1
|
Skaličková M, Abramenko N, Charnavets T, Vellieux F, Leischner Fialová J, Kučnirová K, Kejík Z, Masařík M, Martásek P, Pacak K, Pacák T, Jakubek M. Interaction of Selected Anthracycline and Tetracycline Chemotherapeutics with Poly(I:C) Molecules. ACS OMEGA 2025; 10:15935-15946. [PMID: 40321536 PMCID: PMC12044458 DOI: 10.1021/acsomega.4c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/11/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Despite the natural ability of the immune system to recognize cancer and, in some patients, even to eliminate it, cancer cells have acquired numerous evading mechanisms. With the increasing knowledge and focus shifting from targeting rapidly proliferating cells with chemotherapy to modulating the immune system, there have been recent efforts to integrate (e.g., simultaneously or sequentially) various therapeutic approaches. Combining the oncolytic activity of some chemotherapeutics with immunostimulatory molecules, so-called chemoimmunotherapy, is an attractive strategy. An example of such an immunostimulatory molecule is polyinosinic:polycytidylic acid [Poly(I:C)], a synthetic analogue of double-stranded RNA characterized by rapid nuclease degradation hampering its biological activity. This study investigated the possible interactions of tetracycline and anthracycline chemotherapeutics with different commercial Poly(I:C) molecules and protection against nuclease degradation. Fluorescence spectroscopy and circular dichroism revealed an interaction of all of the selected chemotherapeutics with Poly(I:C)s and the ability of doxycycline and minocycline to prolong the resistance to RNase cleavage, respectively. The partial protection was observed in vitro as well.
Collapse
Affiliation(s)
- Markéta Skaličková
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Nikita Abramenko
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Tatsiana Charnavets
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252
50 Vestec, Czech
Republic
| | - Frédéric Vellieux
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | | | - Kateřina Kučnirová
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625
00, Czech Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Karel Pacak
- Section on
Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Tomáš Pacák
- TumorSHOT, Italská 2581/67, Vinohrady,
Praha 2, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| |
Collapse
|
2
|
Amir M, Qureshi MA, Musarrat J, Javed S. Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study. Biochim Biophys Acta Gen Subj 2025; 1869:130751. [PMID: 39725241 DOI: 10.1016/j.bbagen.2024.130751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. The absorption spectra indicated a hypochromic effect when EDB was combined with ctDNA. The binding constant (Ka) of EDB-ctDNA complex was calculated as 7.84 × 103 M-1, corresponds to a free energy change (ΔG) value of approximately -5.06 kcal/mol, indicating a moderate binding affinity. Fluorometric analysis revealed a static binding mechanism in the ground state, with a bimolecular enhancement constant (KB) of 7.56 × 1011 M-1. Displacement experiments demonstrated that EDB preferentially binds to the minor groove of ctDNA, with a Ksv value of 5.14 × 104 M-1. Further, KI quenching and CD spectroscopy confirmed the minor groove binding mode, which was associated with a decrease in the Tm from 68.28 °C to 65.84 °C, reflecting a destabilizing effect on DNA helix. Molecular docking supported these findings, showing that EDB exhibits a strong affinity for the minor groove of ctDNA and hydrogen bonding and Vander Waal interactions are the major forces involved in the binding. These results suggest that EDB primarily binds to the minor groove of ctDNA, which may play a role in its anticancer activity.
Collapse
Affiliation(s)
- Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; Department of Biosciences, Integral University, Lucknow 226016, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Raj A, Vidya L, Varun TK, Sharanya CS, Abhithaj J, Roymahapatra G, Sudarsanakumar C, Gangadharan AK. Landscaping DNA binding potential of piperine derivatives by computational and biophysical methods. Int J Biol Macromol 2024; 285:138180. [PMID: 39617232 DOI: 10.1016/j.ijbiomac.2024.138180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Piperine, the alkaloid from Black pepper, is known for its wide range of pharmacological effects. The DNA binding activity of piperine was reported earlier. In this work, we explore the DNA duplex binding properties of four piperine derivatives, piperonal, piperonyl alcohol, piperonylic acid, and piperic acid using biophysical and computational techniques. Various spectroscopic and calorimetric techniques were employed for the experimental analysis. We employed UV - vis absorption and fluorescence spectroscopy to verify the binding of piperine to calf thymus DNA (ctDNA). The energetics of this interaction were analysed using isothermal titration calorimetry (ITC). Conformational changes in DNA resulting from ligand interactions were investigated using circular dichroism spectroscopy. All these experimental results consistently demonstrate that the piperine derivatives exhibit stronger binding affinity to DNA than piperine. Computational analyses, utilizing molecular docking and dynamics, revealed similar results to experimental studies, indicating that the compounds bind to the minor groove of DNA like piperine. Both in vitro and in silico investigations demonstrated the strong DNA binding potential of the examined piperine derivatives. This study is the first to report on the comparative interaction between these piperine derivatives and a DNA duplex.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - L Vidya
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - T K Varun
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, 670661, India
| | - C S Sharanya
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, 670661, India
| | - J Abhithaj
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | | - C Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | |
Collapse
|
4
|
Dey S, Nagpal I, Sow P, Dey R, Chakrovorty A, Bhattacharjee B, Saha S, Majumder A, Bera M, Subbarao N, Nandi S, Hossen Molla S, Guptaroy P, Abraham SK, Khuda-Bukhsh AR, Samadder A. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight. J Biomol Struct Dyn 2024; 42:8541-8558. [PMID: 37587909 DOI: 10.1080/07391102.2023.2246585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The present study tends to evaluate the possible potential of bio-active Morroniside (MOR), against alloxan (ALX)-induced genotoxicity and hyperglycaemia. In silico prediction revealed the interaction of MOR with Poly (ADP-ribose) polymerase (PARP) protein which corroborated well with experimental in vitro L6 cell line and in vivo mice models. Data revealed the efficacy of MOR in the selective activation of PARP protein and modulating other stress proteins NF-κB, and TNF-α to initiate protective potential against ALX-induced genotoxicity and hyperglycaemia. Further, the strong interaction of MOR with CT-DNA (calf thymus DNA) analyzed through CD spectroscopy, UV-Vis study and ITC data revealed the concerted action of bio-factors involved in inhibiting chromosomal aberration and micronucleus formation associated with DNA damage. Finally, MOR does not play any role in microbial growth inhibition which often occurs due to hyperglycemic dysbiosis. Thus, from the overall findings, we may conclude that MOR could be a potential drug candidate for the therapeutic management of induced-hyperglycaemia and genotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Dum Dum Motijheel College, Kolkata, India
| | - Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Saikat Saha
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | | | - Suresh K Abraham
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
5
|
Durga Priyadharshini R, Ravi J, Ragunathan P, Vennila KN, Elango KP. Multi-spectroscopic, thermodynamic and molecular simulation studies on binding of pyrroloquinoline quinone with DNA: coexistence of intercalation and groove binding modes. J Biomol Struct Dyn 2024; 42:7457-7466. [PMID: 37559546 DOI: 10.1080/07391102.2023.2245477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The interaction between enzyme-like pyrroloquinoline quinone (PQQ) and calf-thymus DNA (CT-DNA) has been investigated by means of multi-spectroscopic (UV-Vis, fluorescence and circular dichroism), isothermal titration calorimetric (ITC), viscometry and molecular docking and metadynamics simulation techniques. Absorption spectral data suggested the formation of a PQQ/CT-DNA complex, which quenched the fluorescence of PQQ via the dynamic quenching process. The results of CD spectral studies coupled with viscosity measurements, competitive binding assays with Hoechst 33258 and ethidium bromide (EB), KI quenching experiments, gel electrophoresis and DNA melting studies indicated groove binding mode of interaction of PQQ with CT-DNA. ITC experiment revealed that the complex formation is a spontaneous process (ΔGo < 0) with a binding constant of 1.05 × 104 M-1. The observed ΔHo < 0 and ΔSo < 0 pointed out that the complex is stabilized by van der Waals forces along with H-bonding interactions. The outcomes of molecular docking and simulation studies confirmed the binding of PQQ with DNA. The free energy surface (FES) analysis pointed out the existence of an equilibrium between partial intercalation and groove binding modes, which is in good agreement with the competitive binding assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Jayashree Ravi
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Preethi Ragunathan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
6
|
Quraishi S, Nudrat S, Kumari K, Marboh EWM, Aguan K, Singha Roy A. Elucidation of inhibitory effects of bioactive anthraquinones towards formation of DNA advanced glycation end products (DNA-AGEs). Int J Biol Macromol 2024; 269:131810. [PMID: 38677669 DOI: 10.1016/j.ijbiomac.2024.131810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
DNA is essential in biological processes as it directs transcription and translation assisting in RNA and protein synthesis. Extended periods of elevated blood glucose levels cause non-enzymatic DNA glycation, which results in the formation of DNA-AGEs and the production of free radicals, causing structural perturbation of DNA. In this work, we have investigated the glycation of calf thymus (ct-DNA) DNA and examined its inhibition by two anthraquinone derivatives, purpurin and aloin. Ribose sugar served as the glycating agent inducing non-enzymatic glycation of DNA and subsequent DNA-AGEs formation. UV-vis and fluorescence spectroscopic methods were utilized to characterize DNA-AGE formation in vitro. Circular dichroism (CD) spectroscopy was used to observe the structural disruption of DNA caused by glycation. The changes in AGEs fluorescence intensity and melting temperature (Tm) were measured to assess the inhibition of glycation process by aloin and purpurin. These derivatives demonstrated inhibitory effects via binding to glycating sites of ct-DNA or by scavenging free radicals generated during glycation. The current study elucidates the inhibitory actions of aloin and purpurin on DNA glycation, suggesting their possible applications in mitigating the adverse consequences linked to increased ribose concentrations.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Sadia Nudrat
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Erica W M Marboh
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
7
|
Yuan L, Wang K, Fang Y, Xu X, Chen Y, Zhao D, Lu K. Interaction of Cecropin A (1-7) Analogs with DNA Analyzed by Multi-spectroscopic Methods. Protein J 2024; 43:274-282. [PMID: 38265732 DOI: 10.1007/s10930-023-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105 L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104 L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.
Collapse
Affiliation(s)
- Libo Yuan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Ke Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yuan Fang
- Pharmacy Department, Zhengzhou People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Xiujuan Xu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yingcun Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Dongxin Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Kui Lu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
8
|
Gong W, Sun Y, Tu T, Huang J, Zhu C, Zhang J, Salah M, Zhao L, Xia X, Wang Y. Chitosan inhibits Penicillium expansum possibly by binding to DNA and triggering apoptosis. Int J Biol Macromol 2024; 259:129113. [PMID: 38181919 DOI: 10.1016/j.ijbiomac.2023.129113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Chitosan is a natural polysaccharide that is abundant, biocompatible and exhibits effective antifungal activity against various pathogenic fungi. However, the potential intracellular targets of chitosan in pathogenic fungi and the way of activity of chitosan are far from well known. The present work demonstrated that chitosan could inhibit Penicillium expansum, the principal causal agent of postharvest blue mold decay on apple fruits, by binding to DNA and triggering apoptosis. UV-visible spectroscopy, fluorescence spectroscopy and electrophoretic mobility assay proved the interaction between chitosan and DNA, while atomic force microscope (AFM) observation revealed the binding morphology of chitosan to DNA. Chitosan could inhibit in vitro DNA replication, and cell cycle analysis employing flow cytometry demonstrated that cell cycle was retarded by chitosan treatment. Furthermore, the reactive oxygen species (ROS) assay and membrane potential analysis showed that apoptosis was induced in P. expansum cells after exposure to chitosan. In conclusion, our results confirmed that chitosan interacts with DNA and induces apoptosis. These findings are expected to provide a feasible theoretical basis and practical direction for the promoting and implementing of chitosan in plant protection and further illuminate the possible antifungal mechanisms of chitosan against fungal pathogens.
Collapse
Affiliation(s)
- Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yemei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juanying Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenyang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahmoud Salah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Luning Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoshuang Xia
- Center of Analysis, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Quraishi S, Saha D, Kumari K, Jha AN, Roy AS. Non-covalent binding interaction of bioactive coumarin esculetin with calf thymus DNA and yeast transfer RNA: A detailed investigation to decipher the binding affinities, binding location, interacting forces and structural alterations at a molecular level. Int J Biol Macromol 2024; 257:128568. [PMID: 38061533 DOI: 10.1016/j.ijbiomac.2023.128568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Esculetin is a well-known coumarin derivative found abundantly in nature possessing an extensive array of pharmacological and therapeutic properties. Consequently, to comprehend its molecular recognition mechanism, our objective is to conduct a complete investigation of its interactions with the nucleic acid, specifically ct-DNA, and t-RNA, using spectroscopic and computational techniques. The intrinsic fluorescence of esculetin is quenched when it interacts with ct-DNA and t-RNA, and this occurs through a static quenching mechanism. The thermodynamic parameters demonstrated that the interaction is influenced by hydrogen bonding and weak van der Waals forces. CD and FT-IR results revealed no conformational changes in ct-DNA and t-RNA structure on binding with esculetin. Furthermore, competitive displacement assay with ethidium bromide, melting temperature, viscosity measurement, and potassium iodide quenching experiments, reflected that esculetin probably binds to the minor groove of ct-DNA. The molecular docking results provided further confirmation for the spectroscopic findings, including the binding location of esculetin and binding energies of esculetin complexes with ct-DNA and t-RNA. Molecular dynamics simulation studies demonstrated the conformational stability and flexibility of nucleic acids.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India.
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
10
|
Pan B, Lv M, Du H, Zhao D, Lu K. Spectroscopic studies on noncovalent binding of nicotinamide-modified BRCA1 (856-871) analogs to calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122531. [PMID: 36854231 DOI: 10.1016/j.saa.2023.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Various peptide drugs have entered the market with the development of molecular biology. Peptide drugs are used for treat diseases such as diabetes, breast cancer, and HIV infection. In this study, three nicotinamide-modified peptides were synthesized by modifying the N-terminus of BRCA1 (856-871, Y856R, K862Y, R866W) peptide with three nicotinic acid derivatives using solid-phase peptide synthesis. The results of calf thymus DNA (ctDNA) binding activity indicated that binding constants of BRCA1 (856-871, Y856R, K862Y, R866W) (P0) and three nicotinamide-modified peptides (P1, P2, and P3) to ctDNA were 1.89 × 103, 2.97 × 104, 7.61 × 104, and 8.09 × 104 L·mol-1, respectively. The binding affinity of the modified peptides was superior to that of BRCA1 (856-871, Y856R, K862Y, R866W). ΔHθ < 0 and ΔSθ < 0 indicated that van der Waals force and hydrogen bond contributed most to peptide-ctDNA binding. Results obtained by Circular dichroism (CD) indicated that peptide binding interaction led to conformational changes in ctDNA. Ultraviolet-visible (UV) spectroscopy, ethidium bromide (EB) competition experiments, DNA melting experiments, and viscosity measurements verified that peptides interacted with ctDNA via groove binding. Ionic strength experiments manifested that electrostatic binding was also involved in peptide-ctDNA binding.
Collapse
Affiliation(s)
- Boyuan Pan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, Henan, China
| | - Mingxiu Lv
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, Henan, China.
| |
Collapse
|
11
|
Ahmadi Oskooei F, Mehrzad J, Asoodeh A, Motavalizadehkakhky A. Multi-spectroscopic characteristics of olive oil-based Quercetin nanoemulsion (QuNE) interactions with calf thymus DNA and its anticancer activity. J Mol Liq 2022; 367:120317. [DOI: 10.1016/j.molliq.2022.120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Priyadharshini RD, Ponkarpagam S, Vennila KN, Elango KP. Multi-spectroscopic and free energy landscape analysis on the binding of antiviral drug remdesivir with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121363. [PMID: 35580462 DOI: 10.1016/j.saa.2022.121363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Remdesivir (REM) is an antiviral drug, which exercises its effect by targeting specifically RNA-dependent RNA polymerase. The interaction of REM with calf thymus DNA (CT-DNA) was investigated by multi-spectroscopic techniques (UV-Vis, fluorescence, circular dichroism and 31P NMR) in combination with different biophysical experiments and metadynamics simulation studies. UV-Vis and fluorescence spectroscopic analysis indicated formation of a complex between REM and CT-DNA, whose binding constant is in the order of 104 M-1. Competitive displacement assays with ethidium bromide (EB) and Hoechst 33258 shown that REM binds to CT-DNA via intercalation mode. Significant alteration in the band due to base stacking pairs at 274 nm in the circular dichroism spectrum, appreciable increase in relative viscosity of the biomolecule upon binding with REM and the results of potassium iodide quenching studies confirmed that REM intercalates into the base pairs of CT-DNA. Thermodynamic parameters revealed that the binding of REM to CT-DNA is a spontaneous process (ΔG0 < 0) and the main force which holds them together in the REM/CT-DNA complex is electrostatic interaction (ΔH0 < 0 and ΔS0 > 0). The up-field shift in the 31P NMR signal of REM on interaction with CT-DNA suggested that phenyl ring adjacent to the phosphate moiety of REM may involve in the intercalation process. This is well supported by the analysis of free energy surface landscape derived from metadynamics simulation studies.
Collapse
Affiliation(s)
- R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India
| | - S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India.
| |
Collapse
|
14
|
Oguzcan E, Koksal Z, Taskin-Tok T, Uzgoren-Baran A, Akbay N. Spectroscopic and molecular modeling methods to investigate the interaction between psycho-stimulant modafinil and calf thymus DNA using ethidium bromide as a fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120787. [PMID: 34990918 DOI: 10.1016/j.saa.2021.120787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Interaction type of modafinil with calf thymus DNA (ct-DNA) was examined systematically using ethidium bromide (EB) as a fluorescence probe by fluorescence spectroscopy, UV-Vis spectroscopy, viscosity and molecular docking method. The fluorescence quenching mechanism of ct-DNA-EB by modafinil can be combination of static and dynamic quenching. Results of UV-Vis absorption, competitive binding with Hoechst 33258, ionic strength effect studies, viscosity measurements were confirmed that the interaction type of modafinil with ct-DNA was intercalation. According to docking studies R-modafinil showed better interaction with ct-DNA which is consistent with known pharmacological properties of modafinil. The calculated thermodynamic parameters, enthalpy and entropy change, suggested that the driven forces are hydrogen bonding or van der Walls forces. Results of the docking studies were compatible with the experimental results and confirmed the hydrogen bond formation between modafinil and ct-DNA.
Collapse
Affiliation(s)
- Esra Oguzcan
- Department of Chemistry, Istanbul Medeniyet University, 34700 Istanbul, Turkey
| | - Zeynep Koksal
- Department of Chemistry, Istanbul Medeniyet University, 34700 Istanbul, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Gaziantep University, 27310 Gaziantep, Turkey; Department of Bioinformatics and Computational Biology, Gaziantep University, 27310 Gaziantep, Turkey
| | - Ayse Uzgoren-Baran
- Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Nuriye Akbay
- Department of Chemistry, Istanbul Medeniyet University, 34700 Istanbul, Turkey.
| |
Collapse
|
15
|
Goswami S, Ghosh R, Prasanthan P, Kishore N. Mode of interaction of altretamine with calf thymus DNA: biophysical insights. J Biomol Struct Dyn 2022; 41:3728-3740. [PMID: 35343872 DOI: 10.1080/07391102.2022.2054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insights into drug-DNA interactions have importance in medicinal chemistry as it has a major role in the evolution of new therapeutic drugs. Therefore, binding studies of small molecules with DNA are of significant interest. Spectroscopy, coupled with measurements of viscosity and molecular docking studies were employed to obtain mechanistic insights into the binding of altretamine with calf thymus DNA (CT-DNA). The UV-visible spectroscopic measurements study confirmed altretamine-CT-DNA complex formation with affinity constant ([15.68 ± 0.04] × 103 M-1), a value associated with groove binding phenomenon. The associated thermodynamic signatures suggest enthalpically driven interactions. The values of standard molar free energy change (ΔGmo) -(23.93 ± 0.23) kJ mol-1, enthalpy change (ΔvHHmo) -(50.84 ± 0.19) kJ mol-1 and entropy change (ΔSmo) -(90.29 ± 0.12) JK-1 mol-1 indicate the binding is thermodynamically favorable and an important role of the hydrogen bonds and Van der Waals interactions in the binding of altretamine with CT-DNA. Circular dichroism spectroscopy indicated insignificant conformational changes in the DNA backbone upon interaction with altretamine suggesting no distortion and/or unstacking of the base pairs in the DNA helix. UV-melting study suggested that the thermal stability of the DNA backbone is not affected by the binding of the drug. Competitive displacement assays with ethidium bromide, Hoechst-33258 and DAPI established the binding of altretamine with CT-DNA in the minor groove. The mode of binding was further confirmed by viscosity and molecular docking studies. Molecular docking further ascertained binding of altretamine in the minor groove of the CT-DNA, preferably with the A-T rich sequences.
Collapse
Affiliation(s)
- Sathi Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| |
Collapse
|
16
|
Jin L, Li P, Li J, Yang H, Pan X, Li H, Shen B. Study on the interaction between cinnamic acid and DNA with spectroscopy and molecular docking technique. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Zeng G, Chen F, Lei Y, Zhou L, Yang X, Guo H, Tuo X, Guo Y. Revealing the binding properties between resorcinol and DNA. LUMINESCENCE 2021; 37:4-13. [PMID: 34499419 DOI: 10.1002/bio.4140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023]
Abstract
Resorcinol (1,3-dihydroxybenzene) is a common coupling agent in permanent hair dyes, and has arrested people's attention for its potential hazard to human health. However, the action mechanism of resorcinol and human DNA has not been elucidated. In this research, the binding properties between resorcinol and calf thymus DNA (ct-DNA) were studied for the first time through various spectral and molecular docking techniques. Spectral studies showed that the initial fluorescence quenching of resorcinol against DNA was a static one. The result of ΔH < 0 and ΔS > 0 was produced from thermodynamic experimental data, therefore it could be concluded that electrostatic force was the major driving force, while binding constant Kb was 1.56 × 104 M-1 at 298 K. The electrostatic binding network between resorcinol and ct-DNA was established explicitly through competitive substitution analysis and other spectral approaches. The results of FT-IR absorption spectra indicated that resorcinol had bound to the DNA phosphate skeleton. Molecular docking clearly revealed that binding occurred between hydroxyl groups of resorcinol and phosphorus oxygen bonds (P-O) of the DNA skeleton. These findings may deepen our understanding of the action mechanism between resorcinol and ct-DNA and provide some useful data on the effect of resorcinol on human diseases.
Collapse
Affiliation(s)
- Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yating Lei
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Like Zhou
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Yang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Ramotowska S, Ciesielska A, Makowski M. What Can Electrochemical Methods Offer in Determining DNA-Drug Interactions? Molecules 2021; 26:3478. [PMID: 34200473 PMCID: PMC8201389 DOI: 10.3390/molecules26113478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies. Cognition of the therapeutic action mechanisms is particularly important for designing new drugs. Owing to their sensitivity, simplicity, and low costs, electrochemical methods are increasingly used for this type of research. Compared to other techniques, they require a small number of samples and are characterized by a high reliability. These methods can provide information about the type of interaction and the binding strength, as well as the damage caused by biologically active molecules targeting the cellular DNA. This review paper summarizes the various electrochemical approaches used for the study of the interactions between pharmaceuticals and DNA. The main focus is on the papers from the last decade, with particular attention on the voltammetric techniques. The most preferred experimental approaches, the electrode materials and the new methods of modification are presented. The data on the detection ranges, the binding modes and the binding constant values of pharmaceuticals are summarized. Both the importance of the presented research and the importance of future prospects are discussed.
Collapse
Affiliation(s)
| | | | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (S.R.); (A.C.)
| |
Collapse
|
19
|
Godzieba M, Ciesielski S. Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases. Curr Cancer Drug Targets 2021; 20:19-32. [PMID: 31589125 DOI: 10.2174/1568009619666191007112516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.
Collapse
Affiliation(s)
- Martyna Godzieba
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| |
Collapse
|
20
|
Mondal P, Sengupta P, Pal U, Saha S, Bose A. Biophysical and theoretical studies of the interaction between a bioactive compound 3,5-dimethoxy-4-hydroxycinnamic acid with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118936. [PMID: 32977108 DOI: 10.1016/j.saa.2020.118936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
3,5-Dimethoxy-4-hydroxycinnamic acid commonly known as Sinapic acid is a well-known derivative of hydroxycinnamic acids, is commonly present in human diet. Due to its wide variety of pharmacological activities like antioxidant, antimicrobial, anti-inflammatory, anticancer, and anti-anxiety, it has attracted much attention for the researchers. In our previous published work we have already analyzed the interaction between sinapic acid (SA) with a model transport protein. In this work our aim is to demonstrate a detailed investigation of the binding interaction between sinapic acid with another carrier of genetic information in a living cell, the DNA. Here we have used calf thymus DNA (ct-DNA) as a model. The binding characteristic of SA with ct-DNA was investigated by different spectroscopic and theoretical tools. The spectroscopic investigation revealed that quenching of intrinsic fluorescence of SA by ct-DNA occurs through dynamic quenching mechanism. The thermodynamic parameters established the involvement of hydrogen bonding and weak van der Waals forces in the interaction. Further, the circular dichroism, competitive binding experiment with ethidium bromide and potassium iodide quenching experiment suggested that SA possibly binds to the groove position of the ct-DNA. Finally, molecular docking analysis established the SA binds to minor groove position of ct-DNA in G-C rich region through hydrogen bonding interaction. Additionally, gel electrophoresis analysis has been performed to determine the protective efficacy of SA against UVB induced DNA damage and 50 μM of SA was found to protect the DNA from UVB induced damage. We hope that our study could provide the validation of SA on behalf of therapeutics and development of next generation therapeutic drug as well as designing new efficient drug molecule and methodology for the interaction study of the drug with DNA.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Priti Sengupta
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, India
| | - Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Adity Bose
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India.
| |
Collapse
|
21
|
Yu H, Li J, Huang G, Yan L, Ma J. Binding Characteristics of Dibenzo[a,h]Anthracene with DNA In Vitro: Investigated by Spectroscopic and Magnetic Bead Methods. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1855218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hui Yu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Ji Ma
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
22
|
Zhao L, Zhao X, Ma Y, Zhang Y, Wang D. DNA Binding Characteristics and Protective Effects of Yellow Pigment from Freshly Cut Yam ( Dioscorea opposita). Molecules 2020; 25:E175. [PMID: 31906260 PMCID: PMC6983081 DOI: 10.3390/molecules25010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Yam yellow pigments (YP) are natural pigments formed during the storage of freshly cut yam (Dioscorea opposita) under certain conditions. The interaction of YP with calf thymus DNA (ctDNA) and its protective effect against DNA oxidative damage were investigated using multiple spectroscopic techniques, competitive binding experiments, viscosity measurements, and gel electrophoresis. Results showed that YP participated in intercalative binding with ctDNA. YP exhibited a protective effect against hydroxyl-induced DNA damage, which was attributed to the high hydroxyl radical scavenging activity of YP. Our findings improve our understanding of the mechanism of interaction between YP and ctDNA, and provide a theoretical basis for the application of YP in the food and drug industry.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs, Beijing 100097, China; (L.Z.); (Y.M.)
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyan Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs, Beijing 100097, China; (L.Z.); (Y.M.)
| | - Yue Ma
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs, Beijing 100097, China; (L.Z.); (Y.M.)
| | - Yan Zhang
- Longda Food Group Company Limited, Shandong, Jinan 265231, China
| | - Dan Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs, Beijing 100097, China; (L.Z.); (Y.M.)
| |
Collapse
|
23
|
Hsieh CJ, Sun M, Osborne G, Ricker K, Tsai FC, Li K, Tomar R, Phuong J, Schmitz R, Sandy MS. Cancer Hazard Identification Integrating Human Variability: The Case of Coumarin. Int J Toxicol 2019; 38:501-552. [PMID: 31845612 DOI: 10.1177/1091581819884544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coumarin is a naturally occurring sweet-smelling benzopyrone that may be extracted from plants or synthesized for commercial uses. Its uses include as a flavoring agent, fragrance enhancer, and odor-masking additive. We reviewed and evaluated the scientific evidence on the carcinogenicity of coumarin, integrating information from carcinogenicity studies in animals with mechanistic and other relevant data, including data from toxicogenomic, genotoxicity, and metabolism studies, and studies of human variability of a key enzyme, CYP2A6. Increases in tumors were observed in multiple studies in rats and mice in multiple tissues. Our functional pathway analysis identified several common cancer-related biological processes/pathways affected by coumarin in rat liver following in vivo exposure and in human primary hepatocytes exposed in vitro. When coumarin 7-hydroxylation by CYP2A6 is compromised, this can lead to a shift in metabolism to the 3,4-epoxidation pathway and increased generation of electrophilic metabolites. Mechanistic data align with 3 key characteristics of carcinogens, namely formation of electrophilic metabolites, genotoxicity, and induction of oxidative stress. Considerations of metabolism, human variability in CYP2A6 activity, and coumarin hepatotoxicity in susceptible individuals provide additional support for carcinogenicity concern. Our analysis illustrates the importance of integrating information on human variability in the cancer hazard identification process.
Collapse
Affiliation(s)
- ChingYi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Karin Ricker
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Rajpal Tomar
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA.,Retired
| | - Jimmy Phuong
- Department of Biomedical and Health Informatics, University of Washington, Seattle, WA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, CalEPA, Sacramento and Oakland, CA, USA
| |
Collapse
|
24
|
Pawar SK, Jaldappagari S. Intercalation of a flavonoid, silibinin into DNA base pairs: Experimental and theoretical approach. J Mol Recognit 2019; 33:e2812. [DOI: 10.1002/jmr.2812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Suma K. Pawar
- Department of ChemistryKarnatak University Dharwad India
| | | |
Collapse
|
25
|
Talebpour Z, Haghighi F, Taheri M, Hosseinzadeh M, Gharavi S, Habibi F, Aliahmadi A, Sadr AS, Azad J. Binding interaction of spherical silver nanoparticles and calf thymus DNA: Comprehensive multispectroscopic, molecular docking, and RAPD PCR studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Zhang G, Zhou Z, Xu J, Liao Y, Hu X. Groove binding between ferulic acid and calf thymus DNA: spectroscopic methodology combined with chemometrics and molecular docking studies. J Biomol Struct Dyn 2019; 38:2029-2037. [PMID: 31157597 DOI: 10.1080/07391102.2019.1624194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferulic acid (FA), a dietary phenolic acid compound, is proved to possess numerous biological activities. Hence, this study was devoted to explore the interaction between FA and calf thymus DNA (ctDNA) by UV - vis absorption, fluorescence, circular dichroism (CD) spectroscopy combined with multivariate curve resolution-alternating least-squares (MCR - ALS) and molecular docking studies. The concentration curves and the pure spectra of compositions (FA, ctDNA and FA - ctDNA complex) were obtained by MCR - ALS approach to verify and monitor the interaction of FA with ctDNA. The groove binding mode between FA and ctDNA was confirmed by the results of melting analysis, viscosity measurements, single-stranded DNA experiments, and competitive studies. The binding constant of FA - ctDNA complex was 4.87 × 104 L mol-1 at 298 K. The values of enthalpy (ΔH°) and entropy (ΔS°) changes in the interaction were -16.24 kJ mol-1 and 35.02 J mol-1 K-1, respectively, indicating that the main binding forces were hydrogen bonds and hydrophobic interactions. The result of CD spectra suggested that a decrease in right-handed helicity of ctDNA was induced by FA and the DNA conformational transition from the B-form to the A-form. The results of docking indicated that FA binding with ctDNA in the minor groove. These findings may be conducive to understand the interaction mechanism of FA with ctDNA and the pharmacological effects of FA. Communicated by Ramaswamy H. Sarma[Formula: see text].
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhisheng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianjian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Lv M, Wang M, Lu K, Peng L, Zhao Y. DNA/Lysozyme-binding affinity study of novel peptides from TAT (47-57) and BRCA1 (782-786) in vitro by spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:109-117. [PMID: 30384016 DOI: 10.1016/j.saa.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
SISLL-TAT and TAT-SISLL were synthesized by modifying the N- or C-termini of cell-penetrating peptides as transacting activator of transcription TAT (47-57) by attaching BRCA1 (782-786) (SISLL). The novel peptides were synthesized through Fmoc solid-phase synthesis procedures and characterized by LCQ Fleet MS, 1H NMR and 13C NMR. SISLL-TAT and TAT-SISLL displayed forceful antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhimurium with low hemolysis. SISLL-TAT showed better antibacterial activity than TAT-SISLL, with the minimum inhibitory concentration (MIC) values of 10-33 μg·mL-1. The results of the DNA-binding activities showed that both SISLL-TAT and TAT-SISLL could interact with DNA via the minor groove mode, and the binding constants were 4.97 × 105 L·mol-1 and 4.42 × 105 L·mol-1 at 310 K, respectively. Circular dichroism analysis showed slight transformation of the lysozyme secondary structure caused by SISLL-TAT and TAT-SISLL. We also found that the novel peptides SISLL-TAT and TAT-SISLL targeted bacterial DNA resulting in cell death. This explains the antibacterial mechanism of SISLL-TAT and TAT-SISLL, and is a solid theoretical basis for further designing novel and highly effective antibiotics for clinical application.
Collapse
Affiliation(s)
- Mingxiu Lv
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwei Wang
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kui Lu
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China; School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, Henan, China.
| | - Lu Peng
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 450007, Henan, China
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
28
|
Thomas RK, Sukumaran S, Sudarsanakumar C. Photobehaviour and in vitro binding strategy of natural drug, chlorogenic acid with DNA: A case of groove binding. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Karami K, Jamshidian N, Zakariazadeh M. Synthesis, characterization and molecular docking of newC,N-palladacycles containing pyridinium-derived ligands: DNA and BSA interaction studies and evaluation as anti-tumor agents. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kazem Karami
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156/83111 Iran
| | - Nasrin Jamshidian
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156/83111 Iran
| | - Mostafa Zakariazadeh
- Research Institute for Fundamental Sciences (RIFS); University of Tabriz; Tabriz Iran
| |
Collapse
|
30
|
Hebenbrock M, González-Abradelo D, Strassert CA, Müller J. DNA Groove-binding Ability of Luminescent Platinum(II) Complexes based on a Family of Tridentate N^N^C Ligands Bearing Differently Substituted Alkyl Tethers. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 30 48149 Münster Germany
| | - Darío González-Abradelo
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 48149 Münster Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 30 48149 Münster Germany
| |
Collapse
|
31
|
Ali MS, Farah MA, Al-Lohedan HA, Al-Anazi KM. Antiproliferative activities of procainamide and its binding with calf thymus DNA through multi-spectroscopic and computational approaches. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Pawar S, Tandel R, Kunabevu R, Jaldappagari S. Spectroscopic and computational approaches to unravel the mode of binding between a isoflavone, biochanin-A and calf thymus DNA. J Biomol Struct Dyn 2018; 37:846-856. [DOI: 10.1080/07391102.2018.1442748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Suma Pawar
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Ranjita Tandel
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Ramesh Kunabevu
- Department of Chemistry, SJM College, Chitradurga, 577 501, India
| | | |
Collapse
|
33
|
Ali MS, Farah MA, Al-Lohedan HA, Al-Anazi KM. Comprehensive exploration of the anticancer activities of procaine and its binding with calf thymus DNA: a multi spectroscopic and molecular modelling study. RSC Adv 2018; 8:9083-9093. [PMID: 35541873 PMCID: PMC9078652 DOI: 10.1039/c7ra13647a] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/21/2018] [Indexed: 11/21/2022] Open
Abstract
Procaine is an anesthetic drug commonly administrated topically or intravenously for use in local anesthesia. Promisingly, some anticancer activities of procaine have also been reported. Therefore, the mechanism of interaction between anesthetic drug procaine with ct-DNA was determined collectively by means of various spectroscopic and molecular docking methods. Minor groove 1 : 1 binding of procaine to the ct-DNA was evidenced from absorption spectroscopy, fluorescence quenching, DNA melting, competitive binding measurements with EB and DAPI dyes, viscosity and CD spectroscopy together with molecular docking simulations and DFT calculations. Molecular docking on five different B-DNA structures (taken from the Protein Data Bank) shows that procaine binds in the AT rich region of all five B-DNA structures. Thermodynamic parameters, evaluated using van't Hoff's isotherm, shown that the interaction was feasible and the binding forces involved were hydrophobic as well as hydrogen bonding which were, further, confirmed by molecular docking. The frontier molecular orbitals (HOMO and LUMO) of procaine and DNA bases have been calculated by DFT method and the chemical potential (μ), chemical hardness (η) and fraction number of electrons (ΔN) from procaine to DNA bases were evaluated, which have shown that procaine acts as an electron donor to the DNA bases. Simultaneously, anticancer activities of procaine alone and in combination with doxorubicin were observed on the MCF-7 breast cancer cell line. The results showed that the combined treatment with both procaine and doxorubicin enhanced the cytotoxic and apoptotic inducing potential of doxorubicin.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University P.O. Box-2455 Riyadh-11451 Saudi Arabia +966-14679972 +966-598878428
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University P.O. Box-2455 Riyadh-11451 Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University P.O. Box-2455 Riyadh-11451 Saudi Arabia +966-14679972 +966-598878428
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University P.O. Box-2455 Riyadh-11451 Saudi Arabia
| |
Collapse
|
34
|
Salehzadeh S, Hajibabaei F, Moghadam NH, Sharifinia S, Khazalpour S, Golbedaghi R. Binding Studies of Isoxsuprine Hydrochloride to Calf Thymus DNA Using Multispectroscopic and Molecular Docking Techniques. J Fluoresc 2017; 28:195-206. [DOI: 10.1007/s10895-017-2182-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
35
|
Sha Y, Chen X, Niu B, Chen Q. The Interaction Mode of Groove Binding Between Quercetin and Calf Thymus DNA Based on Spectrometry and Simulation. Chem Biodivers 2017. [DOI: 10.1002/cbdv.201700133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yijie Sha
- Shanghai Key Laboratory of Bio-Energy Crops; School of Life Sciences; Shanghai University; Shanghai P. R. China
| | - Xu Chen
- Experimental Center for Life Science; Shanghai University; Shanghai P. R. China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops; School of Life Sciences; Shanghai University; Shanghai P. R. China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops; School of Life Sciences; Shanghai University; Shanghai P. R. China
| |
Collapse
|
36
|
Li S, Pan J, Zhang G, Xu J, Gong D. Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA. Int J Biol Macromol 2017; 101:736-746. [DOI: 10.1016/j.ijbiomac.2017.03.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/03/2023]
|
37
|
Rahman Y, Afrin S, Husain MA, Sarwar T, Ali A, Shamsuzzaman, Tabish M. Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Arch Biochem Biophys 2017; 625-626:1-12. [DOI: 10.1016/j.abb.2017.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/15/2017] [Accepted: 05/25/2017] [Indexed: 11/27/2022]
|
38
|
Husain MA, Ishqi HM, Sarwar T, Rehman SU, Tabish M. Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modelling approach. MEDCHEMCOMM 2017; 8:1283-1296. [PMID: 30108839 PMCID: PMC6072532 DOI: 10.1039/c7md00094d] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
Indomethacin belongs to the acetic acid derivative class of non-steroidal anti-inflammatory drugs with diverse pharmacological and biological activities. Understanding the mechanism of interaction of drugs with possible target and off-target biomolecules can prove useful in the development of a rational drug designing system. In this paper, we have attempted to ascertain the mode of binding of indomethacin with calf thymus DNA (Ct-DNA) through various biophysical techniques and in silico molecular docking. Analysis of the UV-visible absorbance spectra and fluorescence emission profile of indomethacin upon addition of Ct-DNA indicates the formation of a drug-DNA complex. UV-visible absorbance and steady state fluorescence experiments revealed a binding constant on the order of 103 L mol-1, which is consistent with those of well-known groove binders. Competitive displacement studies with ethidium bromide, acridine orange and Hoechst 33258 further suggested that indomethacin binds to the minor groove of the Ct-DNA. The above observations were further confirmed by KI induced quenching experiments, DNA melting studies, CD spectral analysis and viscosity measurements. The thermodynamic parameters like spontaneous free energy (ΔG < 0) and large favourable enthalpy (ΔH < 0) obtained from isothermal calorimetry indicated the involvement of hydrogen bonding and van der Waals forces in the binding process. Molecular docking further corroborated the experimental results.
Collapse
Affiliation(s)
- Mohammed Amir Husain
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Hassan Mubarak Ishqi
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Tarique Sarwar
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Sayeed Ur Rehman
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Mohammad Tabish
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| |
Collapse
|
39
|
Husain MA, Ishqi HM, Rehman SU, Sarwar T, Afrin S, Rahman Y, Tabish M. Elucidating the interaction of sulindac with calf thymus DNA: biophysical and in silico molecular modelling approach. NEW J CHEM 2017. [DOI: 10.1039/c7nj03698a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sulindac is one of the most effective NSAIDs and belongs to the arylalkanoic acid class.
Collapse
Affiliation(s)
| | | | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Tarique Sarwar
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Shumaila Afrin
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Yusra Rahman
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| |
Collapse
|
40
|
Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA. RSC Adv 2017. [DOI: 10.1039/c7ra06793c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chitosan (CS) is a semi-synthetic bio-based polysaccharide with promising biological and antitumor properties.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| | - Hossein Behboudi
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| | | | - Sussan K. Ardestani
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
41
|
Synthesis, characterization and separation of chiral and achiral diastereomers of Schiff base Pd(II) complex: A comparative study of their DNA- and HSA-binding. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:246-60. [DOI: 10.1016/j.jphotobiol.2016.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
|
42
|
Shahbazy M, Pakravan P, Kompany-Zareh M. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro. J Biomol Struct Dyn 2016; 35:2539-2556. [DOI: 10.1080/07391102.2016.1225604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Shahbazy
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
43
|
Filipović NR, Bjelogrlić S, Todorović TR, Blagojević VA, Muller CD, Marinković A, Vujčić M, Janović B, Malešević AS, Begović N, Senćanski M, Minić DM. Ni(ii) complex with bishydrazone ligand: synthesis, characterization, DNA binding studies and pro-apoptotic and pro-differentiation induction in human cancerous cell lines. RSC Adv 2016. [DOI: 10.1039/c6ra24604d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new Ni(ii) complex, [Ni(L)(H2O)] (1), with diethyl 3,3′-(2,2′-(1,1′-(pyridine-2,6-diyl)bis(ethan-1-yl-1-ylidene))bis(hydrazin-1-yl-2-ylidene))bis(3-oxopropanoate) ligand (H2L) was synthesized as a potential chemotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | - Christian D. Muller
- Institut Pluridisciplinaire Hubert Curien
- UMR 7178 CNRS Université de Strasbourg
- 67401 Illkirch
- France
| | | | - Miroslava Vujčić
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Barbara Janović
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | - Nebojša Begović
- Institute of General and Physical Chemistry
- 11000 Belgrade
- Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research
- Institute of Nuclear Sciences ”Vinča”
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Dragica M. Minić
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
44
|
Zhou X, Zhang C, Zhang G, Liao Y. Intercalation of the daphnetin–Cu(ii) complex with calf thymus DNA. RSC Adv 2016. [DOI: 10.1039/c5ra22274e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The daphnetin–Cu(ii) complex binds to the A–T bases region of ctDNA and causes cleavage of plasmid DNA.
Collapse
Affiliation(s)
- Xiaoyue Zhou
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Cen Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
45
|
Preparation of ds-DNA functionalized magnetic nanobaits for screening of bioactive compounds from medicinal plant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:401-8. [DOI: 10.1016/j.msec.2015.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/23/2015] [Accepted: 06/25/2015] [Indexed: 11/22/2022]
|
46
|
Inamdar PR, Sheela A. Exploration of DNA binding mode, chemical nuclease, cytotoxic and apoptotic potentials of diketone based oxovanadium(IV) complexes. Int J Biol Macromol 2015; 76:269-78. [PMID: 25720830 DOI: 10.1016/j.ijbiomac.2015.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
Two diketone based oxovanadium complexes, viz., bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionato)oxovanadium(IV) (1) and bis(1,1,1-trifluoropentane-2,4-dionato)oxovanadium(IV) (2), have been synthesized and characterized by spectroscopic and analytical techniques. The DNA binding and the cleaving ability of the complexes is assessed by UV-vis spectroscopy, fluorescence spectroscopy, viscometry and gel electrophoretic studies. The DNA binding constant values (Kb) are found to be 1.95 ± 0.16 × 10(3)M(-1) for complex 1 and 1.064 ± 0.17 × 10(3)M(-1) for complex 2, respectively. Based on the results of the spectral and viscosity studies, it is observed that the complexes, interestingly, have preferred minor groove binding with DNA. Further, the concentration-dependent oxidative cleavage pattern of pBR322 in the presence of the activating reagent, hydrogen peroxide, has also been discussed. In addition, the complexes have shown moderate cytotoxic activity by inducing apoptosis against the cervical cancer cell line, HeLa. The results of in silico analysis and logP predictions are found to be in good agreement with the experimental observations. Thus, synthesized oxovanadium complexes have displayed promising DNA binding behavior and DNA cleavage activity with moderately cytotoxic nature.
Collapse
Affiliation(s)
- Poonam Rajiv Inamdar
- Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Angappan Sheela
- Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
47
|
Husain MA, Rehman SU, Ishqi HM, Sarwar T, Tabish M. Spectroscopic and molecular docking evidence of aspirin and diflunisal binding to DNA: a comparative study. RSC Adv 2015. [DOI: 10.1039/c5ra09181k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deciphering the binding mode between aspirin/diflunisal with Ct-DNA.
Collapse
Affiliation(s)
| | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | | | - Tarique Sarwar
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| |
Collapse
|