1
|
Kalkowska DA, Wiesen E, Wassilak SGF, Burns CC, Pallansch MA, Badizadegan K, Thompson KM. Worst-case scenarios: Modeling uncontrolled type 2 polio transmission. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:379-389. [PMID: 37344376 PMCID: PMC10733542 DOI: 10.1111/risa.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
In May 2016, the Global Polio Eradication Initiative (GPEI) coordinated the cessation of all use of type 2 oral poliovirus vaccine (OPV2), except for emergency outbreak response. Since then, paralytic polio cases caused by type 2 vaccine-derived polioviruses now exceed 3,000 cases reported by 39 countries. In 2022 (as of April 25, 2023), 20 countries reported detection of cases and nine other countries reported environmental surveillance detection, but no reported cases. Recent development of a genetically modified novel type 2 OPV (nOPV2) may help curb the generation of neurovirulent vaccine-derived strains; its use since 2021 under Emergency Use Listing is limited to outbreak response activities. Prior modeling studies showed that the expected trajectory for global type 2 viruses does not appear headed toward eradication, even with the best possible properties of nOPV2 assuming current outbreak response performance. Continued persistence of type 2 poliovirus transmission exposes the world to the risks of potentially high-consequence events such as the importation of virus into high-transmission areas of India or Bangladesh. Building on prior polio endgame modeling and assuming current national and GPEI outbreak response performance, we show no probability of successfully eradicating type 2 polioviruses in the near term regardless of vaccine choice. We also demonstrate the possible worst-case scenarios could result in rapid expansion of paralytic cases and preclude the goal of permanently ending all cases of poliomyelitis in the foreseeable future. Avoiding such catastrophic scenarios will depend on the development of strategies that raise population immunity to type 2 polioviruses.
Collapse
Affiliation(s)
| | - Eric Wiesen
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G. F. Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A. Pallansch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
2
|
Effect of Population Partitioning on the Probability of Silent Circulation of Poliovirus. Bull Math Biol 2022; 84:62. [PMID: 35507206 DOI: 10.1007/s11538-022-01014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
Abstract
Polio can circulate unobserved in regions that are challenging to monitor. To assess the probability of silent circulation, simulation models can be used to understand transmission dynamics when detection is unreliable. Model assumptions, however, impact the estimated probability of silent circulation. Here, we examine the impact of having distinct populations, rather than a single well-mixed population, with a discrete-individual model including environmental surveillance. We show that partitioning a well-mixed population into networks of distinct communities may result in a higher probability of silent circulation as a result of the time it takes for the detection of a circulation event. Population structure should be considered when assessing polio control in a region with many loosely interacting communities.
Collapse
|
3
|
Thompson KM. Modeling and Managing Poliovirus Risks: We are Where we are…. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:223-228. [PMID: 33590520 PMCID: PMC7894995 DOI: 10.1111/risa.13668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/28/2020] [Indexed: 05/07/2023]
Abstract
This introduction for the third special issue on modeling poliovirus risks provides context for the current status of global polio eradication efforts and gives an overview of the individual papers included in the issue. Although risk analysis continues to support the Global Polio Eradication Initiative (GPEI), efforts to finish the job remained off track at the beginning of 2020 and prior to the COVID-19 pandemic, as discussed in the special issue. The disruptions associated with COVID-19 occurring now will inevitably change the polio eradication trajectory, and future studies will need to characterize the impacts of these disruptions on the polio endgame.
Collapse
|
4
|
Kalkowska DA, Franka R, Higgins J, Kovacs SD, Forbi JC, Wassilak SG, Pallansch MA, Thompson KM. Modeling Poliovirus Transmission in Borno and Yobe, Northeast Nigeria. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:289-302. [PMID: 32348621 PMCID: PMC7814397 DOI: 10.1111/risa.13485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Beginning in 2013, multiple local government areas (LGAs) in Borno and Yobe in northeast Nigeria and other parts of the Lake Chad basin experienced a violent insurgency that resulted in substantial numbers of isolated and displaced people. Northeast Nigeria represents the last known reservoir country of wild poliovirus (WPV) transmission in Africa, with detection of paralytic cases caused by serotype 1 WPV in 2016 in Borno and serotype 3 WPV in late 2012. Parts of Borno and Yobe are also problematic areas for transmission of serotype 2 circulating vaccine-derived polioviruses, and they continue to face challenges associated with conflict and inadequate health services in security-compromised areas that limit both immunization and surveillance activities. We model poliovirus transmission of all three serotypes for Borno and Yobe using a deterministic differential equation-based model that includes four subpopulations to account for limitations in access to immunization services and dynamic restrictions in population mixing. We find that accessibility issues and insufficient immunization allow for prolonged poliovirus transmission and potential undetected paralytic cases, although as of the end of 2019, including responsive program activities in the modeling suggest die out of indigenous serotypes 1 and 3 WPVs prior to 2020. Specifically, recent and current efforts to access isolated populations and provide oral poliovirus vaccine continue to reduce the risks of sustained and undetected transmission, although some uncertainty remains. Continued improvement in immunization and surveillance in the isolated subpopulations should minimize these risks. Stochastic modeling can build on this analysis to characterize the implications for undetected transmission and confidence about no circulation.
Collapse
Affiliation(s)
| | - Richard Franka
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeff Higgins
- Geospatial Research, Analysis and Services Program, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Stephanie D. Kovacs
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph C. Forbi
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven G.F Wassilak
- Global Immunization Division, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A. Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kimberly M. Thompson
- Kid Risk, Inc., 7512 Dr. Phillips Blvd. #50-523 Orlando, FL 32819
- Corresponding author:
| |
Collapse
|
5
|
Thompson KM, Kalkowska DA. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev Vaccines 2020; 19:661-686. [PMID: 32741232 PMCID: PMC7497282 DOI: 10.1080/14760584.2020.1791093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Over the last 20 years (2000-2019) the partners of the Global Polio Eradication Initiative (GPEI) invested in the development and application of mathematical models of poliovirus transmission as well as economics, policy, and risk analyses of polio endgame risk management options, including policies related to poliovirus vaccine use during the polio endgame. AREAS COVERED This review provides a historical record of the polio studies published by the three modeling groups that primarily performed the bulk of this work. This review also systematically evaluates the polio transmission and health economic modeling papers published in English in peer-reviewed journals from 2000 to 2019, highlights differences in approaches and methods, shows the geographic coverage of the transmission modeling performed, identified common themes, and discusses instances of similar or conflicting insights or recommendations. EXPERT OPINION Polio modeling performed during the last 20 years substantially impacted polio vaccine choices, immunization policies, and the polio eradication pathway. As the polio endgame continues, national preferences for polio vaccine formulations and immunization strategies will likely continue to change. Future modeling will likely provide important insights about their cost-effectiveness and their relative benefits with respect to controlling polio and potentially achieving and maintaining eradication.
Collapse
|
6
|
Vallejo C, Pearson CA, Koopman J, Hladish TJ. Evaluating the probability of silent circulation of polio in small populations using the silent circulation statistic. Infect Dis Model 2019; 4:239-250. [PMID: 31312777 PMCID: PMC6606837 DOI: 10.1016/j.idm.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/03/2022] Open
Abstract
As polio-endemic countries move towards elimination, infrequent first infections and incomplete surveillance make it difficult to determine when the virus has been eliminated from the population. Eichner and Dietz [American Journal of Epidemiology, 143, 8 (1996)] proposed a model to estimate the probability of silent polio circulation depending upon when the last paralytic case was detected. Using the same kind of stochastic model they did, we additionally model waning polio immunity in the context of isolated, small, and unvaccinated populations. We compare using the Eichner and Dietz assumption of an initial case at the start of the simulation to a more accurate determination that observes the first case. The former estimates a higher probability of silent circulation in small populations, but this effect diminishes with increasing model population. We also show that stopping the simulation after a specific time estimates a lower probability of silent circulation than when all replicates are run to extinction, though this has limited impact on small populations. Our extensions to the Eichner and Dietz work improve the basis for decisions concerning the probability of silent circulation. Further model realism will be needed for accurate silent circulation risk assessment.
Collapse
Affiliation(s)
- Celeste Vallejo
- Mathematical Biosciences Institute, The Ohio State University, Jennings Hall 3rd Floor, 1735 Neil Ave., Columbus, OH 43210, United States
| | - Carl A.B. Pearson
- Department of Infectious Disease Epidemiology & Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, United Kingdom
- South African Centre for Epidemiological Modeling and Analysis, Stellenbosch University, South Africa
- Very Good Research & Development, LLC, United States
| | - James Koopman
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Thomas J. Hladish
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL 32610, United States
- Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL 32611, United States
| |
Collapse
|
7
|
Duintjer Tebbens RJ, Kalkowska DA, Thompson KM. Global certification of wild poliovirus eradication: insights from modelling hard-to-reach subpopulations and confidence about the absence of transmission. BMJ Open 2019; 9:e023938. [PMID: 30647038 PMCID: PMC6340450 DOI: 10.1136/bmjopen-2018-023938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the extent to which undervaccinated subpopulations may influence the confidence about no circulation of wild poliovirus (WPV) after the last detected case. DESIGN AND PARTICIPANTS We used a hypothetical model to examine the extent to which the existence of an undervaccinated subpopulation influences the confidence about no WPV circulation after the last detected case as a function of different characteristics of the subpopulation (eg, size, extent of isolation). We also used the hypothetical population model to inform the bounds on the maximum possible time required to reach high confidence about no circulation in a completely isolated and unvaccinated subpopulation starting either at the endemic equilibrium or with a single infection in an entirely susceptible population. RESULTS It may take over 3 years to reach 95% confidence about no circulation for this hypothetical population despite high surveillance sensitivity and high vaccination coverage in the surrounding general population if: (1) ability to detect cases in the undervaccinated subpopulation remains exceedingly small, (2) the undervaccinated subpopulation remains small and highly isolated from the general population and (3) the coverage in the undervaccinated subpopulation remains very close to the minimum needed to eradicate. Fully-isolated hypothetical populations of 4000 people or less cannot sustain endemic transmission for more than 5 years, with at least 20 000 people required for a 50% chance of at least 5 years of sustained transmission in a population without seasonality that starts at the endemic equilibrium. Notably, however, the population size required for persistent transmission increases significantly for realistic populations that include some vaccination and seasonality and/or that do not begin at the endemic equilibrium. CONCLUSIONS Significant trade-offs remain inherent in global polio certification decisions, which underscore the need for making and valuing investments to maximise population immunity and surveillance quality in all remaining possible WPV reservoirs.
Collapse
|