1
|
Tran E, Cheung C, Li L, Carter GP, Gable RW, West NP, Kaur A, Gee YS, Cook GM, Baell JB, Jörg M. Phenotypic-Based Discovery and Exploration of a Resorufin Scaffold with Activity against Mycobacterium tuberculosis. ChemMedChem 2024; 19:e202400482. [PMID: 39248310 PMCID: PMC11648835 DOI: 10.1002/cmdc.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Tuberculosis remains a leading cause of death by infectious disease. The long treatment regimen and the spread of drug-resistant strains of the causative agent Mycobacterium tuberculosis (Mtb) necessitates the development of new treatment options. In a phenotypic screen, nitrofuran-resorufin conjugate 1 was identified as a potent sub-micromolar inhibitor of whole cell Mtb. Complete loss of activity was observed for this compound in Mtb mutants affected in enzyme cofactor F420 biosynthesis (fbiC), suggesting that 1 undergoes prodrug activation in a manner similar to anti-tuberculosis prodrug pretomanid. Exploration of the structure-activity relationship led to the discovery of novel resorufin analogues that do not rely on the deazaflavin-dependent nitroreductase (Ddn) bioactivation pathway for their antimycobacterial activity. These analogues are of interest as they work through an alternative, currently unknown mechanism that may expand our chemical arsenal towards the treatment of this devastating disease.
Collapse
Affiliation(s)
- Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkville, Victoria3052Australia
| | - Chen‐Yi Cheung
- Department of Microbiology and Immunology, Otago School of Medical SciencesUniversity of OtagoDunedin9054New Zealand
| | - Lucy Li
- Department of Microbiology & ImmunologyThe University of Melbourne at The Peter Doherty Institute for Infection & ImmunityMelbourne, Victoria3000Australia
| | - Glen P. Carter
- Department of Microbiology & ImmunologyThe University of Melbourne at The Peter Doherty Institute for Infection & ImmunityMelbourne, Victoria3000Australia
| | - Robert W. Gable
- School of ChemistryUniversity of MelbourneParkville, Victoria3010Australia
| | - Nicholas P. West
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbane, Queensland4072Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkville, Victoria3052Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityMelbourne, Victoria3052Australia
| | - Yi Sing Gee
- Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkville, Victoria3052Australia
| | - Gregory M. Cook
- Department of Microbiology and Immunology, Otago School of Medical SciencesUniversity of OtagoDunedin9054New Zealand
| | - Jonathan B. Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkville, Victoria3052Australia
| | - Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkville, Victoria3052Australia
- Chemistry-School of Natural & Environmental SciencesNewcastle University Centre for Cancer, Newcastle UniversityBedson BuildingNewcastle Upon TyneNE1 7RUUK
| |
Collapse
|
2
|
Youse MS, Abutaleb NS, Nocentini A, S Abdelsattar A, Ali F, Supuran CT, Seleem MN, Flaherty DP. Optimization of Ethoxzolamide Analogs with Improved Pharmacokinetic Properties for In Vivo Efficacy against Neisseria gonorrhoeae. J Med Chem 2024; 67:15537-15556. [PMID: 39141375 DOI: 10.1021/acs.jmedchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-resistant gonorrhea is caused by the bacterial pathogen Neisseria gonorrhoeae, for which there is no recommended oral treatment. We have demonstrated that the FDA-approved human carbonic anhydrase inhibitor ethoxzolamide potently inhibits N. gonorrhoeae; however, is not effective at reducing N. gonorrhoeae bioburden in a mouse model. Thus, we sought to optimize the pharmacokinetic properties of the ethoxzolamide scaffold. These efforts resulted in analogs with improved activity against N. gonorrhoeae, increased metabolic stability in mouse liver microsomes, and improved Caco-2 permeability compared to ethoxzolamide. Improvement in these properties resulted in increased plasma exposure in vivo after oral dosing. Top compounds were investigated for in vivo efficacy in a vaginal mouse model of gonococcal genital tract infection, and they significantly decreased the gonococcal burden compared to vehicle and ethoxzolamide controls. Altogether, results from this study provide evidence that ethoxzolamide-based compounds have the potential to be effective oral therapeutics against gonococcal infection.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Farman Ali
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze 50122, Italy
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Rice J, Gibson J, Young E, Souder K, Cunningham K, Schmitt DM. Low Oxygen Concentration Reduces Neisseria gonorrhoeae Susceptibility to Resazurin. Antibiotics (Basel) 2024; 13:395. [PMID: 38786124 PMCID: PMC11117329 DOI: 10.3390/antibiotics13050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Neisseria gonorrhoeae has developed resistance to every antibiotic currently approved for the treatment of gonorrhea, prompting the development of new therapies. The phenoxazine dye resazurin exhibits robust antimicrobial activity against N. gonorrhoeae in vitro but fails to limit vaginal colonization by N. gonorrhoeae in a mouse model. The lack of in vivo efficacy may be due to oxygen limitation as in vitro susceptibility assays with resazurin are conducted under atmospheric oxygen while a microaerophilic environment is present in the vagina. Here, we utilized broth microdilution assays to determine the susceptibility of N. gonorrhoeae to resazurin under low and atmospheric oxygen conditions. The minimal inhibitory concentration of resazurin for multiple N. gonorrhoeae clinical isolates was significantly higher under low oxygen. This effect was specific to resazurin as N. gonorrhoeae was equally susceptible to other antibiotics under low and atmospheric oxygen conditions. The reduced susceptibility of N. gonorrhoeae to resazurin under low oxygen was largely attributed to reduced oxidative stress, as the addition of antioxidants under atmospheric oxygen mimicked the reduced susceptibility to resazurin observed under low oxygen. Together, these data suggest oxygen concentration is an important factor to consider when evaluating the efficacy of new antibiotics against N. gonorrhoeae in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Deanna M. Schmitt
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA
| |
Collapse
|
4
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
Elhassanny AEM, Abutaleb NS, Seleem MN. Auranofin exerts antibacterial activity against Neisseria gonorrhoeae in a female mouse model of genital tract infection. PLoS One 2022; 17:e0266764. [PMID: 35446884 PMCID: PMC9022871 DOI: 10.1371/journal.pone.0266764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae has been classified by the U.S. Centers for Disease Control and Prevention as an urgent threat due to the rapid development of antibiotic resistance to currently available antibiotics. Therefore, there is an urgent need to find new antibiotics to treat gonococcal infections. In our previous study, the gold-containing drug auranofin demonstrated potent in vitro activity against clinical isolates of N. gonorrhoeae, including multidrug-resistant strains. Therefore, the aim of this study was to investigate the in vivo activity of auranofin against N. gonorrhoeae using a murine model of vaginal infection. A significant reduction in N. gonorrhoeae recovered from the vagina was observed for infected mice treated with auranofin compared to the vehicle over the course of treatment. Relative to the vehicle, after three and five days of treatment with auranofin, a 1.04 (91%) and 1.40 (96%) average log10-reduction of recovered N. gonorrhoeae was observed. In conclusion, auranofin has the potential to be further investigated as a novel, safe anti-gonococcal agent to help meet the urgent need for new antimicrobial agents for N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Ahmed E. M. Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nader S. Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
6
|
Abutaleb NS, Elhassanny AEM, Seleem MN. In vivo efficacy of acetazolamide in a mouse model of Neisseria gonorrhoeae infection. Microb Pathog 2022; 164:105454. [PMID: 35189278 PMCID: PMC8923983 DOI: 10.1016/j.micpath.2022.105454] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Gonococcal infections represent an urgent public health threat worldwide due to the increasing incidence of infections that has been accompanied by an increase in bacterial resistance to most antibiotics. This has resulted in a dwindling number of effective treatment options. Undoubtedly, there is a critical need to develop new, effective anti-gonococcal agents. In an effort to discover new anti-gonococcal therapeutics, we previously identified acetazolamide, a carbonic anhydrase inhibitor, as a novel inhibitor of Neisseria gonorrhoeae. Acetazolamide exhibited potent anti-gonococcal activity in vitro as it inhibited growth of strains of N. gonorrhoeae at concentrations that ranged from 0.5 to 4 μg/mL. The aim of this study was to investigate the in vivo efficacy of acetazolamide in a mouse model of N. gonorrhoeae genital tract infection. Compared to vehicle-treated mice, acetazolamide significantly reduced the gonococcal burden by 90% in the vagina of infected mice after three days of treatment. These results indicate that acetazolamide warrants further investigation as a promising treatment option to supplement the limited pipeline of anti-gonococcal therapeutics.
Collapse
Affiliation(s)
- Nader S. Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmed E. M. Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA,Corresponding Author: Mohamed N. Seleem, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA, Phone: 540-231-2703,
| |
Collapse
|
7
|
Collins E, Martin C, Blomquist T, Phillips K, Cantlay S, Fisher N, Horzempa J. The utilization of Blaptica dubia cockroaches as an in vivo model to test antibiotic efficacy. Sci Rep 2021; 11:24004. [PMID: 34907348 PMCID: PMC8671488 DOI: 10.1038/s41598-021-03486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Insects are now well recognized as biologically relevant alternative hosts for dozens of mammalian pathogens and they are routinely used in microbial pathogenesis studies. Unfortunately, these models have yet to be incorporated into the drug development pipeline. The purpose of this work was to begin to evaluate the utility of orange spotted (Blaptica dubia) cockroaches in early antibiotic characterization. To determine whether these model hosts could exhibit mortality when infected with bacteria that are pathogenic to humans, we subjected B. dubia roaches to a range of infectious doses of Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii to identify the medial lethal dose. These results showed that lethal disease did not develop following infection of high doses of S. aureus, and A. baumannii. However, cockroaches infected with E. coli and K. pneumoniae succumbed to infection (LD50s of 5.82 × 106 and 2.58 × 106 respectively) suggesting that this model may have limitations based on pathogen specificity. However, because these cockroaches were susceptible to infection from E. coli and K. pneumoniae, we used these bacterial strains for subsequent antibiotic characterization studies. These studies suggested that β-lactam antibiotic persistence and dose was associated with reduction of hemolymph bacterial burden. Moreover, our data indicated that the reduction of bacterial CFU was directly due to the drug activity. Altogether, this work suggests that the orange-spotted cockroach infection model provides an alternative in vivo setting from which antibiotic efficacy can be evaluated.
Collapse
Affiliation(s)
- Elliot Collins
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Caleb Martin
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Tyler Blomquist
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Katherine Phillips
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Stuart Cantlay
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | | | - Joseph Horzempa
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA.
| |
Collapse
|
8
|
Souder K, Beatty EJ, McGovern SC, Whaby M, Young E, Pancake J, Weekley D, Rice J, Primerano DA, Denvir J, Horzempa J, Schmitt DM. Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin. Antibiotics (Basel) 2021; 10:antibiotics10080992. [PMID: 34439042 PMCID: PMC8388984 DOI: 10.3390/antibiotics10080992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
The phenoxazine dye resazurin exhibits bactericidal activity against the Gram-negative pathogens Francisella tularensis and Neisseria gonorrhoeae. One resazurin derivative, resorufin pentyl ether, significantly reduces vaginal colonization by Neisseria gonorrhoeae in a mouse model of infection. The narrow spectrum of bacteria susceptible to resazurin and its derivatives suggests these compounds have a novel mode of action. To identify potential targets of resazurin and mechanisms of resistance, we isolated mutants of F. tularensis subsp. holarctica live vaccine strain (LVS) exhibiting reduced susceptibility to resazurin and performed whole genome sequencing. The genes pilD (FTL_0959) and dipA (FTL_1306) were mutated in half of the 46 resazurin-resistant (RZR) strains sequenced. Complementation of select RZR LVS isolates with wild-type dipA or pilD partially restored sensitivity to resazurin. To further characterize the role of dipA and pilD in resazurin susceptibility, a dipA deletion mutant, ΔdipA, and pilD disruption mutant, FTL_0959d, were generated. Both mutants were less sensitive to killing by resazurin compared to wild-type LVS with phenotypes similar to the spontaneous resazurin-resistant mutants. This study identified a novel role for two genes dipA and pilD in F. tularensis susceptibility to resazurin.
Collapse
Affiliation(s)
- Kendall Souder
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Emma J. Beatty
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Siena C. McGovern
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Michael Whaby
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Emily Young
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Jacob Pancake
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Daron Weekley
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Justin Rice
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Donald A. Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (D.A.P.); (J.D.)
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (D.A.P.); (J.D.)
| | - Joseph Horzempa
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
| | - Deanna M. Schmitt
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA; (K.S.); (E.J.B.); (S.C.M.); (M.W.); (E.Y.); (J.P.); (D.W.); (J.R.); (J.H.)
- Correspondence: ; Tel.: +1-304-336-8576
| |
Collapse
|
9
|
Connolly KL, Pilligua-Lucas M, Gomez C, Costenoble-Caherty AC, Soc A, Underwood K, Macintyre AN, Sempowski GD, Jerse AE. Preclinical Testing of Vaccines and Therapeutics for Gonorrhea in Female Mouse Models of Lower and Upper Reproductive Tract Infection. J Infect Dis 2021; 224:S152-S160. [PMID: 34396408 DOI: 10.1093/infdis/jiab211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine models of Neisseria gonorrhoeae lower reproductive tract infection are valuable systems for studying N. gonorrhoeae adaptation to the female host and immune responses to infection. These models have also accelerated preclinical testing of candidate therapeutic and prophylactic products against gonorrhea. However, because N. gonorrhoeae infection is restricted to the murine cervicovaginal region, there is a need for an in vivo system for translational work on N. gonorrhoeae pelvic inflammatory disease (PID). Here we discuss the need for well-characterized preclinical upper reproductive tract infection models for developing candidate products against N. gonorrhoeae PID, and report a refinement of the gonorrhea mouse model that supports sustained upper reproductive tract infection. To establish this new model for vaccine testing, we also tested the licensed meningococcal 4CMenB vaccine, which cross-protects against murine N. gonorrhoeae lower reproductive tract infection, for efficacy against N. gonorrhoeae in the endometrium and oviducts following transcervical or vaginal challenge.
Collapse
Affiliation(s)
- Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Carolina Gomez
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Knashka Underwood
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Oeschger TM, Erickson DC. Visible colorimetric growth indicators of Neisseria gonorrhoeae for low-cost diagnostic applications. PLoS One 2021; 16:e0252961. [PMID: 34138928 PMCID: PMC8211239 DOI: 10.1371/journal.pone.0252961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
N. gonorrhoeae is one of the most pressing antibiotic resistant threats of our time and low-cost diagnostics that can easily identify antibiotic resistance are desperately needed. However, N. gonorrhoeae responds so uniquely to growth conditions that it cannot be assumed gonorrhea will respond to common microbiological methods used for other pathogenic organisms. In this paper, we explore visual colorimetric indicators of N. gonorrhoeae growth that can be seen without a microscope or spectrophotometer. We evaluate growth media, pH indicators, resazurin-based dyes, and tetrazolium-based dyes for their use in simple colorimetric system. Overall, we identified Graver Wade media as the best at supporting robust gonococcal growth while also providing the least background when analyzing results of colorimetric tests. XTT, a tetrazolium-based dye, proved to show to brightest color change over time and not negatively impact the natural growth of N. gonorrhoeae. However, other dyes including PrestoBlue, MTT, and NBT are less expensive than XTT and work well when added after bacterial growth has already occurred. By identifying the specific use cases of these dyes, this research lays the groundwork for future development of a color-based antibiotic susceptibility low-cost test for N. gonorrhoeae.
Collapse
Affiliation(s)
- Taylor Mae Oeschger
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - David Carl Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
- Division of Nutritional Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Aron ZD, Mehrani A, Hoffer ED, Connolly KL, Srinivas P, Torhan MC, Alumasa JN, Cabrera M, Hosangadi D, Barbor JS, Cardinale SC, Kwasny SM, Morin LR, Butler MM, Opperman TJ, Bowlin TL, Jerse A, Stagg SM, Dunham CM, Keiler KC. trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo. Nat Commun 2021; 12:1799. [PMID: 33741965 PMCID: PMC7979765 DOI: 10.1038/s41467-021-22012-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Bacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.
Collapse
Affiliation(s)
- Zachary D Aron
- Microbiotix, Inc. One Innovation Dr., Worcester, MA, USA
| | - Atousa Mehrani
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Eric D Hoffer
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Pooja Srinivas
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Molecular & Systems Pharmacology Graduate Program, Emory University, Atlanta, GA, USA
| | | | - John N Alumasa
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, PA, USA
| | - Mynthia Cabrera
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, PA, USA
| | - Divya Hosangadi
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, PA, USA
| | - Jay S Barbor
- Microbiotix, Inc. One Innovation Dr., Worcester, MA, USA
| | | | | | - Lucas R Morin
- Microbiotix, Inc. One Innovation Dr., Worcester, MA, USA
| | | | | | - Terry L Bowlin
- Microbiotix, Inc. One Innovation Dr., Worcester, MA, USA
| | - Ann Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Christine M Dunham
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Kenneth C Keiler
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, PA, USA.
| |
Collapse
|
12
|
Vincent LR, Jerse AE. Biological feasibility and importance of a gonorrhea vaccine for global public health. Vaccine 2019; 37:7419-7426. [PMID: 29680200 PMCID: PMC6892272 DOI: 10.1016/j.vaccine.2018.02.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
There is a growing public health interest in controlling sexually transmitted infections (STIs) through vaccination due to increasing recognition of the global disease burden of STIs and the role of STIs in women's reproductive health, adverse pregnancy outcomes, and the health and well-being of neonates. Neisseria gonorrhoeae has historically challenged vaccine development through the expression of phase and antigenically variable surface molecules and its capacity to cause repeated infections without inducing protective immunity. An estimated 78 million new N. gonorrhoeae infections occur annually and the greatest disease burden is carried by low- and middle-income countries (LMIC). Current control measures are clearly inadequate and threatened by the rapid emergence of antibiotic resistance. The gonococcus now holds the status of "super-bug" as there is currently no single reliable monotherapy for empirical treatment of gonorrhea. The problem of antibiotic resistance has elevated treatment costs and necessitated the establishment of large surveillance programs to track the spread of resistant strains. Here we review the need for a gonorrhea vaccine with respect to global disease burden and related socioeconomic and treatment costs, with an emphasis on the impact of gonorrhea on women and newborns. We also highlight the challenge of estimating the impact of a gonorrhea vaccine due to the need for more data on the burden of gonococcal pelvic inflammatory disease and related sequelae and of gonorrhea-associated adverse pregnancy outcomes and the problem of empirical diagnosis and treatment of STIs in LMIC. There is also a lack of clinical and basic science research in the area of gonococcal/chlamydia coinfection, which occurs in a high percentage of individuals with gonorrhea and should be considered when testing the efficacy of gonorrhea vaccines. Finally, we review recent research that suggests a gonorrhea vaccine is feasible and discuss challenges and research gaps in gonorrhea vaccine development.
Collapse
Affiliation(s)
- Leah R Vincent
- National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, United States.
| | - Ann E Jerse
- Department of Microbiology and Immunology F. Edward Herbert School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20854, United States.
| |
Collapse
|
13
|
Cuartas V, Crespo MDP, Priego EM, Persoons L, Daelemans D, Camarasa MJ, Insuasty B, Pérez-Pérez MJ. Design and Synthesis of New 6-Nitro and 6-Amino-3,3a,4,5-Tetrahydro-2 H-Benzo[ g]indazole Derivatives: Antiproliferative and Antibacterial Activity. Molecules 2019; 24:molecules24234236. [PMID: 31766444 PMCID: PMC6930490 DOI: 10.3390/molecules24234236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022] Open
Abstract
New substituted benzo[g]indazoles functionalized with a 6-nitro and 6-amino groups have been synthesized by the reaction of benzylidene tetralones with hydrazine in acetic acid. The resulting conformationally-constrained compounds were evaluated for their antiproliferative activity against selected cancer cell lines. The nitro-based indazoles 11a, 11b, 12a and 12b have shown IC50 values between 5–15 μM against the lung carcinoma cell line NCI-H460. Moreover, the nitro compounds were tested for antibacterial activity where compounds 12a and 13b have shown MIC values of 250 and 62.5 μg/mL against N. gonorrhoeae with no hemolytic activity in human red blood cells (RBC).
Collapse
Affiliation(s)
- Viviana Cuartas
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. Cali 25360, Colombia;
- Centre for Bioinformatics and Photonics-CIBioFI, Calle 13 No. 100-00, Edificio E20, No. 1069, Cali 760032, Colombia
| | - María del Pilar Crespo
- Grupo de Biotecnología e Infecciones Bacterianas, Departamento de Microbiología, Universidad del Valle, Cali 760043, Colombia;
| | - Eva-María Priego
- Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.-M.P.); (M.-J.C.)
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (L.P.); (D.D.)
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (L.P.); (D.D.)
| | - María-José Camarasa
- Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.-M.P.); (M.-J.C.)
| | - Braulio Insuasty
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. Cali 25360, Colombia;
- Centre for Bioinformatics and Photonics-CIBioFI, Calle 13 No. 100-00, Edificio E20, No. 1069, Cali 760032, Colombia
- Correspondence: (M.-J.P.-P.); (B.I.); Tel.: +34-91-258-7516 (M.-J.P.-P.); +57-315-484-6665 (B.I.); Fax: +34-91-5644853 (M.-J.P.-P.); +57-2339-3248 (B.I.)
| | - María-Jesús Pérez-Pérez
- Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (E.-M.P.); (M.-J.C.)
- Correspondence: (M.-J.P.-P.); (B.I.); Tel.: +34-91-258-7516 (M.-J.P.-P.); +57-315-484-6665 (B.I.); Fax: +34-91-5644853 (M.-J.P.-P.); +57-2339-3248 (B.I.)
| |
Collapse
|
14
|
Pharmacokinetic Data Are Predictive of In Vivo Efficacy for Cefixime and Ceftriaxone against Susceptible and Resistant Neisseria gonorrhoeae Strains in the Gonorrhea Mouse Model. Antimicrob Agents Chemother 2019; 63:AAC.01644-18. [PMID: 30642924 DOI: 10.1128/aac.01644-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023] Open
Abstract
There is a pressing need for drug development for gonorrhea. Here we describe a pharmacokinetic (PK)/pharmacodynamic (PD) analysis of extended-spectrum cephalosporins (ESC) against drug-susceptible and drug-resistant gonococcal strains in a murine genital tract infection model. The PK determined in uninfected mice displayed a clear dose-response in plasma levels following single doses of ceftriaxone (CRO) (intraperitoneal) or cefixime (CFM) (oral). The observed doses required for efficacy against ESC-susceptible (ESCs) strain FA1090 were 5 mg/kg of body weight (CRO) and 12 mg/kg (CFM); these doses had estimated therapeutic times (the time that the free drug concentration remains above the MIC [fT MIC]) of 24 h and 37 h, respectively. No single dose of CRO or CFM was effective against ESC-resistant (ESCr) strain H041. However, fractionation (three times a day every 8 h [TIDq8h]) of a 120-mg/kg dose of CRO resulted in estimated therapeutic times in the range of 23 h and cleared H041 infection in a majority (90%) of mice, comparable to the findings for gentamicin. In contrast, multiple CFM doses of 120 or 300 mg/kg administered TIDq8h cleared infection in ≤50% of mice, with the therapeutic times estimated from single-dose PK data being 13 and 27 h, respectively. This study reveals a clear relationship between plasma ESC levels and bacterial clearance rates in the gonorrhea mouse model. The PK/PD relationships observed in mice reflected those observed in humans, with in vivo efficacy against an ESCs strain requiring doses that yielded an fT MIC in excess of 20 to 24 h. PK data also accurately predicted the failure of single doses of ESCs against an ESCr strain and were useful in designing effective dosing regimens.
Collapse
|
15
|
Abstract
Mouse models of infection are important tools in the study of infectious disease or host the development of products to prevent or treat infections. The estradiol-treated mouse model of Neisseria gonorrhoeae genital tract infection has proved to be a valuable system for determining the importance of gonococcal factors that mediate evasion of host innate effectors in vivo or host gonococcal adaptation to hormonally driven host factors in females. Examination of mechanisms that Neisseria gonorrhoeae uses to subvert the host immune response also has been greatly aided by this whole model system, as have studies on the consequence of antibiotic resistance mutations on gonococcal fitness in vivo and the search for new antibiotics to treat antibiotic-resistant infections. The strict human specificity of N. gonorrhoeae limits the ability of experimental murine infection to mimic human infection. However, in recent years, the development of transgenic mice and protocols for supplementing mice with human factors has improved animal modeling of gonorrhea. To date, however, because the mouse estrous cycle is much shorter than the human reproductive cycle, all reported gonorrhea mouse models require treatment with estradiol and antibiotics to maintain an estrus-like state and suppress the overgrowth of inhibitory commensal flora that occurs under the influence of estrogen to allow sustained N. gonorrhoeae infection. In this chapter, we detail the methods used to (1) prepare the mice for experimental infection with N. gonorrhoeae, (2) inoculate mice and quantitatively culture vaginal swabs for noncompetitive and competitive infection experiments, and (3) monitor the host innate immune response to infection.
Collapse
Affiliation(s)
- Erica L Raterman
- Uniformed Services, University of the Health Sciences, Bethesda, MD, USA
| | - Ann E Jerse
- Uniformed Services, University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
16
|
Foerster S, Desilvestro V, Hathaway LJ, Althaus CL, Unemo M. A new rapid resazurin-based microdilution assay for antimicrobial susceptibility testing of Neisseria gonorrhoeae. J Antimicrob Chemother 2018; 72:1961-1968. [PMID: 28431096 PMCID: PMC5890744 DOI: 10.1093/jac/dkx113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/19/2017] [Indexed: 12/27/2022] Open
Abstract
Objectives Rapid, cost-effective and objective methods for antimicrobial susceptibility testing of Neisseria gonorrhoeae would greatly enhance surveillance of antimicrobial resistance. Etest, disc diffusion and agar dilution methods are subjective, mostly laborious for large-scale testing and take ∼24 h. We aimed to develop a rapid broth microdilution assay using resazurin (blue), which is converted into resorufin (pink fluorescence) in the presence of viable bacteria. Methods The resazurin-based broth microdilution assay was established using 132 N. gonorrhoeae strains and the antimicrobials ceftriaxone, cefixime, azithromycin, spectinomycin, ciprofloxacin, tetracycline and penicillin. A regression model was used to estimate the MICs. Assay results were obtained in ∼7.5 h. Results The EC 50 of the dose-response curves correlated well with Etest MIC values (Pearson's r = 0.93). Minor errors resulting from misclassifications of intermediate strains were found for 9% of the samples. Major errors (susceptible strains misclassified as resistant) occurred for ceftriaxone (4.6%), cefixime (3.3%), azithromycin (0.6%) and tetracycline (0.2%). Only one very major error was found (a ceftriaxone-resistant strain misclassified as susceptible). Overall the sensitivity of the assay was 97.1% (95% CI 95.2-98.4) and the specificity 78.5% (95% CI 74.5-82.9). Conclusions A rapid, objective, high-throughput, quantitative and cost-effective broth microdilution assay was established for gonococci. For use in routine diagnostics without confirmatory testing, the specificity might remain suboptimal for ceftriaxone and cefixime. However, the assay is an effective low-cost method to evaluate novel antimicrobials and for high-throughput screening, and expands the currently available methodologies for surveillance of antimicrobial resistance in gonococci.
Collapse
Affiliation(s)
- Sunniva Foerster
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christian L Althaus
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Örebro University, Örebro, Sweden
| |
Collapse
|
17
|
Eklund BE, Mahdi O, Huntley JF, Collins E, Martin C, Horzempa J, Fisher NA. The orange spotted cockroach ( Blaptica dubia, Serville 1839) is a permissive experimental host for Francisella tularensis. PROCEEDINGS OF THE WEST VIRGINIA ACADEMY OF SCIENCE 2017; 89:34-47. [PMID: 29578544 PMCID: PMC5863744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Francisella tularensis is a zoonotic bacterial pathogen that causes severe disease in a wide range of host animals, including humans. Well-developed murine models of F. tularensis pathogenesis are available, but they do not meet the needs of all investigators. However, researchers are increasingly turning to insect host systems as a cost-effective alternative that allows greater increased experimental throughput without the regulatory requirements associated with the use of mammals in biomedical research. Unfortunately, the utility of previously-described insect hosts is limited because of temperature restriction, short lifespans, and concerns about the immunological status of insects mass-produced for other purposes. Here, we present a novel host species, the orange spotted (OS) cockroach (Blaptica dubia), that overcomes these limitations and is readily infected by F. tularensis. Intrahemocoel inoculation was accomplished using standard laboratory equipment and lethality was directly proportional to the number of bacteria injected. Progression of infection differed in insects housed at low and high temperatures and F. tularensis mutants lacking key virulence components were attenuated in OS cockroaches. Finally, antibiotics were delivered to infected OS cockroaches by systemic injection and controlled feeding; in the latter case, protection correlated with oral bioavailability in mammals. Collectively, these results demonstrate that this new host system provides investigators with a new tool capable of interrogating F. tularensis virulence and immune evasion in situations where mammalian models are not available or appropriate, such as undirected screens of large mutant libraries.
Collapse
Affiliation(s)
- Bridget E. Eklund
- Russel and Anna Duncan Undergraduate Research Program, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND
| | - Osama Mahdi
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND
| | - Jason F. Huntley
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV
| | - Caleb Martin
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV
| | - Nathan A. Fisher
- Department of Public Health, North Dakota State University, Fargo, ND
- Drug Development Division, Southern Research, Frederick, MD
| |
Collapse
|