1
|
Wild A, Shortall C, Dewachi O, Naim C, Green A, Hussain S, Abbara A. Conflict-associated wounds and burns infected with GLASS pathogens in the Eastern Mediterranean Region: A systematic review. BMC Infect Dis 2025; 25:187. [PMID: 39920648 PMCID: PMC11806698 DOI: 10.1186/s12879-025-10569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND While the relationship between conflict-associated injuries and antimicrobial resistance is increasingly being elucidated, data concerning civilian casualties is sparse. This systematic review assesses literature focused on Global Antimicrobial Resistance Surveillance System (GLASS) Priority Pathogens causing infections in civilian wounds and burns in conflict-affected countries within the World Health Organisation's Eastern Mediterranean Region Office (EMRO). METHODS A systematic literature review was conducted following Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Five databases and grey literature were searched, identifying studies published from January 2010 to June 2024. Search terms included "wounds", "burns," "antimicrobial resistance", and the twelve countries of interest. Included studies reported resistance of GLASS pathogens. Two reviewers used Covidence to assess papers for inclusion. Data were extracted into a spreadsheet for analysis. Where quantitative data were available, medians, interquartile ranges and percentages were calculated by pathogen and country. RESULTS 621 records were identified; 19 studies met inclusion criteria. Nine of the papers were from Iraq, three from Libya, three from Lebanon, one each from Yemen and Gaza; two reported on conflict affected refugees in Jordan. A total of 1,942 distinct microbiological isolates were reported, representing all four critical and high priority GLASS pathogen categories. Among the isolates, Staphylococcus aureus was the most prevalent (36.3%). Median resistances identified: Methicillin resistant Staphylococcus aureus (n = 680): 55.6% (IQR:49.65-90.3%); carbapenem resistant Pseudomonas aeruginosa (n = 372): 22.14% (7.43-52.22%); carbapenem resistant Acinetobacter baumannii (n = 366): 60.3% (32.1-85%); carbapenem resistant Klebsiella pneumoniae (n = 75): 12.65% (9.73-34.25%); ceftriaxone resistant Escherichia coli (n = 63): 76% (69-84.65%); ceftriaxone resistant Klebsiella pneumoniae (n = 40): 81.45% (76.73-86.18%). Only three studies had a low risk of bias. DISCUSSION Findings imply high rates of GLASS priority pathogens among wounded civilians in conflict-affected EMRO countries. However, evidence was heterogeneous, low quality and sparse in certain countries, highlighting the necessity of effective surveillance including standardised data collection. Improving primary data will facilitate the production of large, high-quality studies throughout the EMRO, including under-represented countries. CONCLUSION Laboratory diagnostic capacity building and improved surveillance in conflict-affected settings in the Eastern Mediterranean Region are required to assess the burden of GLASS priority pathogens in vulnerable non-combatant populations.
Collapse
Affiliation(s)
- Amelia Wild
- Department of Medicine, Imperial College, London, UK
| | - Clare Shortall
- Médecins Sans Frontiers, Operational Centre Amsterdam, Amsterdam, the Netherlands
| | - Omar Dewachi
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
| | - Carine Naim
- Médecins Sans Frontières, Operational Centre Brussels, Middle-East Medical Unit, Beirut, Lebanon
| | - Alex Green
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Hussain
- Department of Medicine, Imperial College, London, UK
| | - Aula Abbara
- Department of Medicine, Imperial College, London, UK.
- Department of Infection, Imperial College London. St Mary's Hospital, Praed Street, London, W2 1NY, UK.
| |
Collapse
|
2
|
Granata G, Cicalini S, Petrosillo N. The Battle beyond the Battlefield: War's Influence on Antibiotic Resistance. Infect Dis Rep 2024; 16:977-980. [PMID: 39452162 PMCID: PMC11508144 DOI: 10.3390/idr16050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
In July 2024, poliovirus was identified in Gaza, prompting the World Health Organization (WHO) to issue a warning regarding the potential for polio to spread in the region [...].
Collapse
Affiliation(s)
- Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Roma, Italy
| | - Stefania Cicalini
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Roma, Italy
| | - Nicola Petrosillo
- Infection Prevention & Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00127 Rome, Italy
| |
Collapse
|
3
|
Jeffreys S, Tompkins MP, Aki J, Papp SB, Chambers JP, Guentzel MN, Hung CY, Yu JJ, Arulanandam BP. Development and Evaluation of an Immunoinformatics-Based Multi-Peptide Vaccine against Acinetobacter baumannii Infection. Vaccines (Basel) 2024; 12:358. [PMID: 38675740 PMCID: PMC11054912 DOI: 10.3390/vaccines12040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-drug-resistant (MDR) Acinetobacter baumannii is an opportunistic pathogen associated with hospital-acquired infections. Due to its environmental persistence, virulence, and limited treatment options, this organism causes both increased patient mortality and incurred healthcare costs. Thus, prophylactic vaccination could be ideal for intervention against MDR Acinetobacter infection in susceptible populations. In this study, we employed immunoinformatics to identify peptides containing both putative B- and T-cell epitopes from proteins associated with A. baumannii pathogenesis. A novel Acinetobacter Multi-Epitope Vaccine (AMEV2) was constructed using an A. baumannii thioredoxin A (TrxA) leading protein sequence followed by five identified peptide antigens. Antisera from A. baumannii infected mice demonstrated reactivity to rAMEV2, and subcutaneous immunization of mice with rAMEV2 produced high antibody titer against the construct as well as peptide components. Immunization results in increased frequency of IL-4-secreting splenocytes indicative of a Th2 response. AMEV2-immunized mice were protected against intranasal challenge with a hypervirulent strain of A. baumannii and demonstrated reduced bacterial burden at 48 h. In contrast, all mock vaccinated mice succumbed to infection within 3 days. Results presented here provide insight into the effectiveness of immunoinformatic-based vaccine design and its potential as an effective strategy to combat the rise of MDR pathogens.
Collapse
Affiliation(s)
- Sean Jeffreys
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Megan P. Tompkins
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jadelynn Aki
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Sara B. Papp
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - James P. Chambers
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - M. Neal Guentzel
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Bernard P. Arulanandam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
4
|
Pallett SJC, Boyd SE, O'Shea MK, Martin J, Jenkins DR, Hutley EJ. The contribution of human conflict to the development of antimicrobial resistance. COMMUNICATIONS MEDICINE 2023; 3:153. [PMID: 37880348 PMCID: PMC10600243 DOI: 10.1038/s43856-023-00386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Pallet et al. discuss the impact of human conflict on development of antimicrobial resistance. They overview approaches to limit the spread of antimicrobial resistance, using the ongoing conflict in Ukraine as an example of the challenges and opportunities.
Collapse
Affiliation(s)
- Scott J C Pallett
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK.
| | - Sara E Boyd
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Matthew K O'Shea
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - Jessica Martin
- Department of Clinical Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, LS1 3EX, UK
| | - David R Jenkins
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, LE1 5WW, UK
| | - Emma J Hutley
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
5
|
Jeffreys S, Chambers JP, Yu JJ, Hung CY, Forsthuber T, Arulanandam BP. Insights into Acinetobacter baumannii protective immunity. Front Immunol 2022; 13:1070424. [PMID: 36466845 PMCID: PMC9716351 DOI: 10.3389/fimmu.2022.1070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is a nosocomic opportunistic Gram-negative bacteria known for its extensive drug-resistant phenotype. A. baumannii hospital-acquired infections are major contributors to increased costs and mortality observed during the COVID-19 pandemic. With few effective antimicrobials available for treatment of this pathogen, immune-based therapy becomes an attractive strategy to combat multi-drug resistant Acinetobacter infection. Immunotherapeutics is a field of growing interest with advances in vaccines and monoclonal antibodies providing insight into the protective immune response required to successfully combat this pathogen. This review focuses on current knowledge describing the adaptive immune response to A. baumannii, the importance of antibody-mediated protection, developments in cell-mediated protection, and their respective therapeutic application going forward. With A. baumannii’s increasing resistance to most current antimicrobials, elucidating an effective host adaptive immune response is paramount in the guidance of future immunotherapeutic development.
Collapse
Affiliation(s)
- Sean Jeffreys
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Thomas Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Bernard P. Arulanandam,
| |
Collapse
|
6
|
Bhattacharjee B, Mukherjee R, Haldar J. Biocompatible Hemostatic Sponge Exhibiting Broad-Spectrum Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:3596-3607. [PMID: 35802178 DOI: 10.1021/acsbiomaterials.2c00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemorrhage during accidents or surgery is a significant challenge that can contribute to mortality. This is further aggravated due to bacterial infections at the injured site. Therefore, rapid application of a hemostatic and antibacterial material is highly necessary as a pretreatment for patients' survival. Herein, we have developed a hemostatic sponge (Hemobac) through amide crosslinking of gelatin and an N-(2-hydroxy) propyl-3-trimethylammonium chitosan (HTCC)-silver chloride nanocomposite (QAm1-Ag0.1) to mitigate bacterial infections, while aiding hemostasis. This Hemobac sponge completely eradicated (∼4-5 log) a wide range of Gram-positive and Gram-negative bacteria encompassing various clinical isolates within 6 h. The antihemorrhagic ability of Hemobac was ascertained through SEM images, which exhibited the presence of agglomerated blood cells onto the sponge with a significantly low blood-clotting index value (∼23 ± 1). Notably, Hemobac reduced the blood loss by ∼70-80% in the liver puncture model and femoral vein injury model in mice, displaying its improved hemostatic ability over a marketed gelatin-based sponge. Negligible hemolytic activity (∼6%) and retained healthy morphology of mammalian cells were observed upon exposure to the Hemobac sponge. Minimal immune response was noticed at the Hemobac-treated wound in mice through histopathology analysis. Collectively, these findings indicate that this biocompatible Hemobac sponge can stop the bleeding instantaneously and combat bacterial infections.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
7
|
Tribble DR, Spott MA, Shackleford SA, Gurney JM, Murray BCK. Department of Defense Trauma Registry Infectious Disease Module Impact on Clinical Practice. Mil Med 2022; 187:7-16. [PMID: 35512379 DOI: 10.1093/milmed/usac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Joint Trauma System (JTS) is a DoD Center of Excellence for Military Health System trauma care delivery and the DoD's reference body for trauma care in accordance with National Defense Authorization Act for Fiscal Year 2017. Through the JTS, evidence-based clinical practice guidelines (CPGs) have been developed and subsequently refined to standardize and improve combat casualty care. Data are amassed through a single, centralized DoD Trauma Registry to support process improvement measures with specialty modules established as the registry evolved. Herein, we review the implementation of the JTS DoD Trauma Registry specialty Infectious Disease Module and the development of infection-related CPGs and summarize published findings on the subsequent impact of the Infectious Disease Module on combat casualty care clinical practice and guidelines. METHODS The DoD Trauma Registry Infectious Disease Module was developed in collaboration with the Infectious Disease Clinical Research Program (IDCRP) Trauma Infectious Disease Outcomes Study (TIDOS). Infection-related information (e.g., syndromes, antibiotic management, and microbiology) were collected from military personnel wounded during deployment June 1, 2009 through December 31, 2014 and medevac'd to Landstuhl Regional Medical Center in Germany before transitioning to participating military hospitals in the USA. RESULTS To support process improvements and reduce variation in practice patterns, data collected through the Infectious Disease Module have been utilized in TIDOS analyses focused on assessing compliance with post-trauma antibiotic prophylaxis recommendations detailed in JTS CPGs. Analyses examined compliance over three time periods: 6 months, one-year, and 5 years. The five-year analysis demonstrated significantly improved adherence to recommendations following the dissemination of the 2011 JTS CPG, particularly with open fractures (34% compliance compared to 73% in 2013-2014). Due to conflicting recommendations regarding use of expanded Gram-negative coverage with open fractures, infectious outcomes among patients with open fractures who received cefazolin or expanded Gram-negative coverage (cefazolin plus fluoroquinolones and/or aminoglycosides) were also examined in a TIDOS analysis. The lack of a difference in the proportion of osteomyelitis (8% in both groups) and the significantly greater recovery of Gram-negative organisms resistant to aminoglycosides or fluoroquinolones among patients who received expanded Gram-negative coverage supported JTS recommendations regarding the use of cefazolin with open fractures. Following recognition of the outbreak of invasive fungal wound infections (IFIs) among blast casualties injured in Afghanistan, the ID Module was refined to capture data (e.g., fungal culture and histopathology findings, wound necrosis, and antifungal management) needed for the TIDOS team to lead the DoD outbreak investigation. These data captured through the Infectious Disease Module provided support for the development of a JTS CPG for the prevention and management of IFIs, which was later refined based on subsequent TIDOS IFI analyses. CONCLUSIONS To improve combat casualty care outcomes and mitigate high-consequence infections in future conflicts, particularly in the event of prolonged field care, expansion, refinement, and a mechanism for sustainability of the DoD Trauma Registry Infectious Disease Module is needed to include real-time surveillance of infectious disease trends and outcomes.
Collapse
Affiliation(s)
- David R Tribble
- Infectious Disease Clinical Research Program, Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mary Ann Spott
- Joint Trauma System, JBSA Fort Sam Houston, TX 78234, USA
| | | | | | | |
Collapse
|
8
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Higgins PG, Kniel M, Rojak S, Balczun C, Rohde H, Frickmann H, Hagen RM. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Strains Isolated at the German Military Field Laboratory in Mazar-e Sharif, Afghanistan. Microorganisms 2021; 9:microorganisms9112229. [PMID: 34835355 PMCID: PMC8622437 DOI: 10.3390/microorganisms9112229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022] Open
Abstract
The study was performed to provide an overview of the molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in Afghanistan isolated by the German military medical service during the Afghanistan conflict. A total of 18 isolates were collected between 2012 and 2018 at the microbiological laboratory of the field hospital in Camp Marmal near Mazar-e Sharif, Afghanistan, from Afghan patients. The isolates were subjected to phenotypic and genotypic differentiation and antimicrobial susceptibility testing as well as to a core genome multi-locus sequence typing (cgMLST) approach based on whole-genome next-generation sequence (wgNGS) data. Next to several sporadic isolates, four transmission clusters comprising strains from the international clonal lineages IC1, IC2, and IC9 were identified. Acquired carbapenem resistance was due to blaOXA-23 in 17/18 isolates, while genes mediating resistance against sulfonamides, macrolides, tetracyclines, and aminoglycosides were frequently identified as well. In conclusion, the assessment confirmed both the frequent occurrence of A. baumannii associated with outbreak events and a variety of different clones in Afghanistan. The fact that acquired carbapenem resistance was almost exclusively associated with blaOXA-23 may facilitate molecular resistance screening based on rapid molecular assays targeting this resistance determinant.
Collapse
Affiliation(s)
- Paul G. Higgins
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50935 Cologne, Germany
| | - Meret Kniel
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
| | - Sandra Rojak
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
| | - Carsten Balczun
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (M.K.); (S.R.); (C.B.)
- Correspondence: ; Tel.: +49-261-896-77200
| |
Collapse
|
10
|
Deering RW, Whalen KE, Alvarez I, Daffinee K, Beganovic M, LaPlante KL, Kishore S, Zhao S, Cezairliyan B, Yu S, Rosario M, Mincer TJ, Rowley DC. Identification of a bacteria-produced benzisoxazole with antibiotic activity against multi-drug resistant Acinetobacter baumannii. J Antibiot (Tokyo) 2021; 74:370-380. [PMID: 33580212 PMCID: PMC7879144 DOI: 10.1038/s41429-021-00412-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml-1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole's antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.
Collapse
Affiliation(s)
- Robert W Deering
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | - Ivan Alvarez
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Kathryn Daffinee
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Maya Beganovic
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Kerry L LaPlante
- Department of Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Shreya Kishore
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Sijing Zhao
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Shen Yu
- Octagon Therapeutics, Inc., Cambridge, MA, USA
| | - Margaret Rosario
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Tracy J Mincer
- Wilkes Honors College and Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, USA.
| | - David C Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
11
|
Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates from Northern Africa and the Middle East. Antibiotics (Basel) 2021; 10:antibiotics10030291. [PMID: 33799540 PMCID: PMC8002098 DOI: 10.3390/antibiotics10030291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
At the Bundeswehr Hospitals of Hamburg and Westerstede, patients repatriated from subtropical war and crisis zones of Northern Africa and the Middle East were medically treated, including microbiological assessment. Within a six-year interval, 16 Acinetobacter spp. strains, including 14 Acinetobacter baumannii (Ab) isolates with resistance against carbapenems and origins in Afghanistan (n = 4), Iraq (n = 2), Libya (n = 2), and Syria (n = 8) were collected. While clonal relationships of Libyan and Syrian strains had been assessed by superficial next generation sequencing (NGS) and “DiversiLab” repetitive elements sequence-based (rep-)PCR so far, this study provides core genome-based sequence typing and thus more detailed epidemiological information. In detail, sequencing allowed a definitive species identification and comparison with international outbreak-associated Ab strains by core genome multi locus sequence typing (cgMLST) and the identification of MLST lineages, as well as the identification of known resistance genes. The sequence analysis allowed for the confirmation of outbreak-associated clonal clusters among the Syrian and Afghan Ab isolates, indicating likely transmission events. The identified acquired carbapenem resistance genes comprised blaOXA-23, blaOXA-58, blaNDM-1, and blaGES-11, next to other intrinsic and acquired, partly mobile resistance-associated genes. Eleven out of 14 Ab isolates clustered with the previously described international clonal lineages IC1 (4 Afghan strains), IC2 (6 Syrian strains), and IC7 (1 Syrian strain). Identified Pasteur sequence types of the 14 Ab strains comprised ST2 (Syrian), ST25 (Libyan), ST32 (Iraqi), ST81 (Afghan), ST85 (Libyan), and ST1112 (Syrian), respectively. In conclusion, the study revealed a broad spectrum of resistance genes in Ab isolated from war-injured patients from Northern Africa and the Middle East, thereby broadening the scarcely available data on locally abundant clonal lineages and resistance mechanisms.
Collapse
|
12
|
Truppa C, Abo-Shehada MN. Antimicrobial resistance among GLASS pathogens in conflict and non-conflict affected settings in the Middle East: a systematic review. BMC Infect Dis 2020; 20:936. [PMID: 33297983 PMCID: PMC7724697 DOI: 10.1186/s12879-020-05503-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In spite of the evident general negative effects of armed conflict on countries' health systems and populations' health outcomes, little is known about similar impacts of conflicts on the spread of antimicrobial resistances (AMR). This review was to address this evidence gap and describe: 1. Patterns of AMR in the Middle East (ME) and resistance profiles of pathogens included in the Global AMR Surveillance System (GLASS) supported by the World Health Organization; 2. Differences in proportions of AMR isolates between conflict and non-conflict countries. METHODS A systematic literature review was conducted following PRISMA guidelines and searching five electronic databases. Subject heading and free text were searched for "antimicrobial resistances" and "Middle East", to identify observational studies on AMR published from January 2011 to June 2018. Data were extracted from included articles on a predefined set of variables. Percentages of AMR were analysed as median and interquartile ranges. Risk of bias was assessed using the Newcastle-Ottawa Scale. RESULTS A total of 132 articles met the inclusion criteria. Included studies showed heterogeneity in study design, laboratory methods and standards for interpretation of results, and an overall high risk of bias. Main findings were the following: 1. High proportions of carbapenem resistance in Acinetobacter spp. (median 74.2%), and both carbapenem resistance (median 8.1 and 15.4% for E. coli and K. pneumoniae respectively) and ESBL-production (median 32.3 and 27.9% for E. coli and K. pneumoniae respectively) amongst Enterobacteriaceae. S. aureus isolates showed a median methicillin resistance percentage of 45.1%, while vancomycin resistance was almost absent. A median of 50% of the strains of S. pneumoniae showed non-susceptibility to penicillin. 2. Similar trends were observed in conflict and non-conflict affected countries. CONCLUSIONS There is a lack of standardization in the methodological approach to AMR research in the Middle East. The proportion of antibiotic resistances among specific GLASS pathogens is high, particularly among Acinetobacter spp.
Collapse
Affiliation(s)
- Claudia Truppa
- International Committee of the Red Cross, Geneva, Switzerland
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Mahmoud N. Abo-Shehada
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, University of London, London, UK
| |
Collapse
|
13
|
Davis SI, Biswas JS, White S. Infection Prevention and Control Lead Link Practitioner: a new deployed role piloted on Exercise SAIF SAREEA 3. BMJ Mil Health 2020; 166:411-413. [PMID: 33293376 DOI: 10.1136/bmjmilitary-2020-001703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 11/03/2022]
Abstract
Disease non-battle injury has plagued British expeditionary forces through the ages. While in recent years significant mortality has reduced, it has had a large impact on operational effectiveness, at times leading to closure of major medical treatment facilities (MTFs).Infection Prevention and Control (IPC) benefits from a subject matter expert and champion to ensure it remains at the front of people's minds and to be on hand to manage acute and dynamic situations. To mitigate the lack of an IPC Nursing Officer, we piloted a deployed military IPC Lead Link Practitioner (IPC-LL) for the first time on a large-scale overseas exercise (SAIF SAREEA 3). An experienced generalist nurse deploying as the IPC-LL (after specific training) provided pre-deployment IPC education and preparation, deployed IPC advice, undertook mandatory audits and monitored IPC compliance throughout the MTFs on the exercise. Data from 22 IPC audits conducted on the exercise showed that the presence of the IPC-LL improved IPC compliance and standards overall in the MTF where based, compared with others. In addition, a gastroenteritis outbreak occurred and was successfully managed with significant input from the IPC-LL. The IPC-LL was also able to add value by pre-empting potential IPC problems from occurring.There is a small pool of deployable Infection Prevention and Control Nursing Officers, so this new IPC-LL role could help to fill the capability gap. The IPC-LL could be the dedicated person focusing on IPC elements, reducing the IPC risk within the deployed field hospital setting where deployed experts are not available.
Collapse
Affiliation(s)
- Siobhan I Davis
- Infection Prevention and Control, Frimley Park Hospital NHS Foundation Trust, Frimley, UK
| | - J S Biswas
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK.,Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - S White
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Kim HR, An S, Hwang J. Aerosol-to-Hydrosol Sampling and Simultaneous Enrichment of Airborne Bacteria For Rapid Biosensing. ACS Sens 2020; 5:2763-2771. [PMID: 32493010 DOI: 10.1021/acssensors.0c00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid monitoring of biological particulate matter (Bio-PM, bioaerosols) requires an enrichment technique for concentrating the Bio-PM dispersed in the air into a small volume of liquid. In this study, an electrostatic air sampler is employed to capture aerosolized test bacteria in a carrier liquid (aerosol-to-hydrosol (ATH) enrichment). Simultaneously, the captured bacteria are carried into a fluid channel for hydrosol-to-hydrosol (HTH) enrichment with Concanavalin A coated magnetic particles (CMPs). The ATH enrichment capacity of the air sampler was evaluated with an aerosol particle counter for the following test bacteria: Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Acinetobacter baumannii. Then, the HTH enrichment capacity for the ATH-collected sample was evaluated using the colony-counting method, scanning electron microscopy based image analysis, fluorescence microscopy, electrical current measurements, and real-time quantitative polymerase chain reaction (qPCR). The ATH and HTH enrichment capacities for the given operation conditions were up to 80 000 and 14.9, respectively, resulting in a total enrichment capacity of up to 1.192 × 106. Given that air-to-liquid enrichment required to prepare detectable bacterial samples for real-time qPCR in field environments is of the order of at least 106, our method can be used to prepare a detectable sample from low-concentration airborne bacteria in the field and significantly reduce the time required for Bio-PM monitoring because of its enrichment capacity.
Collapse
Affiliation(s)
- Hyeong Rae Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sanggwon An
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Higgins PG, Hagen RM, Podbielski A, Frickmann H, Warnke P. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolated from War-Injured Patients from the Eastern Ukraine. Antibiotics (Basel) 2020; 9:antibiotics9090579. [PMID: 32899463 PMCID: PMC7558915 DOI: 10.3390/antibiotics9090579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
Recently, a total of 32 carbapenem- and fluoroquinolone-resistant Acinetobacter baumannii (Ab) isolates was isolated from war-injured patients who were treated at German Bundeswehr Hospitals, and preliminarily typed by “DiversiLab” repetitive elements sequence-based (rep-) PCR. Core genome-based sequence typing was also used to provide more detailed epidemiological information. From the clusters observed by rep-PCR, selected Ab strains were subjected to Next Generation Sequencing (NGS) in order to compare them with international outbreak-associated Ab strains and to identify MLST (multi-locus sequence type) lineages, as well as to identify known resistance genes. Accordingly, NGS indicated higher diversity than rep-PCR, but also confirmed likely transmission events. The identified acquired carbapenem-resistant genes comprised blaOXA-23, blaOXA-72 and blaGES-12, as well as various other intrinsic and acquired resistance-associated genetic elements. All isolates clustered with the previously identified international clonal lineages IC1, IC2, IC6 and IC7, with corresponding Pasteur sequence types ST1, ST2, ST78 and ST25, respectively. In conclusion, the assessment confirmed a broad spectrum of resistance-associated genes in Ab isolated from war-injured patients from the Eastern Ukraine, and provided the first insights into locally abundant clonal lineages.
Collapse
Affiliation(s)
- Paul G. Higgins
- Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 50935 Cologne, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (H.F.); (P.W.)
- Correspondence: ; Tel.: +49-381-494-5901
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (H.F.); (P.W.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (H.F.); (P.W.)
| |
Collapse
|
16
|
Liu W, Wu Z, Mao C, Guo G, Zeng Z, Fei Y, Wan S, Peng J, Wu J. Antimicrobial Peptide Cec4 Eradicates the Bacteria of Clinical Carbapenem-Resistant Acinetobacter baumannii Biofilm. Front Microbiol 2020; 11:1532. [PMID: 32849322 PMCID: PMC7431629 DOI: 10.3389/fmicb.2020.01532] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
The drug resistance rate of Acinetobacter baumannii increases year on year, and the drugs available for the treatment of carbapenem-resistant A. baumannii (CRAB) infection are extremely limited. A. baumannii, which forms biofilms, protects itself by secreting substrates such as exopolysaccharides, allowing it to survive under adverse conditions and increasing drug resistance. Antimicrobial peptides are small molecular peptides with broad-spectrum antibacterial activity and immunomodulatory function. Previous studies have shown that the antimicrobial peptide Cec4 has a strong effect on A. baumannii, but the antibacterial and biofilm inhibition of this antimicrobial peptide on clinical carbapenem resistance A. baumannii is not thoroughly understood. In this study, it was indicated that most of the 200 strains of CRAB were susceptible to Cec4 with a MIC of 4 μg/ml. Cec4 has a strong inhibitory and eradication effect on the CRAB biofilm; the minimum biofilm inhibition concentration (MBIC) was 64–128 μg/ml, and the minimum biofilm eradication concentration (MBEC) was 256–512 μg/ml. It was observed that Cec4 disrupted the structure of the biofilm using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). A comparative transcriptome analysis of the effects of the antimicrobial peptide Cec4 on CRAB biofilm, identified 185 differentially expressed genes, including membrane proteins, bacterial resistance genes, and pilus-related genes. The results show that multiple metabolic pathways, two-component regulation systems, quorum sensing, and antibiotic synthesis-related pathways in A. baumannii biofilms were affected after Cec4 treatment. In conclusion, Cec4 may represent a new choice for the prevention and treatment of clinical infections, and may also provide a theoretical basis for the development of antimicrobial peptide drugs.
Collapse
Affiliation(s)
- Weiwei Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhaoying Wu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chengju Mao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ying Fei
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Wan
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Jianwei Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Nawfal Dagher T, Al-Bayssari C, Diene SM, Azar E, Rolain JM. Bacterial infection during wars, conflicts and post-natural disasters in Asia and the Middle East: a narrative review. Expert Rev Anti Infect Ther 2020; 18:511-529. [PMID: 32267179 DOI: 10.1080/14787210.2020.1750952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Bacterial infections resulting from wars and natural disasters represent a major public health problem. Over the past 50 years, Asia and the Middle East have suffered several wars. Moreover, East-Asian countries are considered the most natural disaster-prone countries in the world.Areas covered: This review focuses on bacterial infection occurring during wars and after natural disasters, among refugees, wounded citizens and soldiers as well as the prevention and control measures that must be taken.Expert opinion: During wars, refugees and soldiers represent the two main sources of bacterial infections. Refugees coming from countries with a high prevalence of antimicrobial resistance can spread these pathogens to their final destination. In addition, these refugees living in inadequate shelters can contribute to the spread of bacterial infections. Moreover, some factors including the presence of fixed imported fragments; environmental contamination and nosocomial transmissions, play a key role in the dissemination of bacteria among soldiers. As for natural disasters, several factors are associated with increased bacterial transmissions such as the displacement of large numbers of people into over-crowded shelters, high exposure to disease vectors, lack of water and sanitation. Here, we carry out a systematic review of the bacterial infections that follow these two phenomena.
Collapse
Affiliation(s)
- Tania Nawfal Dagher
- Faculté de Médecine et de Pharmacie, Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Saint George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | - Charbel Al-Bayssari
- Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska, Lebanon
| | - Seydina M Diene
- Faculté de Médecine et de Pharmacie, Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Eid Azar
- Saint George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
18
|
Tribble DR, Murray CK, Lloyd BA, Ganesan A, Mende K, Blyth DM, Petfield JL, McDonald J. After the Battlefield: Infectious Complications among Wounded Warriors in the Trauma Infectious Disease Outcomes Study. Mil Med 2019; 184:18-25. [PMID: 31778199 PMCID: PMC6886670 DOI: 10.1093/milmed/usz027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION During recent wars in Iraq and Afghanistan, improved survivability in severe trauma corresponded with a rise in the proportion of trauma-related infections, including those associated with multidrug-resistant organisms (MDROs). Significant morbidity was reported in association with the infections. There is also concern regarding potential long-term impacts of the trauma-related infectious complications. Therefore, to meet the critical need of prospective collection of standardized infection-related data to understand the disease burden and improve outcomes of wounded personnel, the Trauma Infectious Disease Outcomes Study (TIDOS) was developed. Herein, we review accomplishments and key peer-reviewed findings of TIDOS. METHODS The TIDOS project is a multicenter observational study of short- and long-term infectious complications following deployment-related trauma. Wounded military personnel medevac'd to Landstuhl Regional Medical Center (LRMC; Germany) before transfer to a participating US military hospital between June 2009 and December 2014 were eligible for inclusion. An infectious disease module to supplement the Department of Defense Trauma Registry by collecting infection-related data from all trauma patients admitted to participating hospitals was developed. Specimens from trauma patients were also collected and retained in a microbiological isolate repository. During the initial hospitalization, patients were given the opportunity to enroll in a prospective follow-up cohort study. Patients who received Department of Veterans Affairs (VA) care were also given the opportunity to consent to ongoing VA follow-up. RESULTS A total of 2,699 patients transferred to participating military hospitals in the USA, of which 1,359 (50%) patients enrolled in the TIDOS follow-up cohort. In addition, 638 enrolled in the TIDOS-VA cohort (52% of TIDOS enrollees who entered VA healthcare). More than 8,000 isolates were collected from infection control surveillance and diagnostic evaluations and retained in the TIDOS Microbiological Repository. Approximately 34% of the 2,699 patients at US hospitals developed a trauma-related infection during their initial hospitalization with skin and soft-tissue infections being predominant. After discharge from the US hospitals, approximately one-third of TIDOS cohort enrollees developed a new trauma-related infection during follow-up and extremity wound infections (skin and soft-tissue infections and osteomyelitis) continued to be the majority. Among TIDOS cohort enrollees who received VA healthcare, 38% developed a new trauma-related infection with the incident infection being diagnosed a median of 88 days (interquartile range: 19-351 days) following hospital discharge. Data from TIDOS have been used to support the development of Joint Trauma System clinical practice guidelines for the prevention of combat-related infections, as well as the management of invasive fungal wound infections. Lastly, due to the increasing proportion of infections associated with MDROs, TIDOS investigators have collaborated with investigators across military laboratories as part of the Multidrug-Resistant and Virulent Organisms Trauma Infections Initiative with the objective of improving the understanding of the complex wound microbiology in order to develop novel infectious disease countermeasures. CONCLUSIONS The TIDOS project has focused research on four initiatives: (1) blast-related wound infection epidemiology and clinical management; (2) DoD-VA outcomes research; (3) Multidrug- Resistant and other Virulent Organisms Trauma Infections Initiative; and (4) Joint Trauma System clinical practice guidelines and antibiotic stewardship. There is a continuing need for longitudinal data platforms to support battlefield wound research and clinical practice guideline recommendation refinement, particularly to improve care for future conflicts. As such, maintaining a research platform, such as TIDOS, would negate the lengthy time needed to initiate data collection and analysis.
Collapse
Affiliation(s)
- David R Tribble
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Clinton K Murray
- Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234
- Current affiliation is 1st Area Medical Laboratory, Aberdeen Proving Ground, MD
| | - Bradley A Lloyd
- Landstuhl Regional Medical Center, Landstuhl, Germany, CMR 402, APO, AE, 09180
- Current affiliation is Wright Patterson Medical Center, OH
| | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
- Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20852
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720 A Rockledge Drive, Bethesda, MD 20817
| | - Katrin Mende
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
- Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720 A Rockledge Drive, Bethesda, MD 20817
| | - Dana M Blyth
- Brooke Army Medical Center, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234
| | - Joseph L Petfield
- Landstuhl Regional Medical Center, Landstuhl, Germany, CMR 402, APO, AE, 09180
| | - Jay McDonald
- Veterans Affairs St. Louis Health Care System, 915 N Grand Blvd, St. Louis, MO 63106
- Washington University School of Medicine, 660 Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
19
|
McDonald Johnston A, Alderman JE. Thoracic Injury in Patients Injured by Explosions on the Battlefield and in Terrorist Incidents. Chest 2019; 157:888-897. [PMID: 31605701 DOI: 10.1016/j.chest.2019.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022] Open
Abstract
Thoracic injury is common on the battlefield and in terrorist attacks, occurring in 10% to 70% of patients depending on the type of weapons used. Typical injuries seen include bullet, blast, and fragment injuries to the thorax, which are often associated with injuries to other parts of the body. Initial treatment prehospital and in the ED is carried out according to the principles of Tactical Combat Casualty Care or other standard trauma management systems. Immediately life-threatening problems including catastrophic hemorrhage are dealt with rapidly, and early consideration is given to CT scanning or rapid surgical intervention where appropriate. All patients should be given lung-protective ventilation. Treatment of these patients in the critical care unit is complicated by the severity of associated injuries and by features specific to combat trauma including blast lung injury, a high incidence of delirium, unusual infections such as colonization with multidrug-resistant Acinetobacter baumannii complex, and sometimes invasive fungal infections. A minority of patients with blast lung injury in published series have been successfully treated with prolonged respiratory support with high-frequency oscillatory ventilation and extracorporeal membrane oxygenation. The role of newer treatment options such as resuscitative endovascular balloon occlusion of the aorta is not yet known. In this article we review the relatively sparse literature on this group of patients and provide practical advice based on the literature and our institution's extensive experience of managing battlefield casualties.
Collapse
Affiliation(s)
- Andrew McDonald Johnston
- Department of Anaesthesia and Intensive Care Medicine, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK; Birmingham Acute Care Research, University of Birmingham, Birmingham, UK; Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK.
| | - Joseph Edward Alderman
- Department of Anaesthesia and Intensive Care Medicine, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK; Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Dillon N, Holland M, Tsunemoto H, Hancock B, Cornax I, Pogliano J, Sakoulas G, Nizet V. Surprising synergy of dual translation inhibition vs. Acinetobacter baumannii and other multidrug-resistant bacterial pathogens. EBioMedicine 2019; 46:193-201. [PMID: 31353294 PMCID: PMC6711115 DOI: 10.1016/j.ebiom.2019.07.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) Acinetobacter baumannii infections have high mortality rates and few treatment options. Synergistic drug combinations may improve clinical outcome and reduce further emergence of resistance in MDR pathogens. Here we show an unexpected potent synergy of two translation inhibitors against the pathogen: commonly prescribed macrolide antibiotic azithromycin (AZM), widely ignored as a treatment alternative for invasive Gram-negative pathogens, and minocycline, among the current standard-of-care agents used for A. baumannii. METHODS Media-dependent activities of AZM and MIN were evaluated in minimum inhibitory concentration assays and kinetic killing curves, alone or in combination, both in standard bacteriologic media (cation-adjusted Mueller-Hinton Broth) and more physiologic tissue culture media (RPMI), with variations of bicarbonate as a physiologic buffer. Synergy was calculated by fractional inhibitory concentration index (FICI). Therapeutic benefit of combining AZM and MIN was tested in a murine model of A. baumannii pneumonia. AZM + MIN synergism was probed mechanistically by bacterial cytological profiling (BCP), a quantitative fluorescence microscopy technique that identifies disrupted bacterial cellular pathways on a single cell level, and real-time kinetic measurement of translation inhibition via quantitative luminescence. AZM + MIN synergism was further evaluated vs. other contemporary high priority MDR bacterial pathogens. FINDINGS Although two translation inhibitors are not expected to synergize, each drug complemented kinetic deficiencies of the other, speeding the initiation and extending the duration of translation inhibition as verified by FICI, BCP and kinetic luminescence markers. In an MDR A. baumannii pneumonia model, AZM + MIN combination therapy decreased lung bacterial burden and enhanced survival rates. Synergy between AZM and MIN was also detected vs. MDR strains of Gram-negative Klebsiella pneumoniae and Pseudomonas aeruginosa, and the leading Gram-positive pathogen methicillin-resistant Staphylococcus aureus. INTERPRETATION As both agents are FDA approved with excellent safety profiles, clinical investigation of AZM and MIN combination regimens may immediately be contemplated for optimal treatment of A. baumannii and other MDR bacterial infections in humans. FUND: National Institutes of Health U01 AI124326 (JP, GS, VN) and U54 HD090259 (GS, VN). IC was supported by the UCSD Research Training Program for Veterinarians T32 OD017863.
Collapse
Affiliation(s)
- Nicholas Dillon
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | | | - Hannah Tsunemoto
- Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Bryan Hancock
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Ingrid Cornax
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA
| | - George Sakoulas
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA; Sharp Healthcare System, San Diego, CA 92101, USA
| | - Victor Nizet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Smith SA, DaCambra MP, McAlister VC. Impact of traumatic upper-extremity amputation on the outcome of injury caused by an antipersonnel improvised explosive device. Can J Surg 2019; 61:S203-S207. [PMID: 30418007 DOI: 10.1503/cjs.014518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background We have previously reported a higher than expected rate of upper-extremity amputation (UEA) in victims of an antipersonnel improvised explosive device (AP-IED) compared with a similar cohort injured by antipersonnel mines (APM). The goal of this study was to describe the rate, severity and impact of UAE caused by an AP-IED. Methods We analyzed a prospective database of 100 consecutive dismounted AP-IED victims with pattern 1 injuries to compare the outcomes of the cohort with UEA to that without. Results We found that UEA (8 above elbow, 19 below elbow, 1 through elbow, 3 hand, 15 digit(s)) was much more prevalent with AP-IED than with APM (40% v. 6%, p < 0.001). In addition, UEA was associated with a higher rate of multiple amputations (39 [98%] v. 32 [53%], p < 0.001), bilateral lower-extremity amputation (LEA; 33 [82.5%] v. 30 [53.3%], p = 0.003) and facial injury (8 [20%] v. 4 [6.4%], p = 0.044), but not with pelvic disruption (10 [25%]), genitoperineal mutilation (19 [48%]), eye injury (6 [15%]), or skull fracture (6 [15%]). The fatality rate was higher in patients with UEA than in those without (12 [30%] v. 7 [12%], p = 0.022). Conclusion Upper-extremity amputation is more prevalent with AP-IED than APM. Presence of UEA is associated with more severe injury and increased risk of death in AP-IED victims. Upper-limb injury has significant consequences for
rehabilitation from LEA, which universally accompanies UEA in AP-IED victims. Upper-extremity injury should be amenable to prevention by innovative personal protective equipment designed to protect the flexed elbow.
Collapse
Affiliation(s)
- Shane A. Smith
- From the Royal Canadian Medical Service, Ottawa, Ont. (Smith, DaCambra, McAlister); and the Division of General Surgery, Western University, London, Ont. (Smith, McAlister)
| | - Mark P. DaCambra
- From the Royal Canadian Medical Service, Ottawa, Ont. (Smith, DaCambra, McAlister); and the Division of General Surgery, Western University, London, Ont. (Smith, McAlister)
| | - Vivian C. McAlister
- From the Royal Canadian Medical Service, Ottawa, Ont. (Smith, DaCambra, McAlister); and the Division of General Surgery, Western University, London, Ont. (Smith, McAlister)
| |
Collapse
|
22
|
Radó J, Kaszab E, Benedek T, Kriszt B, Szoboszlay S. First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample. Acta Microbiol Immunol Hung 2019; 66:113-130. [PMID: 30816807 DOI: 10.1556/030.66.2019.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The emergence of opportunistic Acinetobacter spp. in healthcare settings poses a significant threat to public health. The major reasons for nosocomial spread of these species are their abilities to develop and transfer drug resistance against various classes of antibiotics. Considering that Acinetobacter spp. are ubiquitous in nature, can utilize several carbon sources, and reach humans via various pathways, our aim was to obtain information about the environmental strains of this genus. Our first step was to develop and test a multistep isolation procedure based on traditional scientific methods. Antibiotic resistance patterns of the isolated strains were determined, as susceptibility to 12 antibiotics of 7 classes was tested by MIC Test Strip method. Altogether 366 samples (groundwater, surface water, and soil) of 24 sites were investigated and a collection of 37 Acinetobacter isolates was obtained. Among others, clinically important human pathogen Acinetobacter spp., such as A. baumannii, A. johnsonii, and A. gyllenbergii were identified. Three environmental strains were determined as multidrug-resistant including a carbapenem-resistant, hemolytic Acinetobacter beijerinckii strain isolated from a hydrocarbon-contaminated groundwater sample. In summary, it has been found that the applied multistep isolation procedure is applicable to isolate various species of Acinetobacter genus. Based on the antibiotic resistance assay, we can conclude that environmental representatives of Acinetobacter spp. are able to develop multidrug resistance, but at a lower rate than their clinical counterparts.
Collapse
Affiliation(s)
- Júlia Radó
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Edit Kaszab
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Tibor Benedek
- 2 Regional University Center of Excellence, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Sándor Szoboszlay
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
23
|
Cohen DT, Zhang C, Fadzen CM, Mijalis AJ, Hie L, Johnson KD, Shriver Z, Plante O, Miller SJ, Buchwald SL, Pentelute BL. A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nat Chem 2019; 11:78-85. [PMID: 30397320 PMCID: PMC6454892 DOI: 10.1038/s41557-018-0154-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/07/2018] [Indexed: 01/28/2023]
Abstract
Conjugates between proteins and small molecules enable access to a vast chemical space that is not achievable with either type of molecule alone; however, the paucity of specific reactions capable of functionalizing proteins and natural products presents a formidable challenge for preparing conjugates. Here we report a strategy for conjugating electron-rich (hetero)arenes to polypeptides and proteins. Our bioconjugation technique exploits the electrophilic reactivity of an oxidized selenocysteine residue in polypeptides and proteins, and the electron-rich character of certain small molecules to provide bioconjugates in excellent yields under mild conditions. This conjugation chemistry enabled the synthesis of peptide-vancomycin conjugates without the prefunctionalization of vancomycin. These conjugates have an enhanced in vitro potency for resistant Gram-positive and Gram-negative pathogens. Additionally, we show that a 6 kDa affibody protein and a 150 kDa immunoglobulin-G antibody could be modified without diminishing bioactivity.
Collapse
Affiliation(s)
- Daniel T Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- AbbVie, Inc., North Chicago, IL, USA.
| | - Chi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin M Fadzen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander J Mijalis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liana Hie
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | | | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute, Broad Institute of Harvard and MIT, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Ellis DH, Maurer-Gardner EI, Sulentic CEW, Hussain SM. Silver nanoparticle antibacterial efficacy and resistance development in key bacterial species. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad5a7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Resistant Gram-Negative Bacteria and Diagnostic Point-of-Care Options for the Field Setting during Military Operations. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9395420. [PMID: 30009178 PMCID: PMC6020508 DOI: 10.1155/2018/9395420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022]
Abstract
The spread of multidrug-resistant bacteria in resource-poor settings affects the military medical service in case of deployments of soldiers to war and crisis zones. Patients with war injuries are prone to colonization or infection with multidrug-resistant bacteria. Resistant Gram-negative bacteria play a dominant role in military wound infections. Problematic hygiene conditions on deployment facilitate exposition of soldiers with subsequent colonization. Although colonizing strains are frequently cleared from their hosts after returning from deployment, transmission to close contacts of the soldiers in the home country cannot be excluded and therapeutic options are reduced if colonization progresses to invasive infection. Since sophisticated culture-based diagnostic approaches are typically not available in the field setting on deployment, molecular rapid diagnostic test systems are an option for transmission control if the locally prevalent molecular resistance mechanisms are known. Efforts for global resistance surveillance can contribute to better understanding of resistance distribution and spread at deployment sites. This review summarizes experience of the military medical services with multidrug resistance on deployment and with the influx of resistant strains to the home country and discusses potential use of available molecular rapid test systems as an option for the field setting.
Collapse
|
26
|
Ackerman DL, Craft KM, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA, Townsend SD. Antimicrobial and Antibiofilm Activity of Human Milk Oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect Dis 2018; 4:315-324. [PMID: 29198102 DOI: 10.1021/acsinfecdis.7b00183] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In a previous study, we reported that human milk oligosaccharides (HMOs) isolated from five donor milk samples possessed antimicrobial and antibiofilm activity against Streptococcus agalactiae, also known as Group B Streptococcus or GBS. Herein, we present a broader evaluation of the antimicrobial and antibiofilm activity by screening HMOs from 14 new donors against three strains of GBS and two of the ESKAPE pathogens of particular interest to child health, Staphylococcus aureus and Acinetobacter baumannii. Growth and biofilm assays showed that HMOs from these new donors possessed antimicrobial and antibiofilm activity against all three strains of GBS, antibiofilm activity against methicillin-resistant S. aureus strain USA300, and antimicrobial activity against A. baumannii strain ATCC 19606.
Collapse
Affiliation(s)
- Dorothy L. Ackerman
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Kelly M. Craft
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Ryan S. Doster
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, Tennessee 37232, United States
| | - Jörn-Hendrik Weitkamp
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt, 2200 Children’s Way, Suite 2404, Nashville, Tennessee 37232, United States
| | - David M. Aronoff
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, Tennessee 37232, United States
| | - Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, Tennessee 37232, United States
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, 1310 24th Avenue South, Nashville, Tennessee 37212, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
- Institute of Chemical Biology, Vanderbilt University, 896 Preston Research Building, Nashville, Tennessee 37232-6304, United States
| |
Collapse
|
27
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 724] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|
28
|
Uppu DSSM, Konai MM, Sarkar P, Samaddar S, Fensterseifer ICM, Farias-Junior C, Krishnamoorthy P, Shome BR, Franco OL, Haldar J. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria. PLoS One 2017; 12:e0183263. [PMID: 28837596 PMCID: PMC5570306 DOI: 10.1371/journal.pone.0183263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.
Collapse
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Mohini M. Konai
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Paramita Sarkar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sandip Samaddar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Isabel C. M. Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
| | | | - Paramanandam Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Bibek R. Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UC, Brası´lia, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, Brazil
- S-inova Biotech, Pos-Graduação em Biotecnoloia, Universidade Catolica Dom Bosco, Campo Grande, Brazil
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
29
|
Smith S, Devine M, Taddeo J, McAlister VC. Injury profile suffered by targets of antipersonnel improvised explosive devices: prospective cohort study. BMJ Open 2017; 7:e014697. [PMID: 28835410 PMCID: PMC5691184 DOI: 10.1136/bmjopen-2016-014697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To describe pattern 1 injuries caused by the antipersonnel improvised explosive device (AP-IED) in comparison to those previously described for antipersonnel mines (APM). DESIGN Prospective cohort study of 100 consecutive pedestrian victims of an AP-IED, with traumatic amputation without regard for gender, nationality or military status. SETTING Multinational Medical Unit at Kandahar Air Field, Afghanistan. PARTICIPANTS One hundred consecutive patients, all male, 6-44 years old. MAIN OUTCOME MEASURES The details of injuries were recorded to describe the pattern and characterise the injuries suffered by the target of AP-IEDs. The level of amputation, the level of soft tissue injury, the fracture pattern (including pelvic fractures) as well as perineal, gluteal, genital and other injuries were recorded. RESULTS Victims of AP-IED were more likely, compared with APM victims, to have multiple amputations (70.0% vs 10.4%; p<0.001) or genital injury (26% vs 13%; p=0.007). Multiple amputations occurred in 70 patients: 5 quadruple amputations, 27 triple amputations and 38 double amputations. Pelvic fracture occurred in 21 victims, all but one of whom had multiple amputations. Severe perineal, gluteal or genital injuries were present in 46 patients. Severe soft tissue injury was universal, with injection of contaminated soil along tissue planes well above entry sites. There were 13 facial injuries, 9 skull fractures and 3 traumatic brain injuries. Eleven eye injuries were seen; none of the victims with eye injuries were wearing eye protection. The casualty fatality rate was at least 19%. The presence of more than one amputation was associated with a higher rate of pelvic fracture (28.6% vs 3.3%; p=0.005) and perineal-gluteal injury (32.6% vs 11.1%; p=0.009). CONCLUSION The injury pattern suffered by the target of the AP-IED is markedly worse than that of conventional APM. Pelvic binders and tourniquets should be applied at the point of injury to patients with multiple amputations or perineal injuries.
Collapse
Affiliation(s)
- Shane Smith
- Royal Canadian Medical Service, London, Ontario, Canada
- Division of General Surgery, University of Western Ontario, London, Ontario, Canada
| | - Melissa Devine
- Royal Canadian Medical Service, Halifax, Nova Scotia, Canada
| | - Joseph Taddeo
- Department of Surgery, Maine Veterans' Affairs Medical Center, Augusta, Maryland, USA
| | - Vivian Charles McAlister
- Royal Canadian Medical Service, London, Ontario, Canada
- Division of General Surgery, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Koskela KA, Kalin-Mänttäri L, Hemmilä H, Smura T, Kinnunen PM, Niemimaa J, Henttonen H, Nikkari S. Metagenomic Evaluation of Bacteria from Voles. Vector Borne Zoonotic Dis 2017; 17:123-133. [DOI: 10.1089/vbz.2016.1969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | - Teemu Smura
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Paula M. Kinnunen
- Centre for Military Medicine, Helsinki, Finland
- Defence Command Finland, Plans and Policy Division, Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Huggins WM, Minrovic BM, Corey BW, Jacobs AC, Melander RJ, Sommer RD, Zurawski DV, Melander C. 1,2,4-Triazolidine-3-thiones as Narrow Spectrum Antibiotics against Multidrug-Resistant Acinetobacter baumannii. ACS Med Chem Lett 2017; 8:27-31. [PMID: 28105270 PMCID: PMC5238477 DOI: 10.1021/acsmedchemlett.6b00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023] Open
Abstract
![]()
With only two new classes of antibiotics
developed in the last
40 years, novel antibiotics are desperately needed to combat the growing
problem of multidrug-resistant and extensively drug resistant bacteria,
particularly Gram-negative bacteria. Described in this letter is the
synthesis and antibiotic activity of 1,2,4-triazolidine-3-thiones
as narrow spectrum antibiotics. Optimization of the 1,2,4-triazolidine-3-thione
scaffold identified a small molecule with potent antibiotic activity
against multiple strains of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii. This small molecule also shows
single dose, in vivo activity in a Galleria
mellonella infection model with A. baumannii and represents a promising start in the development of a class of
drugs that can target this bacterial pathogen.
Collapse
Affiliation(s)
- William M. Huggins
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Bradley M. Minrovic
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Brendan W. Corey
- Wound
Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Anna C. Jacobs
- Wound
Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Roberta J. Melander
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Roger D. Sommer
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Daniel V. Zurawski
- Wound
Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Christian Melander
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
32
|
Al Atrouni A, Hamze M, Jisr T, Lemarié C, Eveillard M, Joly-Guillou ML, Kempf M. Wide spread of OXA-23-producing carbapenem-resistant Acinetobacter baumannii belonging to clonal complex II in different hospitals in Lebanon. Int J Infect Dis 2016; 52:29-36. [PMID: 27663910 DOI: 10.1016/j.ijid.2016.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To investigate the molecular epidemiology of Acinetobacter baumannii strains isolated from different hospitals in Lebanon. METHODS A total of 119 non-duplicate Acinetobacter strains were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and partial rpoB gene sequencing. Antibiotic susceptibility testing was performed by disc diffusion method and all identified carbapenem-resistant isolates were investigated by PCR assays for the presence of the carbapenemase-encoding genes. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used for molecular typing. RESULTS Of the 119 A. baumannii isolates, 76.5% were resistant to carbapenems. The most common carbapenemase was the OXA-23-type, found in 82 isolates. The study of population structure using MLST revealed the presence of 30 sequence types (STs) including 18 new ones, with ST2 being the most commonly detected, accounting for 61% of the isolates typed. PFGE performed on all strains of ST2 identified a major cluster of 53 isolates, in addition to three other minor clusters and ten unique profiles. CONCLUSIONS This study highlights the wide dissemination of highly related OXA-23-producing carbapenem-resistant A. baumannii belonging to the international clone II in Lebanon. Thus, appropriate infection control measures are recommended in order to control the geographical spread of this clone in this country.
Collapse
Affiliation(s)
- Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon; ATOMycA, InsermAtip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Tamima Jisr
- Department of Clinical Laboratory, Makassed General Hospital, Beirut, Lebanon
| | - Carole Lemarié
- Laboratoire de Bactériologie, Institut de Biologie en Santé - Centre Hospitalier Universitaire Angers, 4 rue Larrey, 49933 Angers cedex, France
| | - Matthieu Eveillard
- ATOMycA, InsermAtip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, Angers, France; Laboratoire de Bactériologie, Institut de Biologie en Santé - Centre Hospitalier Universitaire Angers, 4 rue Larrey, 49933 Angers cedex, France
| | - Marie-Laure Joly-Guillou
- ATOMycA, InsermAtip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, Angers, France; Laboratoire de Bactériologie, Institut de Biologie en Santé - Centre Hospitalier Universitaire Angers, 4 rue Larrey, 49933 Angers cedex, France
| | - Marie Kempf
- ATOMycA, InsermAtip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, Angers, France; Laboratoire de Bactériologie, Institut de Biologie en Santé - Centre Hospitalier Universitaire Angers, 4 rue Larrey, 49933 Angers cedex, France.
| |
Collapse
|
33
|
De Vos D, Pirnay JP, Bilocq F, Jennes S, Verbeken G, Rose T, Keersebilck E, Bosmans P, Pieters T, Hing M, Heuninckx W, De Pauw F, Soentjens P, Merabishvili M, Deschaght P, Vaneechoutte M, Bogaerts P, Glupczynski Y, Pot B, van der Reijden TJ, Dijkshoorn L. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center. PLoS One 2016; 11:e0156237. [PMID: 27223476 PMCID: PMC4880317 DOI: 10.1371/journal.pone.0156237] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/11/2016] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality.
Collapse
Affiliation(s)
- Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
- * E-mail:
| | - Florence Bilocq
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Serge Jennes
- Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thomas Rose
- Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | | | - Petra Bosmans
- Hospital Hygiene and Infection Control Team, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thierry Pieters
- Hospital Hygiene and Infection Control Team, Queen Astrid Military Hospital, Brussels, Belgium
| | - Mony Hing
- Clinical Laboratory, Queen Astrid Military Hospital, Brussels, Belgium
| | - Walter Heuninckx
- Clinical Laboratory, Queen Astrid Military Hospital, Brussels, Belgium
| | - Frank De Pauw
- Medical Communication and Information Systems, ACOS WB/Health Division, Queen Astrid Military Hospital, Brussels, Belgium
| | - Patrick Soentjens
- Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
- Laboratory Bacteriology Research, University of Ghent, Ghent, Belgium
| | - Pieter Deschaght
- Laboratory Bacteriology Research, University of Ghent, Ghent, Belgium
| | | | - Pierre Bogaerts
- Laboratoire de Bactériologie, CHU Mont-Godinne, Université Catholique de Louvain, Yvoir, Belgium
| | - Youri Glupczynski
- Laboratoire de Bactériologie, CHU Mont-Godinne, Université Catholique de Louvain, Yvoir, Belgium
| | - Bruno Pot
- Applied Maths, Sint-Martens-Latem, Belgium
| | - Tanny J. van der Reijden
- Department of Infectious Diseases C5-P, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenie Dijkshoorn
- Department of Infectious Diseases C5-P, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Granzer H, Hagen RM, Warnke P, Bock W, Baumann T, Schwarz NG, Podbielski A, Frickmann H, Koeller T. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter Baumannii Complex Isolates from Patients that were Injured During the Eastern Ukrainian Conflict. Eur J Microbiol Immunol (Bp) 2016; 6:109-17. [PMID: 27429793 PMCID: PMC4936333 DOI: 10.1556/1886.2016.00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
This study addressed carbapenem-resistant Acinetobacter baumannii complex (ABC) isolates from patients that were injured during the military conflict in the Eastern Ukraine and treated at German Armed Forces Hospitals in 2014 and 2015. Clonal diversity of the strains and potential ways of transmission were analyzed. Patients with one or several isolation events of carbapenem-resistant ABC were included. Isolates were characterized by VITEK II-based identification and resistance testing, molecular screening for frequent carbapenemase genes, and DiversiLab rep-PCR-based typing. Available clinical information of the patients was assessed. From 21 young male Ukrainian patients with battle injuries, 32 carbapenem- and fluoroquinolone-resistant ABC strains were isolated. Four major clonal clusters were detected. From four patients (19%), ABC isolates from more than one clonal cluster were isolated. The composition of the clusters suggested transmission events prior to the admission to the German hospitals. The infection and colonization pressure in the conflict regions of the Eastern Ukraine with ABC of low clonal diversity is considerable. Respective infection risks have to be considered in case of battle-related injuries in these regions. The low number of local clones makes any molecular exclusion of transmission events difficult.
Collapse
Affiliation(s)
- Heike Granzer
- Laboratory Department I, Central Institute of the German Armed Forces in Koblenz , Germany
| | - Ralf Matthias Hagen
- North Atlantic Treaty Organization Center of Excellence in Military Medicine (NATO MilMedCOE) , Munich, Germany
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock , Germany
| | - Wolfgang Bock
- Laboratory Department I, Central Institute of the German Armed Forces in Munich , Germany
| | - Tobias Baumann
- Laboratory Department I, Central Institute of the German Armed Forces in Kiel (branch office in Berlin) , Germany
| | - Norbert Georg Schwarz
- Infectious Disease Epidemiology Group, Bernhard Nocht Institute of Tropical Medicine Hamburg , Germany
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock , Germany
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Germany; Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Germany
| | - Thomas Koeller
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock , Germany
| |
Collapse
|
35
|
Acinetobacter baumannii Infection and IL-17 Mediated Immunity. Mediators Inflamm 2016; 2016:9834020. [PMID: 26977122 PMCID: PMC4762998 DOI: 10.1155/2016/9834020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/11/2016] [Indexed: 01/25/2023] Open
Abstract
Acinetobacter baumannii is a significant cause of severe hospital-acquired infections with a recent rise in multidrug-resistant infections involving traumatic wounds of military personnel. The interleukin-17 (IL-17) pathway is essential for neutrophil recruitment in response to a variety of pathogens, while the control of A. baumannii infection is known to be dependent on neutrophils. This suggests that IL-17 may play an important role in A. baumannii infection; however, this has yet to be studied. Here, we summarize the recent advances in understanding the host-pathogen interaction of A. baumannii and propose a potential role of the IL-17 pathway in generating a protective immune response.
Collapse
|
36
|
Yan S, Wu G. Evolutionary evidence on suitability of SecD as a target for development of antibacterial agents against Staphylococcus aureus. Ecol Evol 2016; 6:1393-410. [PMID: 27087922 PMCID: PMC4775529 DOI: 10.1002/ece3.1951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus causes many infections and its drug resistance is a worrying challenge for medical care. The SecD subunit of Sec secretion system in methicillin‐resistant S. aureus is an attractive target because SecD dysfunction leads to the death of bacteria and SecD as a target is more efficient than SecA and SecF. Evolution could have made SecD to become insensitive to antibacterial agents although the drugs directly against SecD have yet to develop. So far, no detailed information on SecD evolution has been available, thus 2686 SecD sequences with full taxonomic information from kingdom to species were analyzed. First, the variance of pairwise p‐distance was evaluated for each taxonomic group. Second, the variance was further partitioned into intergroup and intragroup variances for quantification of horizontal and vertical gene transfer. Third, phylogenetic tree was built to trace the evolutionary pathway. The results showed that overall evolution of SecDs appears to have undergone horizontal and vertical gene transfer. Only 0.5% horizontal transfers were found between any two SecDs in S. aureus, 6.8% and 8.8% horizontal transfers were found between any two Staphylococcus SecDs from different and the same species, and only one SecD from S. aureus was located far away from its sister cluster. Thus, statistic and evolutionary analyses demonstrate that the SecDs from staphylococcus species have a small chance of mutating, and provide taxonomic evidence to use the SecD as a potential target for new generation of antibacterial agents against S. aureus.
Collapse
Affiliation(s)
- Shaomin Yan
- Guangxi Bioscience and Biotechnology Research Center Guangxi Academy of Sciences 98 Daling Road Nanning Guangxi 530007 China
| | - Guang Wu
- Guangxi Bioscience and Biotechnology Research Center Guangxi Academy of Sciences 98 Daling Road Nanning Guangxi 530007 China
| |
Collapse
|
37
|
Uppu DSSM, Samaddar S, Ghosh C, Paramanandham K, Shome BR, Haldar J. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection. Biomaterials 2016; 74:131-43. [DOI: 10.1016/j.biomaterials.2015.09.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 02/04/2023]
|
38
|
Shoukat K, Pilling S, Rout S, Bradbury J, Humphreys P. A systematic comparison of antimicrobial wound dressings using a planktonic cell and an immobilized cell model. J Appl Microbiol 2015; 119:1552-60. [DOI: 10.1111/jam.12967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022]
Affiliation(s)
- K. Shoukat
- Hygiene and Disinfection Centre; School of Applied Science; University of Huddersfield; Huddersfield UK
| | - S. Pilling
- Hygiene and Disinfection Centre; School of Applied Science; University of Huddersfield; Huddersfield UK
| | - S. Rout
- Hygiene and Disinfection Centre; School of Applied Science; University of Huddersfield; Huddersfield UK
| | - J. Bradbury
- Hygiene and Disinfection Centre; School of Applied Science; University of Huddersfield; Huddersfield UK
| | - P.N. Humphreys
- Hygiene and Disinfection Centre; School of Applied Science; University of Huddersfield; Huddersfield UK
| |
Collapse
|
39
|
Arnold C. Outbreak Breakthrough: Using Whole-Genome Sequencing to Control Hospital Infection. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A281-A286. [PMID: 26523889 PMCID: PMC4629729 DOI: 10.1289/ehp.123-a281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
40
|
Salimizand H, Noori N, Meshkat Z, Ghazvini K, Amel SJ. Prevalence of Acinetobacter baumannii harboring ISAba1/blaOXA-23-like family in a burn center. Burns 2015; 41:1100-6. [DOI: 10.1016/j.burns.2014.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/27/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
|
41
|
Rafei R, Pailhoriès H, Hamze M, Eveillard M, Mallat H, Dabboussi F, Joly-Guillou ML, Kempf M. Molecular epidemiology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using bla(OXA-51-like) sequence based typing. BMC Microbiol 2015; 15:103. [PMID: 25976451 PMCID: PMC4432822 DOI: 10.1186/s12866-015-0441-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A. baumannii has emerged as an important nosocomial pathogen with an outstanding ability to acquire multidrug resistant mechanisms. In this study, we investigate the molecular epidemiology and carbapenem resistance mechanisms of A. baumannii in Tripoli, Northern Lebanon. METHODS One hundred sixteen non-duplicate isolates isolated between 2011 and 2013 in different hospitals in Tripoli, Lebanon from Lebanese patients and wounded Syrian patients during Syrian war were studied. Antibiotic susceptibility testing was determined by agar disc diffusion and Etest. Carbapenemase-encoding genes were investigated by PCR. All isolates were typed by bla OXA-51-like sequence based typing (SBT) and 57 isolates were also analysed by MLST using Pasteur's scheme followed by eBURST analysis. RESULTS Of the 116 isolates, 70 (60 %) showed a carbapenem resistance phenotype. The bla OXA-23 with an upstream insertion of ISAba1 was the major carbapenem resistance mechanism and detected in 65 isolates. Five isolates, including four from wounded Syrian patients and one from a Lebanese patient, were positive for bla NDM-1. bla OXA-51-like SBT revealed the presence of 14 variants, where bla OXA-66 was the most common and present in 73 isolates, followed by bla OXA-69 in 20 isolates. MLST analysis identified 17 sequence types (ST) and showed a concordance with bla OXA-51-like SBT. Each clonal complex (CC) had a specific bla OXA-51-like sequence such as CC2, which harboured bla OXA-66 variant, and CC1 harbouring bla OXA-69 variant. NDM-1 producing isolates belonged to ST85 (4 Syrian isolates) and ST25 (1 Lebanese isolate). CONCLUSIONS Our results showed a successful predominance of international clone 2 with a widespread occurrence of OXA-23 carbapenemase in Lebanese hospitals. These findings emphasise the urgent need of effective measures to control the spread of A. baumannii in this country.
Collapse
Affiliation(s)
- Rayane Rafei
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University and Centre Hospitalier Universitaire d'Angers, Angers, France.
- Laboratoire Microbiologie Santé et Environnement (LMSE), Centre AZM pour la recherche en Biotechnologie et ses applications, Université Libanaise, Tripoli, Lebanon.
| | - Hélène Pailhoriès
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University and Centre Hospitalier Universitaire d'Angers, Angers, France.
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBH, CHU, 4 rue Larrey, 49933, Angers Cedex, France.
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Centre AZM pour la recherche en Biotechnologie et ses applications, Université Libanaise, Tripoli, Lebanon.
| | - Matthieu Eveillard
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University and Centre Hospitalier Universitaire d'Angers, Angers, France.
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBH, CHU, 4 rue Larrey, 49933, Angers Cedex, France.
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environnement (LMSE), Centre AZM pour la recherche en Biotechnologie et ses applications, Université Libanaise, Tripoli, Lebanon.
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Centre AZM pour la recherche en Biotechnologie et ses applications, Université Libanaise, Tripoli, Lebanon.
| | - Marie-Laure Joly-Guillou
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University and Centre Hospitalier Universitaire d'Angers, Angers, France.
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBH, CHU, 4 rue Larrey, 49933, Angers Cedex, France.
| | - Marie Kempf
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University and Centre Hospitalier Universitaire d'Angers, Angers, France.
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBH, CHU, 4 rue Larrey, 49933, Angers Cedex, France.
| |
Collapse
|
42
|
Gilbert SR, Camara J, Camara R, Duffy L, Waites K, Kim H, Zinn K. Contaminated open fracture and crush injury: a murine model. Bone Res 2015; 3:14050. [PMID: 26273534 PMCID: PMC4472147 DOI: 10.1038/boneres.2014.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 12/27/2022] Open
Abstract
Modern warfare has caused a large number of severe extremity injuries, many of which become infected. In more recent conflicts, a pattern of co-infection with Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus has emerged. We attempted to recreate this pattern in an animal model to evaluate the role of vascularity in contaminated open fractures. Historically, it has been observed that infected bones frequently appear hypovascular, but vascularity in association with bone infection has not been examined in animal models. Adult rats underwent femur fracture and muscle crush injury followed by stabilization and bacterial contamination with A. baumannii complex and methicillin-resistant Staphylococcus aureus. Vascularity and perfusion were assessed by microCT angiography and SPECT scanning, respectively, at 1, 2 and 4 weeks after injury. Quantitative bacterial cultures were also obtained. Multi-bacterial infections were successfully created, with methicillin-resistant S. aureus predominating. There was overall increase in blood flow to injured limbs that was markedly greater in bacteria-inoculated limbs. Vessel volume was greater in the infected group. Quadriceps atrophy was seen in both groups, but was greater in the infected group. In this animal model, infected open fractures had greater perfusion and vascularity than non-infected limbs.
Collapse
Affiliation(s)
- Shawn R Gilbert
- Department of Surgery, University of Alabama at Birmingham , AL USA
| | | | | | - Lynn Duffy
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Ken Waites
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham , AL USA
| | - Kurt Zinn
- Department of Radiology, University of Alabama at Birmingham , AL USA
| |
Collapse
|
43
|
Role of the carboxy terminus of SecA in iron acquisition, protein translocation, and virulence of the bacterial pathogen Acinetobacter baumannii. Infect Immun 2015; 83:1354-65. [PMID: 25605767 DOI: 10.1128/iai.02925-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic nosocomial pathogen that causes pneumonia and soft tissue and systemic infections. Screening of a transposon insertion library of A. baumannii ATCC 19606T resulted in the identification of the 2010 derivative, which, although capable of growing well in iron-rich media, failed to prosper under iron chelation. Genetic, molecular, and functional assays showed that 2010's iron utilization-deficient phenotype is due to an insertion within the 3' end of secA, which results in the production of a C-terminally truncated derivative of SecA. SecA plays a critical role in protein translocation through the SecYEG membrane channel. Accordingly, the secA mutation resulted in undetectable amounts of the ferric acinetobactin outer membrane receptor protein BauA while not affecting the production of other acinetobactin membrane protein transport components, such as BauB and BauE, or the secretion of acinetobactin by 2010 cells cultured in the presence of subinhibitory concentrations of the synthetic iron chelator 2,2'-dipyridyl. Outer membrane proteins involved in nutrient transport, adherence, and biofilm formation were also reduced in 2010. The SecA truncation also increased production of 30 different proteins, including proteins involved in adaptation/tolerance responses. Although some of these protein changes could negatively affect the pathobiology of the 2010 derivative, its virulence defect is mainly due to its inability to acquire iron via the acinetobactin-mediated system. These results together indicate that although the C terminus of the A. baumannii ATCC 19606T SecA is not essential for viability, it plays a critical role in the production and translocation of different proteins and virulence.
Collapse
|
44
|
Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 59:1680-9. [PMID: 25561334 DOI: 10.1128/aac.04808-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulbactam is a class A β-lactamase inhibitor with intrinsic whole-cell activity against certain bacterial species, including Acinetobacter baumannii. The clinical use of sulbactam for A. baumannii infections is of interest due to increasing multidrug resistance in this pathogen. However, the molecular drivers of its antibacterial activity and resistance determinants have yet to be precisely defined. Here we show that the antibacterial activities of sulbactam vary widely across contemporary A. baumannii clinical isolates and are mediated through inhibition of the penicillin-binding proteins (PBPs) PBP1 and PBP3, with very low frequency of resistance; the rare pbp3 mutants with high levels of resistance to sulbactam are attenuated in fitness. These results support further investigation of the potential clinical utility of sulbactam.
Collapse
|
45
|
Romero R, Miranda J, Kusanovic JP, Chaiworapongsa T, Chaemsaithong P, Martinez A, Gotsch F, Dong Z, Ahmed AI, Shaman M, Lannaman K, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L, Kim YM. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med 2015; 43:19-36. [PMID: 25720095 PMCID: PMC5881909 DOI: 10.1515/jpm-2014-0249] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/18/2014] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The objectives of this study were: 1) to determine the amniotic fluid (AF) microbiology of patients with the diagnosis of clinical chorioamnionitis at term using both cultivation and molecular techniques; and 2) to examine the relationship between intra-amniotic inflammation with and without microorganisms and placental lesions consistent with acute AF infection. METHODS The AF samples obtained by transabdominal amniocentesis from 46 women with clinical signs of chorioamnionitis at term were analyzed using cultivation techniques (for aerobic and anerobic bacteria as well as genital mycoplasmas) and broad-range polymerase chain reaction (PCR) coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). The frequency of microbial invasion of the amniotic cavity (MIAC), intra-amniotic inflammation [defined as an AF interleukin 6 (IL-6) concentration ≥2.6 ng/mL], and placental lesions consistent with acute AF infection (acute histologic chorioamnionitis and/or acute funisitis) were examined according to the results of AF cultivation and PCR/ESI-MS as well as AF IL-6 concentrations. RESULTS 1) Culture identified bacteria in AF from 46% (21/46) of the participants, whereas PCR/ESI-MS was positive for microorganisms in 59% (27/46) – combining these two tests, microorganisms were detected in 61% (28/46) of patients with clinical chorioamnionitis at term. Eight patients had discordant test results; one had a positive culture and negative PCR/ESI-MS result, whereas seven patients had positive PCR/ESI-MS results and negative cultures. 2) Ureaplasma urealyticum (n=8) and Gardnerella vaginalis (n=10) were the microorganisms most frequently identified by cultivation and PCR/ESI-MS, respectively. 3) When combining the results of AF culture, PCR/ESI-MS and AF IL-6 concentrations, 15% (7/46) of patients did not have intra-amniotic inflammation or infection, 6.5% (3/46) had only MIAC, 54% (25/46) had microbial-associated intra-amniotic inflammation, and 24% (11/46) had intra-amniotic inflammation without detectable microorganisms. 4) Placental lesions consistent with acute AF infection were significantly more frequent in patients with microbial-associated intra-amniotic inflammation than in those without intra-amniotic inflammation [70.8% (17/24) vs. 28.6% (2/7); P=0.04]. CONCLUSION Microorganisms in the AF were identified in 61% of patients with clinical chorioamnionitis at term; 54% had microbial-associated intra-amniotic inflammation, whereas 24% had intra-amniotic inflammation without detectable microorganisms.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Jezid Miranda
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Juan P. Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Hutzel Women’s Hospital, Detroit Medical Center, Detroit, MI
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Alicia Martinez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Francesca Gotsch
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Integrata Verona, Ostetricia Ginecologia, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Majid Shaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kia Lannaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Hutzel Women’s Hospital, Detroit Medical Center, Detroit, MI
| | - Chong Jai Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Hutzel Women’s Hospital, Detroit Medical Center, Detroit, MI
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Pathology, Inje University College of Medicine, Haeundae Paik Hospital, Seoul, Korea
| |
Collapse
|
46
|
Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Med 2014; 6:70. [PMID: 25414729 PMCID: PMC4237759 DOI: 10.1186/s13073-014-0070-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii commonly causes hospital outbreaks. However, within an outbreak, it can be difficult to identify the routes of cross-infection rapidly and accurately enough to inform infection control. Here, we describe a protracted hospital outbreak of multidrug-resistant A. baumannii, in which whole-genome sequencing (WGS) was used to obtain a high-resolution view of the relationships between isolates. Methods To delineate and investigate the outbreak, we attempted to genome-sequence 114 isolates that had been assigned to the A. baumannii complex by the Vitek2 system and obtained informative draft genome sequences from 102 of them. Genomes were mapped against an outbreak reference sequence to identify single nucleotide variants (SNVs). Results We found that the pulsotype 27 outbreak strain was distinct from all other genome-sequenced strains. Seventy-four isolates from 49 patients could be assigned to the pulsotype 27 outbreak on the basis of genomic similarity, while WGS allowed 18 isolates to be ruled out of the outbreak. Among the pulsotype 27 outbreak isolates, we identified 31 SNVs and seven major genotypic clusters. In two patients, we documented within-host diversity, including mixtures of unrelated strains and within-strain clouds of SNV diversity. By combining WGS and epidemiological data, we reconstructed potential transmission events that linked all but 10 of the patients and confirmed links between clinical and environmental isolates. Identification of a contaminated bed and a burns theatre as sources of transmission led to enhanced environmental decontamination procedures. Conclusions WGS is now poised to make an impact on hospital infection prevention and control, delivering cost-effective identification of routes of infection within a clinically relevant timeframe and allowing infection control teams to track, and even prevent, the spread of drug-resistant hospital pathogens.
Collapse
|
47
|
Jacobs AC, Thompson MG, Gebhardt M, Corey BW, Yildirim S, Shuman HA, Zurawski DV. Genetic Manipulation of Acinetobacter baumannii. ACTA ACUST UNITED AC 2014; 35:6G.2.1-11. [PMID: 25367274 DOI: 10.1002/9780471729259.mc06g02s35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acinetobacter baumannii is a Gram-negative nosocomial pathogen of clinical importance. A lack of genetic tools has hindered the research of this organism in the past; however, recently, various methods have been designed, modified, and optimized to facilitate the genetic manipulation of A. baumannii. This unit describes some of the recent genetic advances and new recombinant tools developed for this pathogen, including standard transformation and conjugation techniques specifically developed for the bacteria. As the need to understand the basic biology of A. baumannii increases with the prospect of developing new therapeutics, the use of the basic genetic methods herein can provide the critical first step to identify genes required for infection.
Collapse
Affiliation(s)
- Anna C Jacobs
- Walter Reed Army Institute of Research, Department of Wound Infections, Silver Spring, Maryland
| | | | | | | | | | | | | |
Collapse
|
48
|
Jacobs AC, Zurawski DV. Laboratory Maintenance of Acinetobacter baumannii. CURRENT PROTOCOLS IN MICROBIOLOGY 2014; 35:6G.1.1-6. [PMID: 25367273 DOI: 10.1002/9780471729259.mc06g01s35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acinetobacter baumannii has recently drawn great interest in the microbiology research community due to the increase in clinical antibiotic resistance of this organism, and persistence of this bacterial species in the hospital environment. This unit outlines protocols for the growth and maintenance of A. baumannii in the laboratory.
Collapse
Affiliation(s)
- Anna C Jacobs
- Walter Reed Army Institute of Research, Department of Wound Infections, Silver Spring, Maryland
| | | |
Collapse
|
49
|
Identification of novel vaccine candidates against multidrug-resistant Acinetobacter baumannii. PLoS One 2013; 8:e77631. [PMID: 24116234 PMCID: PMC3792912 DOI: 10.1371/journal.pone.0077631] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/03/2013] [Indexed: 12/29/2022] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic bacterium associated with nosocomial infections in intensive care units. The alarming increase in infections caused by A. baumannii is strongly associated with enhanced resistance to antibiotics, in particular carbapenems. This, together with the lack of a licensed vaccine, has translated into significant economic, logistic and health impacts to health care facilities. In this study, we combined reverse vaccinology and proteomics to identify surface-exposed and secreted antigens from A. baumannii. Using in silico prediction tools and comparative genome analysis in combination with in vitro proteomic approaches, we identified 42 antigens that could be used as potential vaccine targets. Considering the paucity of effective antibiotics available to treat multidrug-resistant A. baumannii infections, these vaccine targets may serve as a framework for the development of a broadly protective multi-component vaccine, an outcome that would have a major impact on the burden of A. baumannii infections in intensive care units across the globe.
Collapse
|
50
|
Fletcher TE, Hutley E, Adcock CJ, Martin N, Wilson DR. Deployed antimicrobial stewardship: an audit of antimicrobial use at Role 3. J ROY ARMY MED CORPS 2013; 159:237-9. [DOI: 10.1136/jramc-2013-000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|