showed higher toxic effects than the studied vanadium complexes.
Collapse
Affiliation(s)
- Lucía Mato-López
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| | - Antía Sar-Rañó
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| | - Miguel Riopedre Fernández
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - María Luz Díaz-Prado
- Universidade da Coruña, Grupo NEUROVER, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultade de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Adrià Gil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC, Universidad de Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain; ARAID Foundation, Zaragoza, Spain; BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Ángel Sánchez-González
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultade de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Josefina Méndez
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultade de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultade de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain.
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain.
| |
Collapse
|
8
|
Santos MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Costa Pessoa J. Binding of V IV O 2+ , V IV OL, V IV OL 2 and V V O 2 L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications. Chemistry 2022; 28:e202200105. [PMID: 35486702 DOI: 10.1002/chem.202200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.
Collapse
Affiliation(s)
- Marino F A Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Andreia C P Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
9
|
Roy S, Böhme M, Lima S, Mohanty M, Banerjee A, Buchholz A, Plass W, Rathnam S, Banerjee I, Kaminsky W, Dinda R. Methoxido‐Bridged Lacunary Heterocubane Oxidovanadium(IV) Cluster with Azo Ligands: Synthesis, X‐ray Structure, Magnetic Properties, and Antiproliferative Activity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satabdi Roy
- National Institute of Technology Rourkela department of chemistry INDIA
| | - Michael Böhme
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Sudhir Lima
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Monalisa Mohanty
- National Institute of Technology Rourkela Department of Chemisry INDIA
| | - Atanu Banerjee
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Axel Buchholz
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Winfried Plass
- Friedrich-Schiller-Universitat Jena Anorganische und Analytische Chemie Humboldtstr. 8 7743 Jena GERMANY
| | - Sharan Rathnam
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Indranil Banerjee
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Werner Kaminsky
- University of Washington Department of Chemistry UNITED STATES
| | - Rupam Dinda
- National Institute of Technology Rourkela Department of Chemsitry INDIA
| |
Collapse
|
10
|
Rammah YS, Olarinoye I, El-Agawany FI, El-Adawy A, Yousef ES. Photon, proton, and neutron shielding capacity of optical tellurite-vanadate glass systems: Theoretical investigation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hanus-Fajerska E, Wiszniewska A, Kamińska I. A Dual Role of Vanadium in Environmental Systems-Beneficial and Detrimental Effects on Terrestrial Plants and Humans. PLANTS (BASEL, SWITZERLAND) 2021; 10:1110. [PMID: 34072768 PMCID: PMC8227766 DOI: 10.3390/plants10061110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023]
Abstract
The importance of vanadium (V) in the functioning of land systems is extremely diverse, as this element may exert both positive and harmful effects on terrestrial organisms. It recently become considered an element of beneficial character with a range of applications for human welfare. The health-ameliorative properties of this transition element depend on its degree of oxidation and on optimal concentration in the target cells. It was found that a similar relationship applies to vascular plants. However, excessive amounts of vanadium in the environment contaminate the soil and negatively affect the majority of living organisms. A significantly elevated level of V results in the destabilization of plant physiological balance, slowing down the growth of biomass which significantly reduces yield. In turn, low doses of the appropriate vanadium ions can stimulate plant growth and development, exert cytoprotective effects, and effectively enhance the synthesis of some biologically active compounds. We present the scientific achievements of research teams dealing with such topics. The issues discussed concern the role of vanadium in the environment, particular organisms, and highlight its dualistic influence on plants. Achievements in the field of V bioremediation, with the use of appropriately selected microorganisms and plant species, are emphasized.
Collapse
Affiliation(s)
- Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland; (A.W.); (I.K.)
| | | | | |
Collapse
|
12
|
Miao Y, Samuelsen SV, Madsen R. Vanadium- and Chromium-Catalyzed Dehydrogenative Synthesis of Imines from Alcohols and Amines. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yulong Miao
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Simone V. Samuelsen
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|
14
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
15
|
Park SY. Inhibitory Effect of Jeju Tea Extracts and Vanadate on Postprandial Hyperglycemia and Hypertension, and In Vitro Study. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2020. [DOI: 10.15324/kjcls.2020.52.4.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shin Young Park
- Department of Clinical Laboratory Science, Cheju Halla University, Jeju, Korea
| |
Collapse
|
16
|
Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity. INORGANICS 2020. [DOI: 10.3390/inorganics8120067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 °C. The results showed that decomposition products are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7]2− (V2), [V4O12]4− (V4) and [V5O15]5− (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds. Cytotoxic activity studies using non-tumorigenic HEK293 cell line and human liver cancer HEPG2 cells showed that decavanadates compounds exhibit selectivity action toward HEPG2 cells after 24 h. The effect of vanadium compounds (8–30 μM concentration) on the protein expression of AKT and AMPK were investigated in HEPG2 cell lines, showing that NaDeca and MetfDeca compounds exhibit a dose-dependence increase in phosphorylated AKT. Additionally, NaDeca at 30 µM concentration stimulated the glucose cell uptake moderately (62%) in 3T3-L1 adipocytes. Finally, an insulin release assay in βTC-6 cells (30 µM concentration) showed that sodium orthovanadate (MetV) and MetfDeca enhanced insulin release by 0.7 and 1-fold, respectively.
Collapse
|
17
|
Gyepes R, Schwendt P, Tatiersky J, Sivák M, Šimunek J, Pacigová S, Krivosudský L. Stereochemistry of Vanadium Peroxido Complexes: The Case of the Quinoline-2-carboxylato Ligand. Inorg Chem 2020; 59:17162-17170. [PMID: 33180504 DOI: 10.1021/acs.inorgchem.0c02430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new mononuclear vanadium peroxido complex [VO(O2)(phen)(quin)]·H2O (1) exhibiting an unprecedented isomerism of its ligands was isolated from a two-component water-acetonitrile solvent system. DFT computations aimed at inspecting the stability of all possible isomers of complexes [VO(O2)(L1)(L2)], where L1 and L2 are NN+ON, OO+ON, NN+OO, and ON+ON donor atom set ligands, suggested that every complex characterized so far was the one preferred thermodynamically. However, the particular case of complex [VO(O2)(phen)(quin)] reported herein poses a notable exception to this rule, as this complex yielded single crystals of the isomer with total energy above the anticipated isomer, although both of these isomers could be observed concurrently in solution and also in the solid state. 51V NMR spectroscopy suggested these isomers to be present both in the crystallization solution and in the acetonitrile solution of 1. The coexistence of two isomers is a consequence of their small computed energy difference of 2.68 kJ mol-1, while the preferential crystallization favoring the unexpected isomer is likely to be triggered by solvent effects and the effects of different solubility and/or crystal packing. The coordination geometry of the unusual isomer also manifests itself in FT-IR and Raman spectra, which were corroborated with DFT computations targeted at band assignments.
Collapse
Affiliation(s)
- Róbert Gyepes
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 00 Praha, Czech Republic
| | - Peter Schwendt
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia
| | - Jozef Tatiersky
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia
| | - Michal Sivák
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia
| | - Ján Šimunek
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia
| | - Silvia Pacigová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia
| | - Lukáš Krivosudský
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovičova 6, Mlynská Dolina, 842 15 Bratislava, Slovakia
| |
Collapse
|
18
|
Lima LMA, Belian MF, Silva WE, Postal K, Kostenkova K, Crans DC, Rossiter AKFF, da Silva Júnior VA. Vanadium(IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. J Inorg Biochem 2020; 216:111312. [PMID: 33388704 DOI: 10.1016/j.jinorgbio.2020.111312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
The insulin enhancing activity, histological analysis and, testicular degeneration by a VIVO-complex containing the 2,2'-(ethane-1,2-diylbis(azanediyl))diethanolate ligand, VOIV(C6H14N2O2-κ2N,κ2O), abbreviated VIVO(BHED), were investigated in diabetic male Wistar rats. The complex was administered by oral gavage of freshly prepared solutions of vanadium complex. Biological studies demonstrated that the vanadium complex normalized the elevated glucose levels in male Wistar rats with streptozotocin-induced diabetes and these compounds also avoided common responses in diabetic animals such as weight loss and reduction in the size of the epididymis, prostate, testis and seminal gland. The 51V NMR and EPR studies showed the formation of VIVO(BHED) and the oxidation product [VVO2BHED]- with two possible decomposition pathways. In summary, these studies demonstrate that the VIVO(BHED) complex or its decomposition products show similar effects as insulin in decreasing elevated blood glucose levels.
Collapse
Affiliation(s)
- Lidiane M A Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| | - Mônica F Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil.
| | - Wagner E Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| | - Kahoana Postal
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Departamento de Química, Universidade Federal do Paraná, 81.531-980 Curitiba, PR, Brazil
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Ana Katharyne F F Rossiter
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| | - Valdemiro A da Silva Júnior
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| |
Collapse
|
19
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
20
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
21
|
İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2'-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chim Acta 2020; 517:120186. [PMID: 33318715 PMCID: PMC7724315 DOI: 10.1016/j.ica.2020.120186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
2,2'-Dihydroxybenzophenone-S-methyl-thiosemicarbazone and 3-methoxy-salicylaldehyde were reacted in the presence of oxovanadium(IV) or nickel(II) ions to yield the N2O2-type-chelate complex. The synthesized complexes were characterized by employing elemental analysis, electronic and infrared spectra, 1H NMR spectra, magnetic measurements, and thermogravimetric analyses. The expected structures of oxovanadium(IV) and nickel(II) complexes were confirmed by using the single-crystal X-ray diffraction method. The presence of π-π stacked dimeric structures provided stronger crystalline formations. The optimized geometries and vibrational frequencies of the compounds were obtained using the DFT/ωB97XD method with the 6-31G (d,p) basis set and compared with the experimental data. The electrochemical characterization of the oxovanadium(IV) and nickel(II) complexes were carried out by using the cyclic voltammetry (CV) method. The oxovanadium(IV) complex gives a ligand-centered oxidation and a metal-centered one electron reduction and oxidation peaks corresponding to the VIV/IIIO and VIV/VO, respectively. The nickel(II) complex gives a ligand-centered oxidation and metal-centered (NiII/I) reduction peaks in a dimethyl sulfoxide (DMSO) solution. The redox potentials were calculated in terms of Gibbs free energy change of the redox reaction at the theory level of M06-L/LANL2DZ/PCM. In addition, the energy gap, HOMO and LUMO distributions were calculated. The total antioxidant capacities of the compounds were determined by using cupric reducing antioxidant capacity (CUPRAC) method, in which the oxovanadium(IV) complex was found to be powerful as an antioxidant agent.
Collapse
Affiliation(s)
- Berat İlhan-Ceylan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320, Avcılar, Istanbul, Turkey
| |
Collapse
|
22
|
Priya B, Kumar A, Sharma N. Synthesis, characterization, and biological properties of oxidovanadium(IV) complexes of acetylsalicylhydroxamic acid ( N-acetyloxy-2-hydroxybenzamide) as potential antimicrobials. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New oxidovanadium(IV) complexes of composition [VO(AcSHA)2] 1 and [VO(acac)(AcSHA)] 2 are synthesized by reactions of VOSO4.5H2O and [VO(acac)2] with acetylsalicylhydroxamic acid AcSH2A (C6H4(OH)(CONHOCOCH3)) in a 1:2 molar ratio in absolute ethanol. The compounds are characterized by the Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, electron spin resonance, and mass spectrometry along with elemental analyses, molar conductivity, and magnetic moment measurements. The infrared spectra of the complexes suggest bonding through carbonyl and phenolic oxygen atoms (O,O coordination). The magnetic moment, electron spin resonance, and mass spectra of the complexes indicate that both exist as monomers, and a distorted square pyramidal geometry around vanadium is proposed. The thermal behavior of the complexes is studied by thermogravimetry and differential thermal analysis techniques under an N2 atmosphere, yielding VO2 as the decomposition product. The in vitro antimicrobial assays against pathogenic Gram-positive bacteria, Gram-negative bacteria, and fungi (minimum inhibitory concentration method) show the appreciable antimicrobial potential relative to the respective standard drugs, tetracycline hydrochloride, and fluconazole.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Abhishek Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Neeraj Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| |
Collapse
|
23
|
Priya B, Kumar A, Sharma N. Synthesis, Characterisation, and Biological Properties of Oxidovanadium(IV) 3,5-Dinitrosalicylhydroxamate Complexes. Aust J Chem 2020. [DOI: 10.1071/ch19486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The new oxidovanadium(iv) complexes of composition [VO(3,5(NO2)2C6H2(OH)CONHO)2] 1 and [VO(acac)(3,5(NO2)2C6H2(OH)CONHO)] 2 (where acac=(CH3COCHCOCH3)–] have been synthesised by the reactions of VOSO4·5H2O and [VO(acac)2] with potassium 3,5-dinitrosalicylhydroxamate (3,5-(NO2)2SHK) and characterised by elemental analyses, molar conductivity, magnetic moment measurements and FT-IR, UV-vis, and electron spin resonance (ESR) spectroscopies and mass spectrometry. Infrared spectra of complexes have indicated bonding through oxygen atoms of carbonyl and hydroxamic groups (O,O coordination). The magnetic moment, ESR, and mass spectra of the complexes suggested their monomeric nature, and a distorted square-pyramidal geometry around the vanadium has tentatively been proposed. The electrochemical behaviour of 1 and 2 has been studied by cyclic voltammetry. Thermal behaviour of the complexes studied by thermogravimetric and differential thermal analysis techniques has yielded VO2 as the decomposition product. The invitro antimicrobial activity of the ligand and complexes has been assayed against pathogenic bacteria and fungi by the minimum inhibitory concentration (MIC) method. The invitro antioxidant activity of the complexes has been determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging method.
Collapse
|
24
|
Biswas N, Bera S, Sepay N, Pal A, Halder T, Ray S, Acharyya S, Biswas AK, Drew MGB, Ghosh T. Simultaneous formation of non-oxidovanadium(iv) and oxidovanadium(v) complexes incorporating phenol-based hydrazone ligands in aerobic conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06114b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of non-oxidovanadium(iv) complexes incorporating multidentate hydrazone ligands were synthesized through a thermodynamically unfavourable process along with oxidovanadium(v) species.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Sachinath Bera
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Amrita Pal
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | - Tanmoy Halder
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Sudipta Ray
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Swarnali Acharyya
- Department of Pathology and Cell Biology
- Columbia University
- New York
- USA
| | - Anup Kumar Biswas
- Herbert Irving Comprehensive Cancer Centre
- Columbia University
- New York
- USA
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
25
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
26
|
Maurya MR, Jangra N, Avecilla F, Ribeiro N, Correia I. Vanadium(V) and Molybdenum(VI) Complexes Containing ONO Tridentate Schiff Bases and Their Application as Catalysts for Oxidative Bromination of Phenols. ChemistrySelect 2019. [DOI: 10.1002/slct.201903678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Nancy Jangra
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Fernando Avecilla
- Grupo XenomarCentro de Investigacións Científicas Avanzadas (CICA)Departamento de Química, Facultade de CienciasUniversidade da CoruñaCampus de A Coruña 15071 A Coruña Spain
| | - Nádia Ribeiro
- Centro de Química EstruturalDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais 1,1049–001 Lisboa Portugal
| | - Isabel Correia
- Centro de Química EstruturalDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais 1,1049–001 Lisboa Portugal
| |
Collapse
|
27
|
Syiemlieh I, Asthana M, Lal RA. Reactivity and Catalytic Activity of Homobimetallic Vanadium(V) Complex Derived from Bis(5‐chlorosalicylaldehyde)oxaloyldihydrazone Ligand. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ibanphylla Syiemlieh
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| | | | - Ram A. Lal
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| |
Collapse
|
28
|
Dario BS, Fernandes Neto F, Portes MC, Boni Fazzi R, Rodrigues da Silva D, Peterson EJ, Farrell NP, Castelli S, Desideri A, Petersen PAD, Petrilli HM, Da Costa Ferreira AM. DNA binding, cytotoxic effects and probable targets of an oxindolimine–vanadyl complex as an antitumor agent. NEW J CHEM 2019. [DOI: 10.1039/c9nj02480h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vanadyl–oxindolimine complex as an antitumor agent.
Collapse
Affiliation(s)
- Bruno Soares Dario
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Francisco Fernandes Neto
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Marcelo Cecconi Portes
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Rodrigo Boni Fazzi
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mohanty M, Maurya SK, Banerjee A, Patra SA, Maurya MR, Crochet A, Brzezinski K, Dinda R. In vitrocytotoxicity and catalytic evaluation of dioxidovanadium(v) complexes in an azohydrazone ligand environment. NEW J CHEM 2019. [DOI: 10.1039/c9nj01815h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis, characterization,in vitrocytotoxicity and catalytic potential of the dioxidovanadium(v) complexes of azohydrazones.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Shailendra K. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | | | - Mannar R. Maurya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Aurélien Crochet
- Department of Chemistry
- Fribourg Center for Nanomaterials
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | | | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
30
|
Nicolaou M, Drouza C, Keramidas AD. Controlled one pot synthesis of polyoxofluorovanadate molecular hybrids exhibiting peroxidase like activity. NEW J CHEM 2019. [DOI: 10.1039/c9nj01999e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
VV/IV mixed-valence polyoxofluorovanadate clusters have been synthesized through one pot preparation process. The trigonal bipyramidal coordinated vanadium atoms mimic the structure of the active site and activity of the vanadium peroxidases.
Collapse
Affiliation(s)
- Maria Nicolaou
- Department of Chemistry
- University of Cyprus
- Nicosia 1678
- Cyprus
| | - Chryssoula Drouza
- Cyprus University of Technology
- Department of Agricultural Production
- Biotechnology and Food Science
- Limassol 3036
- Cyprus
| | | |
Collapse
|
31
|
Sciortino G, Garribba E, Maréchal JD. Validation and Applications of Protein-Ligand Docking Approaches Improved for Metalloligands with Multiple Vacant Sites. Inorg Chem 2018; 58:294-306. [PMID: 30475597 DOI: 10.1021/acs.inorgchem.8b02374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Decoding the interaction between coordination compounds and proteins is of fundamental importance in biology, pharmacy, and medicine. In this context, protein- ligand docking represents a particularly interesting asset to predict how small compounds could interact with biomolecules, but to date, very little information is available to adapt these methodologies to metal-containing ligands. Here, we assessed the predictive capability of a metal-compatible parameter set for the docking program GOLD for metallo ligands with multiple vacant sites and different geometries. The study first presents a benchmark of 25 well-characterized X-ray metallo ligand-protein adducts. In 100% of the cases, the docking solutions are superimposable to the X-ray determination, and in 92% the value of the root-mean-square deviation between the experimental and calculated structures is lower than 1.5 Å. After the validation step, we applied these methods to five case studies for the prediction of the binding of pharmacological active metal species to proteins: (i) the anticancer copper(II) complex [CuII(Br)(2-hydroxy-1-naphthaldehyde benzoyl hydrazine)(indazole)] to human serum albumin (HSA); (ii) one of the active species of antidiabetic and antitumor vanadium compounds, VIVO2+ ion, to carboxypeptidase; (iii) the antiarthritic species [AuI(PEt3)]+ to HSA; (iv) the antitumor oxaliplatin to ubiquitin; (v) the antitumor ruthenium(II) compound RAPTA-PentaOH to cathepsin B. The calculations suggested that the binding modes are in good agreement with the partial information retrieved from spectroscopic and spectrometric analysis and allowed us, in certain cases, to propose additional hypotheses. This method is an important update in protein-metallo ligand docking, which could have a wide field of application, from biology and inorganic biochemistry to medicinal chemistry and pharmacology.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química , Universitat Autònoma de Barcelona , Cerdanyola del Vallés , Barcelona 08193 , Spain.,Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , Sassari I-07100 , Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , Sassari I-07100 , Italy
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , Cerdanyola del Vallés , Barcelona 08193 , Spain
| |
Collapse
|
32
|
Patra D, Paul S, Majumder I, Sepay N, Bera S, Kundu R, Drew MGB, Ghosh T. Exploring the effect of substituent in the hydrazone ligand of a family of μ-oxidodivanadium(v) hydrazone complexes on structure, DNA binding and anticancer activity. Dalton Trans 2018; 46:16276-16293. [PMID: 29138774 DOI: 10.1039/c7dt03585c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The reaction of 2-hydroxybenzoylhydrazine (H2bh) separately with equimolar amounts of [VIVO(aa)2] and [VIVO(ba)2] in CHCl3 afforded the complexes [VO3(HL1)2] (1) and [VO3(HL2)2] (2) respectively in good to excellent yield ((HL1)2- and (HL2)2- represent respectively the dianionic form of 2-hydroxybenzoylhydrazones of acetylacetone (H3L1) and benzoylacetone (H3L2) (general abbreviation H3L)). From X-ray structure analysis, the VV-O-VV angle was found to be ∼115° and 180° in 1 and 2 respectively. Upon one-electron reduction selectively at one V centre at an appropriate potential, each of 1 and 2 generated mixed-valence [(HL)VVO-(μ-O)-OVIV(HL)]- species 1A and 2A respectively, which showed valence delocalization at room temperature and localization at 77 K, and the VIV-O-VV bond angles were calculated to be 177.5° and 180° respectively. The intercalative mode of binding of the two complexes 1 and 2 with CT DNA has been suggested by UV-visible spectroscopy (Kb = 7.31 × 105 M-1 and 8.71 × 105 M-1 respectively for 1 and 2), fluorescence spectroscopy (Ksv = 6.85 × 105 M-1 and 8.53 × 105 M-1 respectively for 1 and 2) and circular dichroism spectroscopy. Such intercalative mode of binding of these two complexes with CT DNA and HPV DNA has also been confirmed by molecular docking study. Both complexes 1 and 2 exhibited promising anti-cancer activity against SiHa cervical cancer cells with IC50 values of 28 ± 0.5 μM and 25 ± 0.5 μM respectively for 24 h which is significantly better than that of widely used cisplatin (with IC50 value of 63.5 μM). Nuclear staining experiments reveal that these complexes kill the SiHa cells through apoptotic mode. It is interesting to note that these two complexes are non-toxic to normal T293 cell line. Complex 2 showed higher DNA binding ability with CT DNA and HPV DNA as well as better anti-cancer properties towards SiHa cervical cancer cells in comparison to complex 1, a fact which can be explained by considering the lower energy of LUMO (which favours electron transition from DNA to the metal complex) and also the higher surface area of complex 2 in comparison to complex 1 due to the presence of one extra electron-withdrawing phenyl group in the former.
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E. Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 2018. [PMID: 28640312 DOI: 10.1039/c7dt00943g] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 μM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 μM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Roy S, Böhme M, Dash SP, Mohanty M, Buchholz A, Plass W, Majumder S, Kulanthaivel S, Banerjee I, Reuter H, Kaminsky W, Dinda R. Anionic Dinuclear Oxidovanadium(IV) Complexes with Azo Functionalized Tridentate Ligands and μ-Ethoxido Bridge Leading to an Unsymmetric Twisted Arrangement: Synthesis, X-ray Structure, Magnetic Properties, and Cytotoxicity. Inorg Chem 2018; 57:5767-5781. [DOI: 10.1021/acs.inorgchem.8b00035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satabdi Roy
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016 Uttar Pradesh, India
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Subhashree P. Dash
- Department of Basic Sciences, Parala Maharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | | | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | | | | | | | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabrück, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | |
Collapse
|
35
|
Singh VK, Maurya A, Kesharwani N, Kachhap P, Kumari S, Mahato AK, Mishra VK, Haldar C. Synthesis, characterization, and catalytic oxidation of styrene, cyclohexene, allylbenzene, and cis-cyclooctene by recyclable polymer-grafted Schiff base complexes of vanadium(IV). J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1434516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vijay Kumar Singh
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Abhishek Maurya
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Neha Kesharwani
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Payal Kachhap
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Sweta Kumari
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Arun Kumar Mahato
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Vivek Kumar Mishra
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Chanchal Haldar
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
36
|
Gryca I, Czerwińska K, Machura B, Chrobok A, Shul’pina LS, Kuznetsov ML, Nesterov DS, Kozlov YN, Pombeiro AJL, Varyan IA, Shul’pin GB. High Catalytic Activity of Vanadium Complexes in Alkane Oxidations with Hydrogen Peroxide: An Effect of 8-Hydroxyquinoline Derivatives as Noninnocent Ligands. Inorg Chem 2018; 57:1824-1839. [DOI: 10.1021/acs.inorgchem.7b02684] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Izabela Gryca
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Katarzyna Czerwińska
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Lidia S. Shul’pina
- Nesmeyanov Institute
of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova, 28, 119991 Moscow, Russia
| | - Maxim L. Kuznetsov
- Centro de Química
Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Dmytro S. Nesterov
- Centro de Química
Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Yuriy N. Kozlov
- Semenov
Institute of Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina, dom 4, Moscow, Russia
- Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| | - Armando J. L. Pombeiro
- Centro de Química
Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ivetta A. Varyan
- Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| | - Georgiy B. Shul’pin
- Semenov
Institute of Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina, dom 4, Moscow, Russia
- Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
37
|
Bikas R, Shahmoradi E, Noshiranzadeh N, Emami M, Reinoso S. The effects of halogen substituents on the catalytic oxidation of benzyl-alcohols in the presence of dinuclear oxidovanadium(IV) complex. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
High cytotoxicity of vanadium(IV) complexes with 1,10-phenanthroline and related ligands is due to decomposition in cell culture medium. J Biol Inorg Chem 2017; 22:663-672. [PMID: 28374136 DOI: 10.1007/s00775-017-1453-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Cytotoxic effects of Metvan (cis-[VIVO(OSO3)(Me2phen)2], where Me2phen = 4,7-dimethyl-1,10-phenanthroline) and its analogues with 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy) ligands in cultured human lung cancer (A549) cells have been re-investigated in conjunction with reactivity of the V(IV) complexes in neutral aerated aqueous solutions and in cell culture medium. All the V(IV) complexes underwent rapid oxidation to the corresponding V(V) species (cis-[VV(O)2L2]+), followed by release of free ligands (shown by electrospray mass spectrometry). Decomposition of V(IV) complexes in cell culture medium within minutes at 310 K was confirmed by UV-Vis and EPR spectroscopies. High cytotoxicities (low μM or sub-μM IC50 range in 72 h assays) were observed for the phen and Me2phen complexes, but they were not different from that of the corresponding free ligands, which confirmed that the original V(IV) complexes played no significant role in the observed biological activities. The cytotoxicities of the ligands were most likely due to their complexation of redox-active essential metal ions, such as Cu(II) and Fe(II), in the medium, and their increased cellular uptake, leading to oxidative stress-related cell death. These results emphasize the need to assess the stability of metal-based drugs under the conditions of biological assays, particularly when biologically active ligands, such as 1,10-phenanthroline and its derivatives, are used. These ligands have high systemic toxicities in vivo and their release in the GI tract and blood makes the complexes unsuitable for use as anti-cancer drugs.
Collapse
|
39
|
Tesmar A, Wyrzykowski D, Kruszyński R, Niska K, Inkielewicz-Stępniak I, Drzeżdżon J, Jacewicz D, Chmurzyński L. Characterization and cytotoxic effect of aqua-(2,2',2''-nitrilotriacetato)-oxo-vanadium salts on human osteosarcoma cells. Biometals 2017; 30:261-275. [PMID: 28204978 PMCID: PMC5352783 DOI: 10.1007/s10534-017-0001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
The use of protonated N-heterocyclic compound, i.e. 2,2'-bipyridinium cation, [bpyH+], enabled to obtain the new nitrilotriacetate oxidovanadium(IV) salt of the stoichiometry [bpyH][VO(nta)(H2O)]H2O. The X-ray measurements have revealed that the compound comprises the discrete mononuclear [VO(nta)(H2O)]- coordination ion that can be rarely found among other known compounds containing nitrilotriacetate oxidovanadium(IV) moieties. The antitumor activity of [bpyH][VO(nta)(H2O)]H2O and its phenanthroline analogue, [phenH][VO(nta)(H2O)](H2O)0.5, towards human osteosarcoma cell lines (MG-63 and HOS) has been assessed (the LDH and BrdU tests) and referred to cis-Pt(NH3)2Cl2 (used as a positive control). The compounds exert a stronger cytotoxic effect on MG-63 and HOS cells than in untransformed human osteoblast cell line. Thus, the [VO(nta)(H2O)]- containing coordination compounds can be considered as possible antitumor agents in the osteosarcoma model of bone-related cells in culture.
Collapse
Affiliation(s)
- Aleksandra Tesmar
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Rafał Kruszyński
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924, Łódź, Poland
| | - Karolina Niska
- Department of Medical Chemistry, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | | | - Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|