1
|
Galván KLP, Veríssismo NVP, Santana JS, Lemos PVF, de Souza CO, Cardoso LG, de Jesus Assis D, Marcelino HR, de Oliveira TTB, Biasoto ATC, Junior AGT, Chorilli M, de Carvalho Santos-Ebinuma V, da Silva JBA. Encapsulation of polyketide colorants in chitosan and maltodextrin microparticles. Int J Biol Macromol 2024; 269:132173. [PMID: 38729461 DOI: 10.1016/j.ijbiomac.2024.132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to encapsulate Talaromyces amestolkiae colorants in maltodextrin and chitosan microparticles using the spraydrying technique and to evaluate the biopolymers' capacities to protect the fungal colorant against temperature (65 °C) and extreme pH (2.0 and 13.0). The compact microparticles exhibited smooth or indented surfaces with internal diameters ranging between 2.58-4.69 μm and ζ ~ -26 mV. The encapsulation efficiencies were 86 % and 56 % for chitosan and maltodextrin microparticles, respectively. The shifted endothermic peaks of the free colorants indicated their physical stabilization into microparticles. The encapsulated colorants retained most of their absorbance (compared to the 0 h) even after 25 days at 65 °C. Contrary, the free colorant presented almost no absorbance after 1 day under the same conditions. Colorants in chitosan and maltodextrin matrices also partially maintained their colorimetric and fluorometric properties at acidic pH. However, only maltodextrin improved the resistance of the red colorant to alkaline environments. For the first time, the potential of polysaccharide-based microparticles to preserve polyketide colorants was demonstrated using 3D fluorescence. Therefore, this study demonstrated an alternative in developing functional products with natural color additives.
Collapse
Affiliation(s)
- Karina Lizzeth Pedraza Galván
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), Brazil.
| | - Nathália Vieira Porhírio Veríssismo
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, São Paulo University, Ribeirão Preto, Brazil.
| | - Jamille Santos Santana
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil.
| | - Paulo Vitor França Lemos
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), Brazil.
| | | | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, University Salvador (UNIFACS), Brazil.
| | - Denílson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, University Salvador (UNIFACS), Brazil.
| | | | | | | | - Alberto Gomes Tavares Junior
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil.
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil.
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Brazil.
| | - Jania Betania Alves da Silva
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; Center for Exact and Technological Sciences, Collegiate of Mechanical Engineering, Federal University of Recôncavo da Bahia (UFRB), Brazil.
| |
Collapse
|
2
|
Beigmohammadi N, Peighambardoust SH, Mohammad Amini A, Alirezalu K. Enhancing Encapsulation Efficiency of Chavir Essential Oil via Enzymatic Hydrolysis and Ultrasonication of Whey Protein Concentrate-Maltodextrin. Foods 2024; 13:1407. [PMID: 38731778 PMCID: PMC11083897 DOI: 10.3390/foods13091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
This study focused on the characterization of emulsions and microparticles encapsulating Chavir essential oil (EO) by application of modified whey protein concentrate-maltodextrin (WPC-MD). Different physical, chemical, morphological, thermal, and antioxidant properties and release behavior of spray-dried microparticles were assessed. Antioxidant, solubility, emulsifying, and foaming activities of modified WPC were increased compared to those of primary material. The results indicated that the particle size distribution varied depending on the type of carriers used, with the smallest particles formed by hydrolyzed WPC (HWPC). Binary blends of modified WPC-MD led to improved particle sizes. The spray-drying yield ranged from 64.1% to 85.0%, with higher yields observed for blends of MD with sonicated WPC (UWPC). Microparticles prepared from primary WPC showed irregular and wrinkled surfaces with indentations and pores, indicating a less uniform morphology. The UWPC as a wall material led to microparticles with increased small cracks and holes on their surface. However, HWPC negatively affected the integrity of the microparticles, resulting in broken particles with irregular shapes and surface cracks, indicating poor microcapsule formation. Encapsulating EO using WPC-MD increased the thermal stability of EO significantly, enhancing the degradation temperature of EO by 2 to 2.5-fold. The application of primary WPC (alone or in combination with MD) as wall materials produced particles with the lowest antioxidant properties because the EO cannot migrate to the surface of the particles. Enzymatic hydrolysis of WPC negatively impacted microparticle integrity, potentially increasing EO release. These findings underscore the crucial role of wall materials in shaping the physical, morphological, thermal, antioxidant, and release properties of spray-dried microparticles, offering valuable insights for microencapsulation techniques.
Collapse
Affiliation(s)
- Nasrin Beigmohammadi
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166614766, Iran; (N.B.); (K.A.)
| | - Seyed Hadi Peighambardoust
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166614766, Iran; (N.B.); (K.A.)
| | - Asad Mohammad Amini
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran;
| | - Kazem Alirezalu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166614766, Iran; (N.B.); (K.A.)
| |
Collapse
|
3
|
Bahrampour Z, Peighambardoust SH, Amini AM, Soltanzadeh M. Application of low-, and medium-molecular weight chitosan for preparation of spray-dried microparticles loaded with Ferulago angulata essential oil: Physicochemical, antioxidant, antibacterial and in-vitro release properties. Int J Biol Macromol 2023; 253:126554. [PMID: 37652336 DOI: 10.1016/j.ijbiomac.2023.126554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
The present work aimed at spray-drying encapsulation of Chavir (Ferulago angulata) essential oil (EO) using low-, and medium-molecular weight chitosan. The obtained EO was observed to be mainly composed of β-ocimene, α-pinene, and bornyl acetate with antioxidant, and antimicrobial activity. The results indicated that stable emulsions with uniform particle size distribution and encapsulation efficiencies higher than 93 % could be prepared using chitosan as feed for spray-drying. In addition, spray-drying resulted in fabricating stable microspheres with yields higher than 50 %, uniform particle size, and encapsulation efficiency exceeding 70 %. The microspheres were fairly soluble and hygroscopic, and exhibited antioxidant and bacteriostatic activities with a biphasic release pattern. FTIR characterisation confirmed successful encapsulation of EO and thermal properties of microspheres indicated enhanced stability of EO after microencapsulation. Overall, it was revealed that molecular weight of chitosan and EO:chitosan ratio affects some physicochemical properties of obtained chitosan microspheres.
Collapse
Affiliation(s)
- Zahra Bahrampour
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Asad Mohammad Amini
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
4
|
Sathuvan M, Thangam R, Cheong KL, Kang H, Liu Y. κ-Carrageenan-essential oil loaded composite biomaterial film facilitates mechanosensing and tissue regenerative wound healing. Int J Biol Macromol 2023; 241:124490. [PMID: 37076080 DOI: 10.1016/j.ijbiomac.2023.124490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Polysaccharides κ-carrageenan (κ-Car) have become a predominant source in developing bioactive materials. We aimed to develop biopolymer composite materials of κ-Car with coriander essential oil (CEO) (κ-Car-CEO) films for fibroblast-associated wound healing. Initially, we loaded the CEO in to κ-Car and CEO through homogenization and ultrasonication to fabricate composite film bioactive materials. After performing morphological and chemical characterizations, we validated the developed material functionalities in both in vitro and in vivo models. The chemical and morphological analysis with physical structure, swelling ratio, encapsulation efficiency, CEO release, and water barrier properties of films examined and showed the structural interaction of κ-Car and CEO-loaded into the polymer network. Furthermore, the bioactive applications of CEO release showed initial burst release followed by controlled release from the κ-Car composite film with fibroblast (L929) cell adhesive capabilities and mechanosensing. Our results proved that the CEO-loaded into the κ-Car film impacts cell adhesion, F-actin organization, and collagen synthesis, followed by in vitro mechanosensing activation, further promoting wound healing in vivo. Our innovative perspectives of active polysaccharide (κ-Car)-based CEO functional film materials could potentially accomplish regenerative medicine.
Collapse
Affiliation(s)
- Malairaj Sathuvan
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea; Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Kit-Leong Cheong
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
5
|
King crab gills as a new source of chitin/chitosan and protein hydrolysates. Int J Biol Macromol 2023; 232:123346. [PMID: 36682662 DOI: 10.1016/j.ijbiomac.2023.123346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
This is the first report on the physicochemical properties of chitin obtained from gills of the king crab Paralithodes camtschaticus. In the present study, we investigated the chemical composition of red king crab gills and considered methods of its complex processing to obtain chitin and enzymatic protein hydrolysates. The gills contained approximately 21 % chitin in terms of dry matter. For the first time, the gills of the king crab were investigated as a source of chitin and chitosan. Chitin was isolated from crab gills using chemical and enzymatic methods. The physicochemical properties of chitin and chitosan from the gills were investigated. By performing infrared spectroscopy and X-ray phase analyses, the chitin present in the gills was established to be α-chitin. The physical and chemical properties (degree of deacetylation, molecular weight and crystal structure) of gill chitin and chitosan were absolutely similar to those of crab shell. Crab gills can be used as an additional source of chitin in the integrated processing of king crabs. The yield of chitin from the gills is up to 45 % of the yield of chitin from the crab carapace.
Collapse
|
6
|
Li X, Liu Y, Song H, Zhao M, Song Q. Antioxidant, antibacterial, and anti-inflammatory Periplaneta americana remnant chitosan/polysaccharide composite film: In vivo wound healing application evaluation. Int J Biol Macromol 2023; 237:124068. [PMID: 36934824 DOI: 10.1016/j.ijbiomac.2023.124068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Periplaneta americana (P. americana), which is widely used for wound healing in China, produces a large amount of solid waste (P. americana remnant) after pharmaceutical production extraction. P. americana remnant chitosan (PAC) has a low molecular weight, low crystallinity, and easily modifiable structural properties. In this study, PAC and P. americana remnant polysaccharide (PAP) were used as raw materials to prepare a composite film (PAPCF). The good biocompatibility of the composite film was verified by cell proliferation assays and protein adsorption assays. The bioactivity of the composite film was assessed by antibacterial and in vivo/vitro antioxidant assays to evaluate its potential as a wound dressing. The wound healing experiment revealed that PAPCF improved wound closure and collagen deposition, decreased reactive oxygen species levels, and attenuated the inflammatory response, enabling rapid wound healing from the inflammatory phase to the proliferative phase in mice. Additionally, PAPCF was administered only once, reducing the chance of infection from multiple deliveries. In summary, this paper presents an easy-to-administer, cost-effective, and effective dressing candidate for wound treatment based on the environmental concept of resource reuse.
Collapse
Affiliation(s)
- Xuehua Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yali Liu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Hongrong Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Meiting Zhao
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qin Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China.
| |
Collapse
|
7
|
FAN Y, PEI Y, CHEN J, ZHA X, WU Y. Structural characterization and stability of microencapsulated flavonoids from Lycium barbarum L. leaves. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
De Carli C, Aylanc V, Mouffok KM, Santamaria-Echart A, Barreiro F, Tomás A, Pereira C, Rodrigues P, Vilas-Boas M, Falcão SI. Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. Int J Biol Macromol 2022; 213:486-497. [PMID: 35640852 DOI: 10.1016/j.ijbiomac.2022.05.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
Developing biodegradable active films has been a promising green approach to overcoming global concerns over the environmental pollution and human health caused by plastic utilization. This study aimed to develop active films based on chitosan (CS), produced from waste crayfish (Procambarus clarkii) shells enriched with bioactive extract (5-20%) of propolis (PS) and to characterize its properties, envisaging food packaging applications. The chromatographic profile of PS extract confirmed its richness, with 41 phenolic compounds. With increasing extract addition to the chitosan, the thickness of the films increased from 61.7 to 71.7 μm, causing a reduction in the light transmission rate, along with a greenish colour shift. The interactions between PS extract and CS was confirmed by infrared spectroscopy, at the same time that the microstructural integrity of the films was checked on the scanning electron microscopy micrographs. The findings also showed that addition of PS enhanced the films thermal stability and mechanical properties e.g., tensile modulus, yield strength, and stress at break. Besides, it improved the antioxidant and antimicrobial activities. Overall, CS-based composite films seem a promising green alternative to petroleum-based synthetic plastics allowing to extend the shelf life of food products due to their eco-friendly nature.
Collapse
Affiliation(s)
- Cristiane De Carli
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Universidade Tecnológica Federal do Paraná - UTFPR, Campus Medianeira, 85884-000 Medianeira, Brazil
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Kheira M Mouffok
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Arantzazu Santamaria-Echart
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Andreia Tomás
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celeide Pereira
- Universidade Tecnológica Federal do Paraná - UTFPR, Campus Medianeira, 85884-000 Medianeira, Brazil
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
9
|
Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. SUSTAINABILITY 2022. [DOI: 10.3390/su14095410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the fishing and wine industries undoubtedly contribute significantly to the economy, they also generate large waste streams with considerable repercussions on both economic and environmental levels. Scientific literature has shown products can be extracted from these streams which have properties of interest to the cosmetics, pharmaceutical and food industries. Antimicrobial activity is undoubtedly among the most interesting of these properties, and particularly useful in the production of food packaging to increase the shelf life of food products. In this study, film for food packaging was produced for the first time using chitosan extracted from the exoskeletons of red shrimp (Aristomorpha foliacea) and oil obtained from red grape seeds (Vitis vinifera). The antimicrobial activity of two films was analyzed: chitosan-only film and chitosan film with the addition of red grape seed oil at two different concentrations (0.5 mL and 1 mL). Our results showed noteworthy antimicrobial activity resulting from functionalized chitosan films; no activity was observed against pathogen and spoilage Gram-positive and Gram-negative bacteria, although the antimicrobial effects observed were species-dependent. The preliminary results of this study could contribute to developing the circular economy, helping to promote the reuse of waste to produce innovative films for food packaging.
Collapse
|
10
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
11
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
12
|
Wang C, Chen Y, Cui Y, Zhang T, Zhang D, Ma C, Chen S, Li H. Microencapsulation of camellia oil to maintain thermal and oxidative stability with focus on protective mechanism. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenjie Wang
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
- Key Laboratory of Agricultural Products Functionalization Technology of Shandong Province Shandong Zibo 255000 China
| | - Yanting Chen
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
| | - Yanru Cui
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
| | - Tianqi Zhang
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
- Key Laboratory of Agricultural Products Functionalization Technology of Shandong Province Shandong Zibo 255000 China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
- Key Laboratory of Agricultural Products Functionalization Technology of Shandong Province Shandong Zibo 255000 China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
- Key Laboratory of Agricultural Products Functionalization Technology of Shandong Province Shandong Zibo 255000 China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Shandong Zibo 255000 China
- Key Laboratory of Agricultural Products Functionalization Technology of Shandong Province Shandong Zibo 255000 China
| |
Collapse
|
13
|
Smaoui S, Ben Hlima H, Ben Braïek O, Ennouri K, Mellouli L, Mousavi Khaneghah A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci 2021; 181:108585. [PMID: 34119890 DOI: 10.1016/j.meatsci.2021.108585] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Encapsulation is currently considered as one the most valuable methods for preserving aromatic compounds or hiding odors, enhancing their thermal and oxidative stability, and expanding their food applications. Indeed, this current article was aimed to provide an overview regarding the encapsulation of plant bioactive compounds and the spray-drying and extrusion processes with a focused discussion regarding the encountered challenges for meat and meat product preservation. Furthermore, different ranges of carbohydrates as wall materials (carriers) besides the process conditions' effects on the encapsulation effectiveness and the particle size of the encapsulated bioactive compounds have been discussed. The encapsulation of these compounds ameliorates the quality of the stored meat products by further delaying in microflora growth and lipid/protein oxidation. Therefore, the innovative technologies for plant active compounds encapsulation offer a prospective alternative for natural preservation development in the meat industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax-Tunisia, 3038 Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
14
|
Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel) 2021; 10:228. [PMID: 33546282 PMCID: PMC7913366 DOI: 10.3390/antiox10020228] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes. The recovery methods and their varying types and the advantages of the recovery methods are briefly discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables contained by this biopolymer, have been concisely presented. The variations of chitosan and its derivatives and their unique properties are discussed. The antioxidant properties of chitosan have been presented and the need for more work targeted towards harnessing the antioxidant property of chitosan has been emphasized. Some portions of the crustacean waste are being converted to chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted product chitosan is projected in this review. The future of chitosan recovery from marine crustacean wastes and the need to improve in this area of research, through the inclusion of nanotechnological inputs have been listed under future perspective.
Collapse
Affiliation(s)
- Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | | | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
15
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP. Improving Vesicular Integrity and Antioxidant Activity of Novel Mixed Soy Lecithin-Based Liposomes Containing Squalene and Their Stability against UV Light. Molecules 2020; 25:E5873. [PMID: 33322600 PMCID: PMC7764204 DOI: 10.3390/molecules25245873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
Collapse
Affiliation(s)
- Sahar Pakbaten Toopkanloo
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Tai Boon Tan
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Mohammad Azam
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (I.A.N.)
| | - Imededdine Arbi Nehdi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (I.A.N.)
- Chemistry Department, El Manar Preparatory Institute for Engineering Studies, Tunis El Manar University, P.O. Box 244, Tunis 2092, Tunisia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Felix da Silva Barbosa R, Gabrieli de Souza A, Rangari V, Rosa DDS. The influence of PBAT content in the nanocapsules preparation and its effect in essential oils release. Food Chem 2020; 344:128611. [PMID: 33221104 DOI: 10.1016/j.foodchem.2020.128611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Nanoencapsulation provides new alternatives for the food industry, enabling a controlled and slow release of active antimicrobial agents, such as essential oils (EO). Poly (butylene adipate-co-terephthalate) (PBAT) nanocapsules loaded with linalool EO were prepared using an extrusion method with 1, 3, and 5% w/v (PBAT to chloroform). Nanocapsules' sizes ranged from 100 to 250 nm and were spherical. The release profile was studied using an ethanoic medium over 24 h, and according to the Korsmeyer-Peppas model, a Fick diffusion mechanism was involved. FT-IR and thermogravimetric analyses confirmed EO encapsulation with an encapsulation efficiency of 55%, 71%, and 74% for 1, 3, and 5%, respectively. The results indicated that encapsulation depended on organic phase concentration, with higher PBAT contents achieving better results. The resulting nanocapsules had antimicrobial activity against E. coli, which could be extended to develop active packaging systems.
Collapse
Affiliation(s)
- Rennan Felix da Silva Barbosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil
| | - Alana Gabrieli de Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil
| | - Vijaya Rangari
- Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088, USA
| | - Derval Dos Santos Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, Avenida dos Estados, 5001, CEP: 09210-580, SP, Brazil.
| |
Collapse
|
18
|
Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Wang C, Chang T, Zhang D, Ma C, Chen S, Li H. Preparation and characterization of potato protein-based microcapsules with an emphasis on the mechanism of interaction among the main components. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2866-2872. [PMID: 31960976 DOI: 10.1002/jsfa.10277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Potato protein (PP) has promising potential for utilization in food applications due to its high nutritive value and functional properties. Grapeseed oil (GO) is rich in unsaturated fatty acids and antioxidant active ingredients. However, its application is limited because of low stability and high volatility. In order to overcome such problems, PP-based microcapsules encapsulating GO were produced by complex coacervation, and characterized using optical, thermodynamic and spectroscopic analyses. RESULTS Results indicated that a ratio of GO/PP of 1:2 led to the best encapsulation effect with the maximum microencapsulation efficiency and yield. Intact and nearly spherical microcapsules were observed from scanning electron microscopy images. Results of thermogravimetry demonstrated that thermal resistance was increased in the microencapsulated GO, indicating that PP-based microcapsules could be a good way to protect the thermal stability of GO. Fourier transform infrared spectra indicated that hydrogen bonding and covalent crosslinking might occur among wall materials, but a physical interaction between GO and wall materials. CONCLUSIONS PP can be successfully used to encapsulate GO when combined with chitosan, indicating that PP-based microcapsules have potential for application in encapsulating liquid oils with functional properties. A schematic diagram of possible interactions was constructed to better understand the mechanism of formation of the microcapsules. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Tong Chang
- Zibo Center for Disease Control and Prevention, Zibo, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Laoling Xisen Potato Industry Group Co. Ltd, Laoling, China
| |
Collapse
|
20
|
Bagheri Darvish H, Bahrami A, Jafari SM, Williams L. Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against Listeria monocytogenes in food products. Crit Rev Food Sci Nutr 2020; 61:1241-1259. [PMID: 32323558 DOI: 10.1080/10408398.2020.1755950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes (Lm), the etiological agent of listeriosis diseases in humans, is a serious pathogenic microorganism threatening the food safety especially in ready-to-eat food products. Adhesion on both biotic and abiotic surfaces is making it a potential source of contamination by Lm. Also, this bacterium has become more tolerant in food processing conditions, including in the presence of adverse conditions such as cold and dehydration. One of the attractive and effective methods to inhibit the growth of Lm in the food products is using natural antimicrobial agents, which can be a suitable alternative to synthetic preservatives for producing organic food products. The use of pure natural antimicrobials has some limitations including low stability against harsh conditions, low solubility and absorption, and un-controlled release, which can decrease their functions. These limitations have been overcome by using new advanced encapsulation techniques, which have boosted the anti-listerial activity of natural agents. Therefore, the current paper is aiming to review the results of recent studies conducted on using natural antimicrobials added directly or as encapsulated forms into the food formulation to control the growth of Lm. The information of current study can be used by the researchers as well as the food companies for the optimization of food formulations through encapsulation strategies to control Lm and potentially produce safe foods for the consumers.
Collapse
Affiliation(s)
| | - Akbar Bahrami
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Leonard Williams
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| |
Collapse
|
21
|
Hamdi M, Nasri R, Li S, Nasri M. Design of blue crab chitosan responsive nanoparticles as controlled-release nanocarrier: Physicochemical features, thermal stability and in vitro pH-dependent delivery properties. Int J Biol Macromol 2020; 145:1140-1154. [DOI: 10.1016/j.ijbiomac.2019.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
|
22
|
A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray drying. Food Res Int 2018; 119:547-553. [PMID: 30884688 DOI: 10.1016/j.foodres.2018.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/31/2023]
|
23
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
24
|
Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int J Pharm 2018; 548:217-226. [PMID: 29966744 DOI: 10.1016/j.ijpharm.2018.06.064] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Essential oils are recognized as valuable active pharmaceutical ingredients attributed to a set of biological properties, which include antibacterial, antifungal, antiviral, antioxidant, anticancer, immune-modulatory, analgesic and anti-inflammatory activities. Their use in pharmaceutics is however compromised by their limited water solubility and low physicochemical stability (i.e. volatility, oxidation). In order to overcome these limitations, we aimed to develop nanostructured lipid carriers (NLC) as delivery systems for Mediterranean essential oils, in particular Rosmarinus officinalis L., Lavandula x intermedia "Sumian", Origanum vulgare subsp. hirtum and Thymus capitatus essential oils, selected on the basis of their antioxidant and anti-inflammatory activities. NLC composed of Softisan (as solid lipid) have been produced by phase inversion temperature (PIT) and high-pressure homogenization (HPH), using two different emulsifiers systems. Particles have been further characterized for their mean particle size, polydispersity, zeta potential, morphology and chemical interactions. Best NLC formulations were obtained with Kolliphor/Labrafil as surfactants, and using Rosmarinus, Lavandula and Origanum as essential oils (PDI between 0.126 and 0.141, Zave < 200 nm). Accelerated stability studies have also been carried out to estimate the effect of the production method and surfactant composition on the long-term stability of EOs-loaded NLC. In vitro biological cell viability and anti-inflammatory activities were evaluated in Raw 264.7 cells (macrophage cell line), while in vitro antioxidant activity was checked by DPPH assay. Lavandula and Rosmarinus NLC were shown to be the most biocompatible formulations up to a concentration of 0.1% (v/v), whereas they were able to induce a dose-dependent anti-inflammatory activity in the order Lavandula > Rosmarinus ≥ Origanum.
Collapse
|
25
|
Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci 2018; 117:8-20. [PMID: 29408419 DOI: 10.1016/j.ejps.2018.01.046] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field.
Collapse
|
26
|
Budama Kilinc Y, Cakir Koc R, Kaya Z. Preparation and Cytotoxicity of Coriandrum Sativum L. Oil Loaded Chitosan Nanoparticles. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.323798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
27
|
Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review. Food Res Int 2017; 102:575-587. [DOI: 10.1016/j.foodres.2017.09.054] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 11/22/2022]
|
28
|
R.G. Kumar L, Chatterjee N, Tejpal C, Vishnu K, Anas K, Asha K, Anandan R, Mathew S. Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. Int J Biol Macromol 2017; 104:1986-1995. [DOI: 10.1016/j.ijbiomac.2017.03.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/04/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
29
|
Vinceković M, Viskić M, Jurić S, Giacometti J, Bursać Kovačević D, Putnik P, Donsì F, Barba FJ, Režek Jambrak A. Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Vishnu KV, Chatterjee NS, Ajeeshkumar KK, Lekshmi RGK, Tejpal CS, Mathew S, Ravishankar CN. Microencapsulation of sardine oil: Application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydr Polym 2017; 174:540-548. [PMID: 28821102 DOI: 10.1016/j.carbpol.2017.06.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Vanillic acid grafted chitosan (Va-g-Ch) was evaluated as a new antioxidant wall material for microencapsulation of polyunsaturated fatty acid rich sardine oil. A high grafting ratio of 305mg vanillic acid equivalent/g of polymer was achieved using a free radical mediated grafting reaction. Oil in water emulsion was prepared with an optimised combination of Va-g-Ch and Tween 20 (3.2:1). Sardine oil loaded microparticles (SO-M) were produced (∼75% yield) by spray drying. The average diameter and polydispersity Index (PDI) of the particles were found to be 2.3μ and 0.345. XRD spectra of SO-M showed reduction in crystallinity due to microencapsulation. After four weeks of storage, a moderate (∼12%) decrease in the EPA and DHA content and a low PV of 5.5±0.51meq/kg oil in SO-M demonstrated good oxidative stability. Satisfactory encapsulation efficiency (84±0.84%) and loading efficiency (67±0.51%) values, also demonstrated the suitability of Va-g-Ch for microencapsulation of sardine oil.
Collapse
Affiliation(s)
- K V Vishnu
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India
| | - Niladri S Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India.
| | - K K Ajeeshkumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India
| | - R G K Lekshmi
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India
| | - C S Tejpal
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India
| | - C N Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala-682029, India
| |
Collapse
|
31
|
Wang Y, Liu B, Wen X, Li M, Wang K, Ni Y. Quality analysis and microencapsulation of chili seed oil by spray drying with starch sodium octenylsuccinate and maltodextrin. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.02.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|