1
|
Wang K, Liu Y, Guo Y, Zhang C. In vitro effects of structurally diverse low molecular weight chondroitin sulfates on gut microbiota and metabolome. Int J Biol Macromol 2025; 310:143051. [PMID: 40220808 DOI: 10.1016/j.ijbiomac.2025.143051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
In this study, low molecular weight chondroitin sulfates (LMCSs) with different structures, named LMCSO, LMCSD, and LMCSH, were prepared by oxidative degradation, deamidation cleavage, and hydrothermal depolymerization, respectively. In vitro fermentation modeling was used to study the effects of CS and LMCSs on gut microbiota and metabolite composition. The degree of carbohydrate metabolism was in the order of CS > LMCSH > LMCSO > LMCSD. Significantly, GlcA in chondroitin-6-sulfate (CSC) was more readily utilized by gut microbiota during fermentation, and this trend was more pronounced in LMCSs. The LMCSs group notably increased microbial richness and evenness, especially in the LMCSD group. Bacteroides fragilis was identified as a potential primary degrader of CS and LMCSs through species-level analysis. The abundance of Escherichia-Shigella was reduced by LMCSs, and short-chain fatty acids production was enhanced, particularly by LMCSO, while the production of beneficial metabolites such as N-acetyl-D-Glucosamine 6-Phosphate (GlcNAc-6P), lactate, and progesterone was stimulated. Among these, the metabolism of the key metabolite GlcNAc-6P was significantly and positively correlated with the abundance of Bacteroides, Clostridium_sensu_stricto_1, and Parabacteroides. Exploring the mechanisms by which gut microbiota metabolize LMCSs with different structures can provide theoretical support for the targeted preparation of LMCSs that modulate the gut microbiota.
Collapse
Affiliation(s)
- Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Yunnan Haiwang Aquatic Products Co., Yunnan 654800, China.
| |
Collapse
|
2
|
Jing Y, Wang K, Pi T, Chen Z, Liu T, Liu X, Ye H, Xu X, Zhao Y. Crucial role of low molecular weight chondroitin sulfate from hybrid sturgeon cartilage in osteoarthritis improvement: Focusing on apoptosis, systemic inflammation, and intestinal flora. Int J Biol Macromol 2025; 298:139850. [PMID: 39814287 DOI: 10.1016/j.ijbiomac.2025.139850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Low molecular weight chondroitin sulfate (CS) has gained considerable attention for its superior bioactivity compared to native CS. In this study, the mechanisms of low molecular weight chondroitin sulfate from hybrid sturgeon cartilage (LMSCS), prepared using the H2O2/Vc system, on the remission of osteoarthritis (OA) were investigated both in in vitro and in vivo. A Caco-2/SW1353 co-culture cell model and a monosodium iodoacetate (MIA)-induced OA mouse model were used to validate its inhibited apoptosis, anti-inflammatory effects, and intestinal flora modulation. LMSCS was found to effectively alleviate inflammation, decrease chondrocyte apoptosis, and reduce MMP-13 levels by inhibiting the activation of NF-κB and MAPK signaling pathways. Notably, in vivo experiments, LMSCS exhibited significant anti-inflammatory effects compared to SCS. This trend, however, was not observed in vitro, which could be largely attributed to LMSCS' ability to regulate intestinal flora. Compared to SCS, LMSCS enhanced the abundance of beneficial bacteria, particularly, the Prevotellaceae_NK3B31_group and Akkermansia, and increased the levels of short-chain fatty acids such as butyrate and propionate. The effectiveness of LMSCS in mitigating inflammatory responses in vivo is thus largely due to its intestinal flora modulation, providing for its development and application.
Collapse
Affiliation(s)
- Yinghuan Jing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kangyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tianxiang Pi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Sanye Oceanographic Instinstion, Ocean University of China, Sanya 572000, China
| | - Zefan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tianhong Liu
- Marine science research Institute of Shandong province, Qingdao 266104, China
| | - Xinyu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hangyu Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Sanye Oceanographic Instinstion, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
3
|
Shen Q, Qi X, Liu Y, Yang Z, Hu C, Zhao L, Zhan H, Bian H, Ma Y. Anti-obesity and gut microbiota modulation effects of chondroitin sulfate on obese mice induced by high-fat diet. Int J Biol Macromol 2025; 298:139968. [PMID: 39826722 DOI: 10.1016/j.ijbiomac.2025.139968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Despite the extensive application of chondroitin sulfate (CS), a type of biological macromolecule, in various fields, including biomedicine, cosmetics, food, and pharmaceuticals, research into its potential anti-obesity properties remains limited. In this study, the impacts of CS on obese mice induced by a high-fat diet (HFD) were investigated. The results showed that supplementing CS effectively controlled body weight gain and fat accumulation (perirenal fat and epididymal fat) compared to the control group of obese mice. Furthermore, supplementation with CS reduced the levels of glucose and triglyceride in the serum. Analysis of 16S ribosomal RNA sequencing data illustrated that the diet supplemented with CS modified the composition of gut microbiota, particularly resulting in a reduction of Desulfobacterota and an increase in Bacteroides abundance. Correlation analysis suggested significant associations between specific gut microbiota taxa and obese phenotypes. Overall, these findings highlight that dietary intervention with CS may provide a promising strategy to mitigate obesity and its related symptoms, likely involving the role of gut microbiota in obese mice. This research offers compelling scientific evidence supporting the anti-obesity potential of CS as a dietary supplement.
Collapse
Affiliation(s)
- Qingshan Shen
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China
| | - Xudong Qi
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China
| | - Yilin Liu
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China
| | - Zhuang Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Chengzhi Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Lei Zhao
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China
| | - Huan Zhan
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China
| | - Hua Bian
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China
| | - Yanli Ma
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China.
| |
Collapse
|
4
|
Chen F, Pan J, Yu L, Zhang C, Zhao J, Tian F, Zhai Q, Chen W. Lead toxicity mitigation effect of a Lactiplantibacillus plantarum-chondroitin sulfate complex revealed by microbiome and metabolomic analyses. Food Funct 2024; 15:10110-10120. [PMID: 39291835 DOI: 10.1039/d4fo02815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lead (Pb) is a highly toxic metal with no physiological function in humans, accumulates in the body through food intake, and causes gut microbiome disorders and other hazards. In the present study, we examined the efficacy of a combination of chondroitin sulfate and Lactiplantibacillus plantarum CCFM8661 (CCFM8661 + CS) on tissue Pb accumulation and pathological damage to the liver and kidneys, gut microbiota, and fecal metabolites in Pb-exposed mice. Oral administration of CCFM8661 + CS to Pb-exposed mice reduced Pb accumulation in the liver, kidney, and bone tissues (from 3.70, 14.11 and 121.20 mg g-1 wet tissue to 2.26, 8.72 and 65.57 mg g-1 wet tissue, respectively) and increased total antioxidant capacity, superoxide dismutase, and glutathione in the liver and kidneys. Additionally, gut microbiome analysis showed that CCFM8661 + CS intervention attenuated Pb-induced perturbation in gut microbiota, altering the abundance of bacteria such as Faecalibaculum, Ruminococcaceae UCG 014, Anaerostipes, and Enterorhabdus. Untargeted metabolomics analyses showed that CCFM8661 + CS significantly increased cinnamoylglycine, hippuric acid, and equol (to 31.24, 28.77 and 20.13 times the baseline, respectively) and decreased guanine and 4-coumaric acid (0.30 and 0.09 times the baseline, respectively) in the feces, affecting pathways such as purine and amino acid metabolism. Further analyses showed that promoting Pb excretion and restoring the Pb-impaired gut microbiome and its metabolism may be important contributors to CCFM8661 + CS alleviation of Pb toxicity.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
5
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Lourenco J, Selvaraj RK. The effect of supplemental arginine on the gut microbial homeostasis of broilers during sub-clinical necrotic enteritis challenge. Front Physiol 2024; 15:1463420. [PMID: 39355151 PMCID: PMC11442325 DOI: 10.3389/fphys.2024.1463420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Necrotic enteritis (NE) is an enteric disease of poultry that alters the structure of the gut microbial community causing dysbiosis. This 28 day experiment investigated the effects of 125% and 135% arginine diets on the gut microbial diversity and composition of broilers during a subclinical NE challenge. One hundred and twenty one-day-old chicks were randomly allocated to 4 treatments with six replicates each- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135% diet groups. NE was induced by inoculating 1 × 104 E. maxima sporulated oocysts on day 14 and 1 × 108 CFU C. perfringens on days 19, 20, and 21 of age. The NE challenge significantly decreased the number of observed amplicon sequence variants (p = 0.03), the abundance of the phylum Firmicutes (p < 0.01), and the species Mediterraneibacter cottocaccae (p = 0.01) in the ceca of birds on day 21. The NE challenge significantly increased the Bray-Curtis index (p < 0.01), and the abundance of the phylum Bacteroidota (p < 0.01), family Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p = 0.01) on day 21. During NE, the 125% arginine diet restored the abundance of the phylum Bacteroidota (p = 0.03), family Odoribacteraceae (p = 0.03) and Oscillospiraceae (p = 0.03), genus Odoribacter (p = 0.03), and species O. splanchnicus (p = 0.03) and M. cottocaccae (p < 0.01) on day 21. The 135% arginine diet effectively restored the loss in alpha diversity (p = 0.01) caused by NE, the abundance of the phylum Firmicutes (p = 0.01) and Bacteroidota (p < 0.01), family Oscillospiraceae (p = 0.03) and Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p < 0.01) and M. cottocaccae (p < 0.01) on day 21. On day 28, the treatments had a significant effect on the cecal propionate (p = 0.01), butyrate (p = 0.04), and total SCFA (p = 0.04) concentrations. In conclusion, the 125% and 135% arginine diets restored gut microbial composition during a subclinical NE challenge, but not the cecal SCFA profile. Hence, arginine in combination with other feed additives could be used in restoring gut microbial homeostasis during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
7
|
Stojnić B, Galmés S, Serrano A, Sulli M, Sušak L, Seye N, Palou A, Diretto G, Bonet ML, Ribot J. Glycosaminoglycan dermatan sulfate supplementation decreases diet-induced obesity and metabolic dysfunction in mice. Biofactors 2024; 50:493-508. [PMID: 38063391 DOI: 10.1002/biof.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 06/15/2024]
Abstract
Glycosaminoglycans are complex carbohydrates used as nutraceuticals for diverse applications. We studied the potential of the glycosaminoglycan dermatan sulfate (DS) to counteract the development of diet-induced obesity (DIO) using obesity-prone mice fed a high-fat diet (HFD) as a model. Oral DS supplementation protected the animals against HFD-induced increases in whole-body adiposity, visceral fat mass, adipocyte size, blood glucose levels, insulin resistance, and pro-inflammatory lipids levels in brown adipose tissue (BAT) and the liver, where it largely counteracted the HFD-induced changes in the nonpolar metabolome. Protection against DIO in the DS-supplemented mice occurred despite higher energy intake and appeared to be associated with increased energy expenditure, higher uncoupling protein 1 expression in BAT, decreased BAT "whitening," and an enhanced channeling of fuel substrates toward skeletal muscle. This work is the first preclinical study to examine the anti-obesity activity of DS tested individually in vivo. The results support possible uses of DS as an active component in functional foods/supplements to manage obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Bojan Stojnić
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - Sebastiá Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Alba Serrano
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - Lana Sušak
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Ndioba Seye
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| |
Collapse
|
8
|
Wang K, Wang W, Zhang R, Liu Y, Hou C, Guo Y, Zhang C. Preparation of low molecular weight chondroitin sulfate from different sources by H 2O 2/ascorbic acid degradation and its degradation mechanism. Food Chem 2024; 434:137392. [PMID: 37725843 DOI: 10.1016/j.foodchem.2023.137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Low molecular weight chondroitin sulfate (LMCS) has attention for enhanced bioavailability and bioactivity compared to native CS. We optimized H2O2/ ascorbic acid (Vc) degradation conditions to prepare LMCS from chicken, bovine, and shark cartilages. Degradation kinetics models and chemical composition data of LMCS showed the GlcA residues of chondroitin-4-sulfate (CSA) may be preferentially attacked. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography-electrospray mass spectrometry (HPLC-MS) indicated that the CH of GlcA in CS was broken through a hydrogen abstraction reaction to break the β-(1 → 3) bond and form the hexendioic acid product. Standard density functional theory (DFT) calculations indicated that the energy required for the hydrogen abstraction from the C1-H bond in GlcA was lower than that of GalNAc. Molecular dynamics (MD) showed that CSA was more likely to interact with hydroxyl radicals (·OH) than non-sulfated chondroitin (CSO) and chondroitin-6-sulfate (CSC). These results provide guidance for producing LMCS.
Collapse
Affiliation(s)
- Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenfang Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruishu Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Rønning SB, Carlsen H, Rocha SDC, Rud I, Solberg N, Høst V, Veiseth-Kent E, Arnesen H, Bergum S, Kirkhus B, Böcker U, Abedali N, Rundblad A, Bålsrud P, Måge I, Holven KB, Ulven SM, Pedersen ME. Dietary intake of micronized avian eggshell membrane in aged mice reduces circulating inflammatory markers, increases microbiota diversity, and attenuates skeletal muscle aging. Front Nutr 2024; 10:1336477. [PMID: 38288061 PMCID: PMC10822908 DOI: 10.3389/fnut.2023.1336477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic acid. We have previously demonstrated that ESM possesses anti-inflammatory properties in vitro and regulates wound healing processes in vivo. The present study aimed to investigate if oral intake of micronized ESM could attenuate skeletal muscle aging associated with beneficial alterations in gut microbiota profile and reduced inflammation. Methods Elderly male C57BL/6 mice were fed an AIN93G diet supplemented with 0, 0.1, 1, or 8% ESM. Young mice were used as reference. The digestibility of ESM was investigated using the static in vitro digestion model INFOGEST for older people and adults, and the gut microbiota profile was analyzed in mice. In addition, we performed a small-scale pre-clinical human study with healthy home-dwelling elderly (>70 years) who received capsules with a placebo or 500 mg ESM every day for 4 weeks and studied the effect on circulating inflammatory markers. Results and discussion Intake of ESM in elderly mice impacted and attenuated several well-known hallmarks of aging, such as a reduction in the number of skeletal muscle fibers, the appearance of centronucleated fibers, a decrease in type IIa/IIx fiber type proportion, reduced gene expression of satellite cell markers Sdc3 and Pax7 and increased gene expression of the muscle atrophy marker Fbxo32. Similarly, a transition toward the phenotypic characteristics of young mice was observed for several proteins involved in cellular processes and metabolism. The digestibility of ESM was poor, especially for the elderly condition. Furthermore, our experiments showed that mice fed with 8% ESM had increased gut microbiota diversity and altered microbiota composition compared with the other groups. ESM in the diet also lowered the expression of the inflammation marker TNFA in mice and in vitro in THP-1 macrophages. In the human study, intake of ESM capsules significantly reduced the inflammatory marker CRP. Altogether, our results suggest that ESM, a natural extracellular biomaterial, may be attractive as a nutraceutical candidate with a possible effect on skeletal muscle aging possibly through its immunomodulating effect or gut microbiota.
Collapse
Affiliation(s)
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Ida Rud
- Nofima AS, Food Division, Ås, Norway
| | | | | | | | - Henriette Arnesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | | | - Nada Abedali
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pia Bålsrud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Kirsten Bjørklund Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
11
|
Inokuma K, Sasaki D, Kurata K, Ichikawa M, Otsuka Y, Kondo A. Sulfated and non-sulfated chondroitin affect the composition and metabolism of human colonic microbiota simulated in an in vitro fermentation system. Sci Rep 2023; 13:12313. [PMID: 37516730 PMCID: PMC10387111 DOI: 10.1038/s41598-023-38849-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Chondroitin sulfate (CS) is a family of glycosaminoglycans and have a wide range of applications in dietary supplements and pharmaceutical drugs. In this study, we evaluated the effects of several types of CS, differing in their sulfated positions, on the human colonic microbiota and their metabolites. CS (CSA, CSC, and CSE) and non-sulfated chondroitin (CH) were added into an in vitro human colonic microbiota model with fecal samples from 10 healthy individuals. CS addition showed a tendency to increase the relative abundance of Bacteroides, Eubacterium, and Faecalibacterium, and CSC and CSE addition significantly increased the total number of eubacteria in the culture of the Kobe University Human Intestinal Microbiota Model. CSE addition also resulted in a significant increase in short-chain fatty acid (SCFA) levels. Furthermore, addition with CSC and CSE increased the levels of a wide range of metabolites including lysine, ornithine, and Ile-Pro-Pro, which could have beneficial effects on the host. However, significant increases in the total number of eubacteria, relative abundance of Bacteroides, and SCFA levels were also observed after addition with CH, and the trends in the effects of CH addition on metabolite concentrations were identical to those of CSC and CSE addition. These results provide novel insight into the contribution of the colonic microbiota to the beneficial effects of dietary CS.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kaoru Kurata
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Megumi Ichikawa
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Yuya Otsuka
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
12
|
Mora-Flores LP, Moreno-Terrazas Casildo R, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The Role of Carbohydrate Intake on the Gut Microbiome: A Weight of Evidence Systematic Review. Microorganisms 2023; 11:1728. [PMID: 37512899 PMCID: PMC10385781 DOI: 10.3390/microorganisms11071728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Carbohydrates are the most important source of nutritional energy for the human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation are the focus of multiple studies. The objective of this weight of evidence systematic review is to investigate the potential relationship between ingested carbohydrates and the gut microbiota composition at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques were used to evaluate the relationship between dietary carbohydrates and the relative abundance of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase, insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase. Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This work provides, for the first time, an integrative review of the subject by using statistical techniques that have not been previously employed in microbiota reviews.
Collapse
Affiliation(s)
- Lorena P Mora-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Rubén Moreno-Terrazas Casildo
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - José Fuentes-Cabrera
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Hugo Alexer Pérez-Vicente
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| | - Elier Ekberg Neri-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| |
Collapse
|
13
|
Monzon N, Kasahara EM, Gunasekaran A, Burge KY, Chaaban H. Impact of neonatal nutrition on necrotizing enterocolitis. Semin Pediatr Surg 2023; 32:151305. [PMID: 37257267 PMCID: PMC10750299 DOI: 10.1016/j.sempedsurg.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of morbidity and mortality in preterm infants. NEC is multifactorial and the result of a complex interaction of feeding, dysbiosis, and exaggerated inflammatory response. Feeding practices in the neonatal intensive care units (NICUs) can vary among institutions and have significant impact on the vulnerable gastointestinal tract of preterm infants. . These practices encompass factors such as the type of feeding and fortification, duration of feeding, and rate of advancement, among others. The purpose of this article is to review the data on some of the most common feeding practices in the NICU and their impact on the development of NEC in preterm infants. Data on the human milk bioactive component glycosaminoglycans, specifically hyaluronan, will also be discussed in the context of postnatal intestinal development and NEC prevention.
Collapse
Affiliation(s)
- Noahlana Monzon
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104
| | - Emma M Kasahara
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kathryn Y Burge
- Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hala Chaaban
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104; Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
14
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
15
|
Gut Microbiota Host-Gene Interaction. Int J Mol Sci 2022; 23:ijms232213717. [PMID: 36430197 PMCID: PMC9698405 DOI: 10.3390/ijms232213717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Studies carried out in the last ten years have shown that the metabolites made up from the gut microbiota are essential for multiple functions, such as the correct development of the immune system of newborns, interception of pathogens, and nutritional enrichment of the diet. Therefore, it is not surprising that alteration of the gut microbiota is the starting point of gastrointestinal infection, obesity, type 2 diabetes, inflammatory bowel disease, colorectal cancer, and lung cancer. Diet changes and antibiotics are the major factors damaging the gut microbiota. Early exposure of the newborns to antibiotics may prevent their correct development of the immune system, exposing them to pathogen infections, allergies, and chronic inflammatory diseases. We already know much on how host genes, microbiota, and the environment interact, owing to experiments in several model animals, especially in mice; advances in molecular technology; microbiota transplantation; and comparative metagenomic analysis. However, much more remains to be known. Longitudinal studies on patients undergoing to therapy, along with the identification of bacteria prevalent in responding patients may provide valuable data for improving therapies.
Collapse
|
16
|
Hungatella hathewayi, an Efficient Glycosaminoglycan-Degrading
Firmicutes
from Human Gut and Its Chondroitin ABC Exolyase with High Activity and Broad Substrate Specificity. Appl Environ Microbiol 2022; 88:e0154622. [PMID: 36342199 PMCID: PMC9680638 DOI: 10.1128/aem.01546-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An increased understanding of GAG metabolism by intestinal bacteria is critical in identifying the driving factors for the composition, modulation, and homeostasis of the human gut microbiota. In addition, GAG-depolymerizing polysaccharide lyases are highly desired enzymes for the production of GAG oligosaccharides and as therapeutics.
Collapse
|
17
|
Wang K, Qi L, Zhao L, Liu J, Guo Y, Zhang C. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application. Carbohydr Polym 2022; 301:120361. [PMID: 36446498 DOI: 10.1016/j.carbpol.2022.120361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
|
18
|
Tian W, You Y, Sun X, Wang L, Wang L, Wang S, Ai C, Song S. H2O2-TiO2 photocatalytic degradation of chondroitin sulfate and in vivo absorption and excertion of its product. Carbohydr Polym 2022; 301:120295. [DOI: 10.1016/j.carbpol.2022.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
19
|
Roy S, Dhaneshwar S, Mahmood T, Kumar S, Saxena SK. Pre-clinical Investigation of Protective Effect of Nutraceutical D-Glucosamine on TNBS-induced Colitis. Immunopharmacol Immunotoxicol 2022; 45:172-184. [PMID: 36154797 DOI: 10.1080/08923973.2022.2128370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The level of precursors involved in the biosynthesis of glycosaminoglycan (GAG), glucosamine synthase, and N-acetyl glucosamine (NAG), are significantly reduced in inflammatory bowel disease (IBD). This results in deficient GAG content in mucosa, which eventually disrupts the gut wall integrity, provoking abnormal immunological responses. This is characterized by colossal liberation of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukins (IL), and reactive oxygen species provoking colonic inflammation. D-glucosamine (D-GLU) is reported to suppress oxidative stress, and pro-inflammatory cytokines and acts as a starting material for biosynthesis of NAG. The potential of D-GLU and its combination with mesalamine (5-ASA) was investigated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-instigated IBD in Wistar rats. Standard and test drugs were given orally for five days to separate groups of rats. Colonic inflammation was evaluated by disease activity score rate (DASR), colon/body weight ratio, colon length, diameter, colon pH, histological injury and score. Inflammatory biomarkers IL-1β, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. Combination of D-GLU +5-ASA significantly ameliorated severity of colonic inflammation by lowering DASR (P < 0.001) and colon/body weight ratio (P < 0.001), restored the colonic architecture and suppressed the histopathological score (P < 0.001), along with the absence of major adverse reactions. The combination suppressed the levels of inflammatory markers (P < 0.001) and MDA (P < 0.001) while enhancing GSH level (P < 0.001). In comparison to individual 5-ASA and D-GLU, combination of drugs significantly diminished colitis severity through their combined anti-inflammatory and antioxidant effects by acting on multiple targets simultaneously. The combination holds remarkable potential in the management of IBD.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, 226026, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, 226003, India
| |
Collapse
|
20
|
Chen L, Gao Y, Zhao Y, Yang G, Wang C, Zhao Z, Li S. Chondroitin sulfate stimulates the secretion of H 2S by Desulfovibrio to improve insulin sensitivity in NAFLD mice. Int J Biol Macromol 2022; 213:631-638. [PMID: 35667460 DOI: 10.1016/j.ijbiomac.2022.05.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is a bioactive gas regulating insulin secretion and sensitivity, produced by sulfate-reducing bacteria in the gut. The present study investigated the effect of chondroitin sulfate (CS) treatment, which indirectly increased the H2S production on nonalcoholic fatty liver disease (NAFLD). A 7-week CS supplementation had beneficial effects on body weight gain, liver function, hepatic histology, and serum lipid levels. CS could ameliorate diet-induced insulin resistance and improve insulin sensitivity via the AKT pathway, and modulate gut microbiota composition, especially increased the abundance of Desulfovibrio and elevated levels of hydrogen sulfide (H2S). Collectively, these findings suggested that CS treatment was positively correlated with Desulfovibrio in the gut, and the metabolic H2S flowed into the liver via the gut-liver axis, thereby triggering the AKT signaling pathway and improving insulin resistance. Thus, CS-induced alterations in the gut microbiota seem a promising for ameliorating NAFLD.
Collapse
Affiliation(s)
- Long Chen
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Chao Wang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China.
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China.
| |
Collapse
|
21
|
Li W, Ura K, Takagi Y. Industrial application of fish cartilaginous tissues. Curr Res Food Sci 2022; 5:698-709. [PMID: 35479656 PMCID: PMC9035649 DOI: 10.1016/j.crfs.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cartilage is primarily composed of proteoglycans and collagen. Bioactive compounds derived from animal cartilage, such as chondroitin sulfate and type II collagen, have multiple bioactivities and are incorporated in popular health products. The aging population and increases in degenerative and chronic diseases will stimulate the rapid growth of market demand for cartilage products. Commercial production of bioactive compounds primarily involves the cartilages of mammals and poultry. However, these traditional sources are associated zoonosis concerns; thus, cartilage products from the by-products of fish processing has gained increasing attention because of their high level of safety and other activities. In this review, we summarize the current state of research into fish-derived cartilage products and their application, and discuss future trends and tasks to encourage further expansion and exploitation. At present, shark cartilage is the primary source of marine cartilage. However, the number of shark catches is decreasing worldwide, owing to overfishing. This review considers the potential alternative fish cartilage sources for industrialization. Three keys, the sustainable production of fish, new fish-processing model, and market demand, have been discussed for the future realization of efficient fish cartilage use. The industrialization of fish-derived cartilage products is beneficial for achieving sustainable development of local economies and society. Bioactive compounds derived from fish cartilage are popular as health products. Type II collagen and chondroitin sulfate are the major cartilage bioactive compounds. Cartilaginous fishes, sturgeons, and salmonids are potential fish cartilage sources. Keys for industrialization are fish production, processing model, and market demands. Industrialization of fish cartilage products accords with sustainable development.
Collapse
|
22
|
Song R, Shi M, Gu L. Digestive properties of half-fin anchovy hydrolysates/glucose Maillard reaction products and modulation effects on intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2584-2597. [PMID: 34689340 DOI: 10.1002/jsfa.11600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/29/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The consumption of dietary Maillard reaction products (MRPs) might lead to positive or negative effects on health. The digestibility of half-fin anchovy hydrolysates/glucose MRPs (HAHp(9.0)-G MRPs) was therefore determined. The intestinal microbiota modulation of HAHp(9.0)-G MRPs in mice was also evaluated after administration for 14 days (1 g kg-1 •bodyweight). RESULTS Different levels of digestibility of MRPs of fructosamine and advanced glycation products of Nε -carboxymethyllysine were detected in HAHp(9.0)-G MRPs during simulated gastrointestinal digestion. An increased relative proportion of soluble fluorescent melanoidins (SFMs) was observed during gastric digestion as compared to that in the original HAHp(9.0)-G MRPs, followed by decreases in SFMs in intestinal digestion. After feeding with HAHp(9.0)-G MRPs for 14 days, increased goblet cells were observed in the ileum regions of female and male mice. High-throughput 16S ribosomal RNA gene sequencing of fecal samples revealed that HAHp(9.0)-G MRPs administration increased the density of the phylum Bacteriodetes and reduced the density of the phylum Firmicutes in male mice. By comparison, a relatively higher density of members of the phylum Saccharibacteria was observed in female mice. A consistent increase in the abundance of Bacteroidales_S24-7_group_norank was found in female and male groups fed with HAHp(9.0)-G MRPs. Female and male mice treated with HAHp(9.0)-G MRPs also showed higher levels of propionic and butyric acids in feces than their corresponding controls. CONCLUSION Half-fin anchovy hydrolysates/glucose MRPs can be partly hydrolyzed in the simulated gastrointestinal digestion system. Treatment with HAHp(9.0)-G MRPs induced sex-related differences in bacterial abundance and diversity in mice; however, the up-regulation of anti-inflammatory activity was predicted in both female and male mice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Min Shi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Luo Gu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
23
|
Yang M, Zhou D, Xiao H, Fu X, Kong Q, Zhu C, Han Z, Mou H. Marine-derived uronic acid-containing polysaccharides: Structures, sources, production, and nutritional functions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Yu H, Yi X, Gao X, Ji J, Liu Z, Xia G, Li C, Zhang X, Shen X. Tilapia-Head Chondroitin Sulfate Protects against Nonalcoholic Fatty Liver Disease via Modulating the Gut-Liver Axis in High-Fat-Diet-Fed C57BL/6 Mice. Foods 2022; 11:foods11070922. [PMID: 35407014 PMCID: PMC8997817 DOI: 10.3390/foods11070922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
We isolated and characterized tilapia-head chondroitin sulfate (TH-CS) and explored its biological activity and mechanisms of action as an oral supplement for nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The results showed that treatment with TH-CS for 8 weeks alleviated the development of NAFLD, as evidenced by the notable improvement in liver damage, blood lipid accumulation and insulin resistance (IR). Meanwhile, TH-CS treatment reduced the expression of proinflammatory cytokines and normalized oxidative stress. Additionally, the analysis of 16S rDNA sequencing revealed that TH-CS could restore gut microbiota balance and increase the relative abundance of short-chain fatty acid (SCFA)-producing bacteria. Furthermore, SCFAs produced by related bacteria can further improve lipid metabolism and IR by regulating lipid synthesis signals. In conclusion, TH-CS is an effective dietary supplement for the prevention of NAFLD, and may serve as a potential supplementary treatment for lipid-related metabolic syndrome.
Collapse
Affiliation(s)
- Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jun Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Chuan Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
- Correspondence: ; Tel./Fax: +86-0898-6619-3581
| |
Collapse
|
25
|
Liu Z, Zhang Y, Ai C, Tian W, Wen C, Song S, Zhu B. An acidic polysaccharide from Patinopecten yessoensis skirt prevents obesity and improves gut microbiota and metabolism of mice induced by high-fat diet. Food Res Int 2022; 154:110980. [DOI: 10.1016/j.foodres.2022.110980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022]
|
26
|
Chen G, Zeng R, Wang X, Cai H, Chen J, Zhong Y, Zhong S, Jia X. Antithrombotic Activity of Heparinoid G2 and Its Derivatives from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20010050. [PMID: 35049905 PMCID: PMC8779706 DOI: 10.3390/md20010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Clam heparinoid G2 (60.25 kDa) and its depolymerized derivatives DG1 (24.48 kDa) and DG2 (6.75 kDa) prepared from Coelomactra antiquata have been documented to have excellent fibrinolytic and anticoagulant activity. In this study, to further explore the antithrombotic activity of G2, DG1 and DG2, azure A, sheep plasma, and clot lytic rate assays were used to determine their anticoagulant and thrombolytic activity in vitro. The results indicated that the anticoagulant titer of G2 was approximately 70% that of heparin and the thrombolytic activity of DG2 was greater than G2, DG1, and heparin activities. Moreover, in a carrageenan-induced venous thrombosis model, oral administration of G2 and DG1 each at 20 mg/kg and 40 mg/kg for 7 days significantly reduced blacktail thrombus formation, increased tissue-type plasminogen activator, fibrin degradation products, and D-dimer levels, decreased von Willebrand factor and thromboxane B2 levels, and restored phylum and genus abundance changes of intestinal bacteria. DG2 had no antithrombotic effect. At 20 mg/kg, G2, DG1, and heparin had comparable antithrombotic activities, and DG1 at 40 mg/kg had more muscular antithrombotic activity than G2. Thus, DG1 could be an antithrombotic oral agent owing to its more robust antithrombotic activity and lower molecular weight.
Collapse
Affiliation(s)
- Guanlan Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Rui Zeng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongying Cai
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingxiong Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-188-2669-9336
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
27
|
Xie J, Li LF, Dai TY, Qi X, Wang Y, Zheng TZ, Gao XY, Zhang YJ, Ai Y, Ma L, Chang SL, Luo FX, Tian Y, Sheng J. Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate α-Linolenic Acid Promote Intestinal Stem Cells Proliferation. Mol Nutr Food Res 2021; 66:e2100408. [PMID: 34708542 DOI: 10.1002/mnfr.202100408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Indexed: 12/18/2022]
Abstract
SCOPE The proliferation and differentiation of intestinal stem cells (ISCs) are the basis of intestinal renewal and regeneration, and gut microbiota plays an important role in it. Dietary nutrition has the effect of regulating the activity of ISCs; however, the regulation effect of α-linolenic acid (ALA) has seldom been reported. METHODS AND RESULTS After intervening mice with different doses of ALA for 30 days, it is found that ALA (0.5 g kg-1 ) promotes small intestinal and villus growth by activating the Wnt/β-catenin signaling pathway to stimulate the proliferation of ISCs. Furthermore, ALA administration increases the abundance of the Ruminococcaceae and Prevotellaceae, and promotes the production of short-chain fatty acids (SCFAs). Subsequent fecal transplantation and antibiotic experiments demonstrate that ALA on the proliferation of ISCs are gut microbiota dependent, among them, the functional microorganism may be derived from Ruminococcaceae. Administration of isobutyrate shows a similar effect to ALA in terms of promoting ISCs proliferation. Furthermore, ALA mitigates 5-fluorouracil-induced intestinal mucosal damage by promoting ISCs proliferation. CONCLUSION These results indicate that SCFAs produced by Ruminococcaceae mediate ALA promote ISCs proliferation by activating the Wnt/β-catenin signaling pathway, and suggest the possibility of ALA as a prebiotic agent for the prevention and treatment of intestinal mucositis.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tian-Yi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xin Qi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tiao-Zhen Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xiao-Yu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yun-Juan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yu Ai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Song-Lin Chang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Feng-Xian Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| |
Collapse
|
28
|
Li Y, Qin J, Cheng Y, Lv D, Li M, Qi Y, Lan J, Zhao Q, Li Z. Marine Sulfated Polysaccharides: Preventive and Therapeutic Effects on Metabolic Syndrome: A Review. Mar Drugs 2021; 19:md19110608. [PMID: 34822479 PMCID: PMC8618309 DOI: 10.3390/md19110608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome is the pathological basis of cardiovascular and cerebrovascular diseases and type 2 diabetes. With the prevalence of modern lifestyles, the incidence of metabolic syndrome has risen rapidly. In recent years, marine sulfate polysaccharides (MSPs) have shown positive effects in the prevention and treatment of metabolic syndrome, and they mainly come from seaweeds and marine animals. MSPs are rich in sulfate and have stronger biological activity compared with terrestrial polysaccharides. MSPs can alleviate metabolic syndrome by regulating glucose metabolism and lipid metabolism. In addition, MSPs prevent and treat metabolic syndrome by interacting with gut microbiota. MSPs can be degraded by gut microbes to produce metabolites such as short chain fatty acids (SCFAs) and free sulfate and affect the composition of gut microbiota. The difference between MSPs and other polysaccharides lies in the sulfation pattern and sulfate content, therefore, which is very important for anti-metabolic syndrome activity of MSPs. This review summarizes the latest findings on effects of MSPs on metabolic syndrome, mechanisms of MSPs in treatment/prevention of metabolic syndrome, interactions between MSPs and gut microbiota, and the role of sulfate group and sulfation pattern in MSPs activity. However, more clinical trials are needed to confirm the potential preventive and therapeutic effects on human body. It may be a better choice to develop new functional foods containing MSPs for dietary intervention in metabolic syndrome.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Juan Qin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Yinghui Cheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Dong Lv
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Jing Lan
- Dalian Zhenjiu Biological Industry Co., Ltd., Dalian 116023, China;
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| | - Zhibo Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| |
Collapse
|
29
|
Shen Q, Zhang C, Qin X, Zhang H, Zhang Z, Richel A. Modulation of gut microbiota by chondroitin sulfate calcium complex during alleviation of osteoporosis in ovariectomized rats. Carbohydr Polym 2021; 266:118099. [PMID: 34044918 DOI: 10.1016/j.carbpol.2021.118099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Although chondroitin sulfate calcium complex (CSCa) was claimed to have the bioactivity for bone care in vitro, its anti-osteoporosis bioactivity was little reported in vivo. Here, the effects of CSCa on osteoporosis rats were investigated. Results showed that, compared with the osteoporosis rats, CSCa could improve the bone mineral density and microstructure of femur, and change the bone turnover markers level in serum. 16S rRNA sequencing and metabolomics analysis indicated CSCa intervention altered the composition of gut microbiota along with metabolite profiles in ovariectomized rat faeces. The correlation analysis showed some gut microbiota taxa were significantly correlated with osteoporosis phenotypes and the enriched metabolites. Taken together, dietary CSCa intervention has the potential to alleviate the osteoporosis and related symptoms probably involving gut microbiota or the metabolite profiles as demonstrated in rats. This study provides some scientific evidence for the potential effects of CSCa as the food supplement on the osteoporosis.
Collapse
Affiliation(s)
- Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Zhiqiang Zhang
- Shandong Haiyu Biotechnology Co., Ltd., Jining 272113, China
| | - Aurore Richel
- University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030 Gembloux, Belgium
| |
Collapse
|
30
|
Pasomboon P, Chumnanpuen P, E-Kobon T. Comparison of Hyaluronic Acid Biosynthetic Genes From Different Strains of Pasteurella multocida. Bioinform Biol Insights 2021; 15:11779322211027406. [PMID: 34220200 PMCID: PMC8221702 DOI: 10.1177/11779322211027406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Pasteurella multocida produces a capsule composed of different polysaccharides according to the capsular serotype (A, B, D, E, and F). Hyaluronic acid (HA) is a component of certain capsular types of this bacterium, especially capsular type A. Previously, 2 HA biosynthetic genes from a capsular type A strain were studied for the industrial-scale improvement of HA production. Molecular comparison of these genes across different capsular serotypes of P multocida has not been reported. This study aimed to compare 8 HA biosynthetic genes (pgi, pgm, galU, hyaC, glmS, glmM, glmU, and hyaD) of 22 P multocida strains (A:B:D:F = 6:6:6:4) with those of other organisms using sequence and structural bioinformatics analyses. These 8 genes showed a high level of within-species similarity (98%-99%) compared with other organisms. Only the last gene of 4 strains with capsular type F (HN07, PM70, HNF01, and HNF02) significantly differed from those of other strains (82%). Analysis of amino acid patterns together with phylogenetic results showed that the HA biosynthetic genes of the type A were closely related within the group. The genes in the capsular type F strain were notably similar to those of the capsular type A strain. Protein structural analysis supported structural similarities of the encoded enzymes between the strains of capsular types A, B, D, and F, except for the Pgm, GlmS, GlmU, and HyaD proteins. Our bioinformatics analytic workflow proposed that variations observed within these genes could be useful for genetic engineering–based improvement of hyaluronic acid–producing enzymes.
Collapse
Affiliation(s)
- Pailin Pasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.,Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
31
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Zhu Z, Han Y, Ding Y, Zhu B, Song S, Xiao H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr Rev Food Sci Food Saf 2021; 20:2882-2913. [PMID: 33884748 DOI: 10.1111/1541-4337.12754] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Various dietary sulfated polysaccharides (SPs) have been isolated from seafoods, including edible seaweeds and marine animals, and their health effects such as antiobesity and anti-inflammatory activities have attracted remarkable interest. Sulfate groups have been shown to play important roles in the bioactivities of these polysaccharides. Recent in vitro and in vivo studies have suggested that the biological effects of dietary SPs are associated with the modulation of the gut microbiota. Dietary SPs could regulate the gut microbiota structure and, accordingly, affect the production of bioactive microbial metabolites. Because of their differential chemical structures, dietary SPs may specifically affect the growth of certain gut microbiota and associated metabolite production, which may contribute to variable health effects. This review summarizes the latest findings on the types and structural characteristics of SPs, the effects of different processing techniques on the structural characteristics and health effects of SPs, and the current understanding of the role of gut microbiota in the health effects of SPs. These findings might help in better understanding the mechanism of the health effects of SPs and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yu Ding
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
33
|
Abstract
Supplemental Digital Content is available in the text Osteoarthritis is a debilitating disease leading to joint degeneration, inflammation, pain, and disability. Despite efforts to develop a disease modifying treatment, the only accepted and available clinical approaches involve palliation. Although many factors contribute to the development of osteoarthritis, the gut microbiome has recently emerged as an important pathogenic factor in osteoarthritis initiation and progression. This review examines the literature to date regarding the link between the gut microbiome and osteoarthritis.
Collapse
|
34
|
Sun X, Liu Y, Jiang P, Song S, Ai C. Interaction of sulfated polysaccharides with intestinal Bacteroidales plays an important role in its biological activities. Int J Biol Macromol 2020; 168:496-506. [PMID: 33321137 DOI: 10.1016/j.ijbiomac.2020.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
The bioactivities of sulfated polysaccharides have shown to be associated with the gut microbiota, but the underlying mechanisms remain unclear. In this study, the effect of sulfated polysaccharides from pacific abalone (AGSP) on the human gut microbiota was analyzed via an in vitro fermentation model. The results revealed that AGSP altered the overall structure of the gut microbiota and increased relative abundances of some Bacteroidales members, implying that intestinal Bacteroidales can play important roles in the bioactivities of AGSP. To elucidate the underlying mechanisms, some species from the Bacteroides and Parabacteroides within Bacteroidales were isolated, and their characteristics on AGSP utilization were analyzed. It showed that AGSP utilization by intestinal Bacteroidales was species-dependent, and some species that liberated AGSP breakdown products promoted the growth of others unable to live in AGSP, forming an AGSP utilization network. The in vitro cell model showed that AGSP oligosaccharides had better anti-inflammatory activity and weaker cytotoxicity, implying that microbial degradation of AGSP can influence its reaction with host cells. These results indicated that the interaction between polysaccharides and gut microbes can together determine the beneficial effects of polysaccharides on the host health.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yili Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Pingrui Jiang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
35
|
Kong X, Duan W, Li D, Tang X, Duan Z. Effects of Polysaccharides From Auricularia auricula on the Immuno-Stimulatory Activity and Gut Microbiota in Immunosuppressed Mice Induced by Cyclophosphamide. Front Immunol 2020; 11:595700. [PMID: 33240285 PMCID: PMC7681245 DOI: 10.3389/fimmu.2020.595700] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Recently, the immuno-enhancing potential of polysaccharide from Auricularia auricula (AAP) has been an area of research interest. However, the immune-stimulatory activity and mechanisms of AAP in immunosuppressive mice treated with cyclophosphamide (CTX) are still poorly understood. This study aimed to evaluate the immuno-enhancing effects of AAP and mine its possible mechanisms. Firstly, polysaccharides were isolated from A. auricula and purified. Secondly, the immune-stimulatory activities of the first AAP fraction (AAP1) were evaluated in the CTX-treated mice. Results showed that AAP1 significantly enhanced immune organ indexes, remarkably stimulated IFN-γ, IL-2, IL-4, IL-10, and TNF-α levels in the serum, and dramatically up-regulated the mRNA levels of Claudin-1, Occludin and ZO-1. Compared to the CTX group, AAP1 administration restored the gut microbiota composition similar to that of the control group by decreasing the ratio of Firmicutes/Bacteroidetes and increasing the relative abundances of short-chain fatty acid-producing microbiota. This study provides useful information for its further application as an immune-stimulator in foods and drugs.
Collapse
Affiliation(s)
- Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
- Institute of Food Research, Hezhou University, Hezhou, China
| | - Weiwen Duan
- Institute of Food Research, Hezhou University, Hezhou, China
| | - Dingjin Li
- Institute of Food Research, Hezhou University, Hezhou, China
| | - Xiaoxian Tang
- Institute of Food Research, Hezhou University, Hezhou, China
| | - Zhenhua Duan
- Institute of Food Research, Hezhou University, Hezhou, China
| |
Collapse
|
36
|
Song W, Liu Y, Dong X, Song C, Bai Y, Hu P, Li L, Wang T. Lactobacillus M5 prevents osteoarthritis induced by a high-fat diet in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
37
|
Ye M, Yu J, Shi X, Zhu J, Gao X, Liu W. Polysaccharides catabolism by the human gut bacterium - Bacteroides thetaiotaomicron: advances and perspectives. Crit Rev Food Sci Nutr 2020; 61:3569-3588. [PMID: 32779480 DOI: 10.1080/10408398.2020.1803198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the degradation processes of polysaccharides by human gut microbiota are receiving considerable attention due to the discoveries of the powerful function of gut microbiota. Gut microbiota has developed a sensitive, accurate, and complex system for sensing, capturing, and degrading different polysaccharides. Among the gut microbiota, Bacteroides thetaiotaomicron, a representative species of Bacteroides, is considered as the best degrader of polysaccharides and a potential probiotic in pharmaceutical and food industries. Here, we summarize the degradation system of B. thetaiotaomicron and the degradation pathways of different polysaccharides by B. thetaiotaomicron. We also describe a technical route for investigating a specific polysaccharide degradation pathway by human gut bacteria. In addition, we also provide the future perspectives in the development of novel polysaccharides or oligosaccharides drugs, precision microbiology medicine, and personalized nutrition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xuexia Shi
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.,Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| |
Collapse
|
38
|
Martins JMDS, Santos LDD, Gomides LPS, Fernandes EDS, Sgavioli S, Stringhini JH, Leandro NSM, Café MB. Performance, nutrient digestibility, and intestinal histomorphometry of broilers fed diet supplemented with chondroitin and glucosamine sulfates. REVISTA BRASILEIRA DE ZOOTECNIA 2020; 49. [DOI: 10.37496/rbz4920190248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Kong F, Gao Y, Tang M, Fu T, Diao Q, Bi Y, Tu Y. Effects of dietary rumen-protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Appl Microbiol Biotechnol 2020; 104:6623-6634. [PMID: 32519120 DOI: 10.1007/s00253-020-10684-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 01/05/2023]
Abstract
This study aimed to evaluate the effects of partial reducing rumen-protected Lys (RPLys) on rumen fermentation and microbial composition in heifers. Three ruminal fistulated Holstein Friesian bulls were used to determine the effective degradability of RPLys using an in situ method at incubation times of 0, 2, 6, 12, 16, 24, 36, and 48 h. Thereafter, 36 Holstein heifers at 90 days of age were assigned to one of two dietary treatments: a theoretically balanced amino acid diet (PC group; 1.21% Lys, 0.4% Met) or a 30% Lys-reduced diet (PCLys group, 0.85% Lys, 0.4% Met). Rumen fluid samples from five heifers in each group were extracted using esophageal tubing on day 90 to determine pH, microprotein, ammonia, volatile fatty acids, and microbial communities. Results showed that the effective ruminal degradability was 25.76%. Furthermore, differences in rumen fermentation parameters and alpha diversity of the microbiota between the two groups were not significant, but beta diversity was significant. Based upon relative abundance analysis, short-chain fatty acid-producing bacteria, including Sharpea, Syntrophococcus, [Ruminococcus]_gauvreauii_group, Acetitomaculum, and [Eubacterium]_nadotum_group belonging to Firmicutes, were significantly decreased in the PCLys group. Spearman's analysis revealed a positive correlation between the butyrate molar proportion and the relative abundance of butyrate-producing bacteria such as [Eubacterium]_nadotum_group, Coprococcus_1, Ruminococcaceae_UCG_013, Pseudoramibacter, and Lachnospiraceae_UCG_010. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis further validated that RPLys deduction influenced energy metabolism. Together, our findings highlight the role of RPLys or Lys in butyrate-producing bacteria. However, the number of bacteria affected by Lys was very limited and insufficient to alter rumen fermentation. Key Points • Reducing 30% Lys via rumen-protected Lys did not affect rumen fermentation parameters and alpha diversity of microbiota of Holstein heifers. It meant that the ruminal fermentation pattern was not changed. • Reducing 30% Lys via rumen-protected lysine significantly decreased relative abundance of short-chain fatty acid-producing bacteria belonging to Firmicutes. • Functions of microorganisms were changed by reducing 30% Lys via rumen-protected Lys, especially amino acid metabolism. It may affect the amino acid composition of microprotein.
Collapse
Affiliation(s)
- Fanlin Kong
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Mengqi Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tong Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Sino-US Joint Lab on Nutrition and Metabolism of Ruminants, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
40
|
Dranitsina AS, Dvorshchenko KO, Korotkyi OH, Vovk AA, Falalyeyeva TM, Grebinyk DM, Ostapchenko LI. Expression of Nos2 and Acan Genes in Rat Knee Articular Cartilage in Osteoarthritis. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Navarro SL, Herrero M, Martinez H, Zhang Y, Ladd J, Lo E, Shelley D, Randolph TW, Lampe JW, Lampe PD. Differences in Serum Biomarkers Between Combined Glucosamine and Chondroitin Versus Celecoxib in a Randomized, Double-blind Trial in Osteoarthritis Patients. Antiinflamm Antiallergy Agents Med Chem 2020; 19:190-201. [PMID: 30648524 DOI: 10.2174/1871523018666190115094512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs, e.g., celecoxib, are commonly used for inflammatory conditions, but can be associated with adverse effects. Combined glucosamine hydrochloride plus chondroitin sulfate (GH+CS) are commonly used for joint pain and have no known adverse effects. Evidence from in vitro, animal and human studies suggest that GH+CS have anti-inflammatory activity, among other mechanisms of action. OBJECTIVE We evaluated the effects of GH+CS versus celecoxib on a panel of 20 serum proteins involved in inflammation and other metabolic pathways. METHODS Samples were from a randomized, parallel, double-blind trial of pharmaceutical grade 1500 mg GH + 1200 mg CS (n=96) versus 200 mg celecoxib daily (n=93) for 6- months in knee osteoarthritis (OA) patients. Linear mixed models adjusted for age, sex, body mass index, baseline serum protein values, and rescue medicine use assessed the intervention effects of each treatment arm adjusting for multiple testing. RESULTS All serum proteins except WNT16 were lower after treatment with GH+CS, while about half increased after celecoxib. Serum IL-6 was significantly reduced (by 9%, P=0.001) after GH+CS, and satisfied the FDR<0.05 threshold. CCL20, CSF3, and WNT16 increased after celecoxib (by 7%, 9% and 9%, respectively, P<0.05), but these serum proteins were no longer statistically significant after controlling for multiple testing. CONCLUSION The results of this study using samples from a previously conducted trial in OA patients, demonstrate that GH+CS reduces circulating IL-6, an inflammatory cytokine, but is otherwise comparable to celecoxib with regard to effects on other circulating protein biomarkers.
Collapse
Affiliation(s)
- Sandi L Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marta Herrero
- Bioiberica S.A.U., Plaza Francesc Macia 7, 08029 Barcelona, Spain
| | - Helena Martinez
- Bioiberica S.A.U., Plaza Francesc Macia 7, 08029 Barcelona, Spain
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jon Ladd
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edward Lo
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David Shelley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Timothy W Randolph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Paul D Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
42
|
Pal D, Saha S. Chondroitin: a natural biomarker with immense biomedical applications. RSC Adv 2019; 9:28061-28077. [PMID: 35530463 PMCID: PMC9071010 DOI: 10.1039/c9ra05546k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022] Open
Abstract
Naturally extracted glycosaminoglycan chondroitin sulphate is the reactive product of N-acetylgalactosamine and d-glucuronic acid. Chondroitin sulfate (CS) extracted from Scophthalmus maximus, H. scabra, E. fraudatrix, M. magnum, and H. mexicana has shown remarkable anticoagulant, articular cartilage repair, corneal lesion healing, antidiabetic, and antiproliferative effects. Also, platinum and strontium nanoparticles of chondroitin sulfate are effective in osteoarthritis and exert anti-HSV2 and anti-angiogenic properties. A combination of chondroitin sulfate and RNA lipolexes demonstrates gene silencing effects in liver fibrosis. Chondroitin sulfate has also been used as a carrier for loxoprofen hydrogel preparation. Oligosaccharides of chondroitin sulfate showed effective inhibition of bovine testicular hyaluronidase enzyme as an antibacterial agent during pregnancy. Monoclonal antibody-recognized chondroitin sulfate A was effectively used to treat ameloblastoma. Selenium-chondroitin sulfate nanoparticles demonstrated positive effects in therapy of Kashin-Beck disease (KBD) and osteoarthritis.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur-495009 C.G. India +91-7389263761
| | - Supriyo Saha
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Dehradun-248161 Uttarakhand India
| |
Collapse
|
43
|
Gu M, Sun J, Qi C, Cai X, Goulette T, Song M, You X, Sela DA, Xiao H. The gastrointestinal fate of limonin and its effect on gut microbiota in mice. Food Funct 2019; 10:5521-5530. [PMID: 31418448 DOI: 10.1039/c9fo01274e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The gut microbiota plays a critical role in human health. Diets could modulate the gut microbiota, which in turn may contribute to altered health outcomes by way of changing the relative risk of chronic diseases. Limonin, widely found in citrus fruits, has been reported to possess multiple beneficial health effects. However, the gastrointestinal fate of limonin and its effect on gut microbiota remain unknown. Herein, mice were fed a diet containing 0.05% limonin (w/w) for 9 weeks. Liquid chromatography-mass spectrum analysis showed that limonin was concentrated along the gastrointestinal tract and reached 523.14 nmol g-1 in the colon lumen. Compared to control mice, colonic microbiota richness was significantly increased by limonin. Gut microbiota community was also clearly distinct from the control group as shown by Principle Coordinate Analysis. Additionally, the relative abundance of 22 genera (relative abundance >0.1%) was altered significantly. Among these, generally regarded probiotics (Lactobacillus and Bifidobacterium) were reduced, which was not due to direct inhibitory effect of limonin. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, amino acid metabolism, lipid, metabolism and immune system function were predicted to be upregulated, and immune system disease and infectious disease markers were predicted to be suppressed dramatically by limonin based on gut microbiota composition. Within the infectious disease category, bacterial toxin and Staphylococcus aureus infection markers were suppressed significantly with limonin treatment. Collectively, our study provides the first line of evidence that oral intake of limonin could shift gut microbiota composition and its functions, which warrants further investigation to determine its implication in human health.
Collapse
Affiliation(s)
- Min Gu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Jin Sun
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ce Qi
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaokun Cai
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Timothy Goulette
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and Guangdong Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaomeng You
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
44
|
Sun Y, Cui X, Duan M, Ai C, Song S, Chen X. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
45
|
Chen X, Yu J, Xue C, Wang Y, Tang Q, Mao X. Mechanism of neoagarotetraose protects against intense exercise-induced liver injury based on molecular ecological network analysis. Biosci Biotechnol Biochem 2019; 83:1227-1238. [DOI: 10.1080/09168451.2019.1607246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT
Here we have explored the effect of neoagarotetraose (NAT) on liver injury caused by intense exercise. Our results showed that NAT treatment obviously decreased liver weight (p < 0.01), improved the liver morphological structure, decreased ALT level (p < 0.05) and endotoxin (LPS) (p < 0.01). In addition, NAT could regulate bile acid profiles in feces and serum of mice, which indicated the potential of liver function, suggesting that NAT was effective to relieve intense exercise-induced liver injury. NAT could regulate the expression of colon genes. NAT tended to alter the microbial composition of mice under intense exercise. We uncovered the network interactions between liver traits and microbial communities in NAT treatment mice. Interestingly, our data indicated that intense exercise-induced liver injury may be related to Clostridiales. In summary, these results demonstrated that NAT relieved liver injury induced by intense exercise may be related to gut microbiota.
Collapse
Affiliation(s)
- Xin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiahong Yu
- Department of Food Engineering, Weihai Ocean Vocational College, Weihai, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
46
|
Liu F, Li Z, Wang X, Xue C, Tang Q, Li RW. Microbial Co-Occurrence Patterns and Keystone Species in the Gut Microbial Community of Mice in Response to Stress and Chondroitin Sulfate Disaccharide. Int J Mol Sci 2019; 20:ijms20092130. [PMID: 31052157 PMCID: PMC6539173 DOI: 10.3390/ijms20092130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Detecting microbial interactions is essential to the understanding of the structure and function of the gut microbiome. In this study, microbial co-occurrence patterns were inferred using a random matrix theory based approach in the gut microbiome of mice in response to chondroitin sulfate disaccharide (CSD) under healthy and stressed conditions. The exercise stress disrupted the network composition and microbial co-occurrence patterns. Thirty-four Operational Taxonomic Units (OTU) were identified as module hubs and connectors, likely acting as generalists in the microbial community. Mucispirillum schaedleri acted as a connector in the stressed network in response to CSD supplement and may play a key role in bridging intimate interactions between the host and its microbiome. Several modules correlated with physiological parameters were detected. For example, Modules M02 (under stress) and S05 (stress + CSD) were strongly correlated with blood urea nitrogen levels (r = 0.90 and -0.75, respectively). A positive correlation between node connectivity of the OTUs assigned to Proteobacteria with superoxide dismutase activities under stress (r = 0.57, p < 0.05) provided further evidence that Proteobacteria can be developed as a potential pathological marker. Our findings provided novel insights into gut microbial interactions and may facilitate future endeavor in microbial community engineering.
Collapse
Affiliation(s)
- Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiong Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Robert W Li
- United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
47
|
Shen Q, Zhang C, Jia W, Qin X, Xu X, Ye M, Mo H, Richel A. Liquefaction of chicken sternal cartilage by steam explosion to isolate chondroitin sulfate. Carbohydr Polym 2019; 215:73-81. [PMID: 30981372 DOI: 10.1016/j.carbpol.2019.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate (CS), together with peptide, was isolated from the liquid fraction of chicken sternal cartilage subjected to steam explosion (SE) by membrane separation. Cartilage was liquefied via the SE conditions, including various pressures (1.0-1.6 MPa) and times (60-140 s). The extraction procedure was optimized as follows: the amount of papain added, 0.11%; enzymolysis time, 10.5 h; and enzymolysis temperature, 56.5 °C, under which the highest recovery and total yield of CS were 92.15% and 18.55% at 1.4 MPa for120 s, and the counterparts of peptides were 87.35% (1.0 MPa, 140 s) and 63.07% (1.6 MPa, 140 s). The average molecular weight of CS samples ranged from 30 to 35 kDa. CS sample was confirmed using agarose-gel electrophoresis, and the structure was analysed Fourier transform infrared spectroscopy, chromatography and nuclear magnetic resonance. Taken together, SE can be an eco-friendly pretreatment method to liquefy cartilage for CS isolation.
Collapse
Affiliation(s)
- Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030, Gembloux, Belgium
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiong Xu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengliang Ye
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haizhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Aurore Richel
- University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|
48
|
The Effects of Glucosamine and Chondroitin Sulfate on Gut Microbial Composition: A Systematic Review of Evidence from Animal and Human Studies. Nutrients 2019; 11:nu11020294. [PMID: 30704054 PMCID: PMC6412843 DOI: 10.3390/nu11020294] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Oral glucosamine sulfate (GS) and chondroitin sulfate (CS), while widely marketed as joint-protective supplements, have limited intestinal absorption and are predominantly utilized by gut microbiota. Hence the effects of these supplements on the gut microbiome are of great interest, and may clarify their mode of action, or explain heterogeneity in therapeutic responses. We conducted a systematic review of animal and human studies reporting the effects of GS or CS on gut microbial composition. We searched MEDLINE, EMBASE, and Scopus databases for journal articles in English from database inception until July 2018, using search terms microbiome, microflora, intestinal microbiota/flora, gut microbiota/flora and glucosamine or chondroitin. Eight original articles reported the effects of GS or CS on microbiome composition in adult humans (four articles) or animals (four articles). Studies varied significantly in design, supplementation protocols, and microbiome assessment methods. There was moderate-quality evidence for an association between CS exposure and increased abundance of genus Bacteroides in the murine and human gut, and low-quality evidence for an association between CS exposure and an increase in Desulfovibrio piger species, an increase in Bacteroidales S24-7 family, and a decrease in Lactobacillus. We discuss the possible metabolic implications of these changes for the host. For GS, evidence of effects on gut microbiome was limited to one low-quality study. This review highlights the importance of considering the potential influence of oral CS supplements on gut microbiota when evaluating their effects and safety for the host.
Collapse
|
49
|
Sun Y, Liu Y, Ai C, Song S, Chen X. Caulerpa lentilliferapolysaccharides enhance the immunostimulatory activity in immunosuppressed mice in correlation with modulating gut microbiota. Food Funct 2019; 10:4315-4329. [DOI: 10.1039/c9fo00713j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Caulerpa lentilliferapolysaccharides could serve as novel prebiotics and immunostimulators, since they improve the immune-related factors and modulate the gut microbiota in cytoxan-induced immunosuppressed mice.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- P. R. China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine
- Xi'an 710003
- China
| | - Chunqing Ai
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Shuang Song
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- P. R. China
| |
Collapse
|
50
|
Role of Green Macroalgae Enteromorpha Prolifera Polyphenols in the Modulation of Gene Expression and Intestinal Microflora Profiles in Type 2 Diabetic Mice. Int J Mol Sci 2018; 20:ijms20010025. [PMID: 30577594 PMCID: PMC6337142 DOI: 10.3390/ijms20010025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Effects of green macroalgae 55% ethanolic extract Enteromorpha prolifera through an ultrafiltration membrane of 3 kDa (EPE3k) on antidiabetic activity, gut microbiota, and regulation mechanism were investigated in high-fat/high-sucrose diet and streptozocin-induced diabetic mice. The structural characterizations of its major compounds in EPE3k were determined by ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry. Furthermore, the intestinal microflora modulation in diabetic mice was also investigated with high-throughput 16S rRNA gene sequencing. The proposed presence of polyphenols in EPE3k was confirmed. EPE3k could significantly decrease the fasting blood glucose and improve fasting glucose tolerance. The hypoglycemic effect of EPE3k was via activation of phosphatidylinositol 3-kinase and suppression of c-Jun N-terminal kinase in liver. EPE3k treatment significantly increased the relative abundance of Akkermansia and decreased the proportion of Alistipes and Turicibacter. The above results indicated that EPE3k could be provided as a new potential therapy for the treatment of type 2 diabetic mellitus.
Collapse
|