1
|
Parvez AK, Jubyda FT, Karmakar J, Jahan A, Akter NE, Ayaz M, Kabir T, Akter S, Huq MA. Antimicrobial potential of biopolymers against foodborne pathogens: An updated review. Microb Pathog 2025; 204:107583. [PMID: 40228749 DOI: 10.1016/j.micpath.2025.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Biopolymers are natural polymers produced by the cells of living organisms such as plants, animals, microbes, etc. As these natural molecules possess antimicrobial activities against pathogens, they can be a suitable candidate for antimicrobials combating drug-resistant microorganisms including food-borne pathogens. Plant-derived biopolymers such as cellulose, starch, pullulans; microbes-derived chitosan, poly-L-lysine; animal-derived collagen, gelatin, spongin, etc. are proven to possess antimicrobial properties. They exert their antimicrobial activity against food-borne pathogens namely Salmonella typhi, Vibrio cholerae, Bacillus cereus, Clostridium perfringens, E. coli, Campylobacter jejuni, Staphylococcus aureus, etc. As antimicrobial resistance becomes a global phenomenon and threatens the effective prevention and treatment of infections caused by pathogens, biopolymers could be a promising candidate/substitute for conventional antimicrobials available in markets. Biopolymers can have detrimental effects on microbial cells such as disruption of the cell walls and cell membranes; damage to the DNA caused by strand breakage, unwinding, or cross-linking resulting in impeded DNA transcription and replication; lowering the amount of energy required for metabolic processes by compromising the proton motive force. Biopolymers also interfere with the quorum sensing mechanism and biofilm formation of microbes and modulate the host immune system by downregulating mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways resulting in the decreased production of pro-inflammatory cytokines. Furthermore, conjugating these biopolymers with other antimicrobial agents could be a promising approach to control multidrug-resistant foodborne pathogens. This review provides an overview of the various sources of biopolymers with special reference to their antimicrobial applications, especially against foodborne pathogens, and highlights their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | - Fatema Tuz Jubyda
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Joyoshrie Karmakar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Airen Jahan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nayeem-E Akter
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tabassum Kabir
- M Abdur Rahim Medical College Hospital, Dinajpur, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Md Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Rejeb M, Lahmar A, Ghedira MB, Selmi A, Kosksi T, Debbabi N, Ghedira LC. Fish and bovine collagen promote higher migration and adhesion of dermal cells pre-treated with wound-healing herbal extracts. Tissue Cell 2025; 93:102762. [PMID: 39919404 DOI: 10.1016/j.tice.2025.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
PURPOSE Dermal cells fabricate and interact with the extracellular matrix to preserve structural integrity and further healthy function during wound healing. Collagen is a critical component of the matrix, challenging collagen's stability during wound injury. Natural sources especially plant extracts can promote wound healing and interact with collagen to increase its action. In this context, we studied the effect of extracted fish and bovine collagen in controlling cell proliferation, migration, and adhesion in dermal cells pretreated with plant extract. METHODS An acid-solubilization procedure was used to extract collagen fish (CF) and bovine (CB). Three different hydro-ethanolic extracts were prepared Pistacia lentiscus leaves (PL), Calendula officinalis leaves (FL), and flowers (FS). Migration potency was determined using scratch assay. The covered surface area was estimated after 16 hours and 24 hours after cell seeding. The chemotaxis was determined by the Boyden chamber, and the film was coated with CF or CB (10 µg/mL). or poly-L-lysine (50 µg/mL). FINDINGS We show that CF and CB increase adherence and migration of 3T3-L1 cells, which are pretreated with PL, FL, and FS. In addition, we highlighted a significantly higher cell adhesion on the CF matrix compared to CB. However, in the case of cells pre-treated with PL, the attachment to CF and CB increased significantly compared to untreated cells. The exposition of Hacat cells to plant extracts regulates the secretion of MMP2 and MMP and the production of reactive oxygen species. CONCLUSION CF and CB promote higher migration and adhesion of dermal cells pre-treated with wound-healing herbal extracts. In future studies, composite dressings based on collagen, P. lentiscus, and C. officinalis extracts can potentially be developed for tissue regeneration.
Collapse
Affiliation(s)
- Marwa Rejeb
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia.
| | - Aida Lahmar
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia.
| | - Mohamed Bayrem Ghedira
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Arem Selmi
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Tahsine Kosksi
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Nawres Debbabi
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Leila Chekir Ghedira
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| |
Collapse
|
3
|
Madineh H, Mansourinia F, Zarrintaj P, Poostchi M, Gnatowski P, Kucinska-Lipka J, Ghaffari M, Hasanin MS, Chapi S, Yazdi MK, Ashrafizadeh M, Bączek T, Saeb MR, Wang G. Stimuli-responsive delivery systems using carbohydrate polymers: A review. Int J Biol Macromol 2025; 310:142648. [PMID: 40174846 DOI: 10.1016/j.ijbiomac.2025.142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Carbohydrate polymers, including Chitosan, Cellulose, Starch, Dextran, Pectin, Alginate, and Hyaluronic Acid, have been considered as stimuli-responsive biopolymers demonstrating significant potential for drug delivery approaches. Relying on the specific design and fabrication, such biopolymers are able to respond to fluctuations in pH, temperature, or enzymatic activity. This review investigates stimuli-responsive biopolymers, known as carbohydrate polymers, mainly chitosan, cellulose, and alginate, utilized as drug delivery approaches, emphasizing that these stimuli-responsive biopolymers accelerate controlled drug release. The pH-responsive delivery systems selectively target acidic tumor microenvironments, while temperature-responsive materials provide precise control for drug release produced by hyperthermia. Light-responsive biopolymers provide spatial and temporal control, providing appropriate for targeted therapy. Redox-responsive structures are especially efficient in responding to elevated glutathione (GSH) in tumor microenvironment, facilitating targeted drug release. Electro- and magnetic-responsive systems provide remote control functionalities, improving the accuracy of drug administration. The incorporation of multi-stimuli-responsive mechanisms implies a remarkable progression in drug delivery, providing a more versatile and adaptable framework for therapeutic applications. Accordingly, the future research on carbohydrate polymer-based stimuli-responsive delivery systems should focus on improving the responsiveness and targeting efficacy through complicated optimization of features and performance of carbohydrate polymers, where the integration of multifunctional moieties facilitates transformation of targeted drugs for broader biological functions.
Collapse
Affiliation(s)
- Hossein Madineh
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mansourinia
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Poostchi
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; Department of Environmental Toxicology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23A, Gdańsk 80-204, Poland.
| | - Justyna Kucinska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mehdi Ghaffari
- Polymer Group, Faculty of Technical and Engineering, Golestan University, P. O. Box 155, Gorgan, Golestan, Iran
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt; Department of Polymer and Biomaterials Science, West Pomeranian University of Technology in Szczecin, Al. Piastow 45, 70-311 Szczecin, Poland
| | - Sharanappa Chapi
- Department of Physics, B.M.S. College of Engineering, Basavanagudi - 560019, Bengaluru, Karnataka, India
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Guizhen Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China.
| |
Collapse
|
4
|
Wang J, Song N, Yin L, Cui Z, Wang Y, Zhou C, Li J, Qin J. Self-healing hydrogel based on oxidized pectin with grafted dopamine as gallic acid carrier for burn wound treatment. Int J Biol Macromol 2025; 306:141826. [PMID: 40057080 DOI: 10.1016/j.ijbiomac.2025.141826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
When the barrier function of the skin tissue is destroyed, the burn wound is prone to bacterial infection and difficult to repair during the healing process. Therefore, there is an urgent need to design functional dressing materials to promote burn wound repairing. In this research, injectable hydrogel with mussel-inspired tissue adhesion was fabricated from dopamine grafted oxidized pectin (OP-DA) and hydrazide terminated polyethylene oxide (PEO-AH) as dressing material for burn wounds. The catechol moiety on the grafted dopamine (DA) enhanced the tissue adhesion of hydrogel and the wound sealing performance, which can well adhere onto the skin to cover irregular wounds for consistent sealing under body moving. On this basis, the hydrogel also showed hemostatic performance based on liver and tail hemostasis model. The hydrogel was further loaded with gallic acid (GA) to enhance the antibacterial property to E. coli and S. aureus to inhibit wound infection. Along with good biocompatibility and biodegradability, the hydrogel showed improved burn wound repairing performance to second-degree burn wound models on mice. As a result, the OP-DA/PEO-AH hydrogel showed great advantage as GA carrier in wound healing applications.
Collapse
Affiliation(s)
- Junling Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Nannan Song
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Liping Yin
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jianheng Li
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Sun Y, Yao J, Gao R, Hao J, Liu Y, Liu S. Interactions of non-starch polysaccharides with the gut microbiota and the effect of non-starch polysaccharides with different structures on the metabolism of the gut microbiota: A review. Int J Biol Macromol 2025; 296:139664. [PMID: 39798752 DOI: 10.1016/j.ijbiomac.2025.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Humans consume large amounts of non-starch polysaccharides(NPs) daily. Some NPs, not absorbed by the body, proceed to the intestines. An increasing number of studies reveal a close relationship between NPs and gut microbiota(GM) that impact the human body. This review not only describes in detail the structures of several common NPs and their effects on GM, but also elucidates the degradation mechanisms of NPs in the intestine. The purpose of this review is to elucidate how NPs interact with GM in the intestine, which can provide valuable information for further studies of NPs.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Jiaxuan Yao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Running Gao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Junyu Hao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| |
Collapse
|
6
|
Lutta A, Liu Q, Pedersen GK, Dong M, Grohganz H, Nielsen LH, Schmidt ST. Microfluidic fabrication of pectin-coated liposomes for drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01812-0. [PMID: 39987264 DOI: 10.1007/s13346-025-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Polymer coating of nanoparticulate drug delivery systems may enhance the efficacy of oral delivery. Cationic liposomes were coated with pectin biopolymers using microfluidics, with systematic variation of process parameters to optimize pectin-coated liposome fabrication. A pectin/liposome weight ratio of 0.7 and a microfluidic flow rate ratio of 2:1 pectin:liposome were found to be optimal. The resulting formulations displayed particle sizes at least threefold the size of uncoated liposomes, while the surface charge shifted to a highly negative value, indicating full pectin coating of the particles. Further microscopic characterization of the pectin-coated liposomes revealed that the pectins formed a polymeric network within which the liposomes were dispersed or attached. Stability studies revealed that pectin-coated liposomes remained stable during storage, with no displacement of the coating. We determined that microfluidics is a robust method for preparing pectin-coated liposomes, despite the structural differences between the pectins, geometry of the microchip used, and pectin/liposome concentration. Ultimately, the use of microfluidics in formulation development could be highly beneficial, as the process parameters can be easily modified and the process is easily scalable and inexpensive. Additionally, pectins can offer protective properties to the liposomes particularly during oral drug delivery.
Collapse
Affiliation(s)
- Anitta Lutta
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark
| | - Qian Liu
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark
| | - Signe Tandrup Schmidt
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
7
|
Afzia N, Bora S, Ghosh T. Utilization of cassava peel based cellulose nanofiber for developing functionalized pectin/pullulan/olive oil nanocomposite film for cling wrapping of chicken meat. Int J Biol Macromol 2025; 305:140879. [PMID: 39933670 DOI: 10.1016/j.ijbiomac.2025.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
The current research focused on the utilization of cassava peel for fabricating cellulose nanofiber (CNF) and development of nanocomposite films for cling wrapping of chicken meat. The extraction of cellulose was achieved through the pretreatment method of cassava peel. Further, CNF was fabricated via acid hydrolysis (H2SO4) of cassava peel derived cellulose. Field emission scanning electron microscopy analysis confirmed the formation of CNF with diameters ranging from 25.9 to 50.0 nm. Moreover, X-ray diffraction (XRD) showed the characteristics peak of CNF at 21.66°. Further, the thermal stability of CNF was compared with cellulose. The CNF showed the highest thermal stability with T10, T50 value of 204.30 °C and 336.80 °C respectively, along with the residual weight of 24.19 %. Further, various compositions of films such as CNF incorporated pullulan /pectin (PP) and pullulan /pectin /olive oil (PPO)-based nanocomposite films were developed using solution casting method. The properties of films were investigated in terms of surface morphology, barrier, mechanical and optical properties. Incorporation of CNF reduced the water vapor transmission rate of the nanocomposite films. Moreover, film containing 1.5 wt% CNF exhibited the highest tensile strength (6.90 MPa) and Young's modulus (7.21 MPa), while elongation at break peaked at 1 wt% CNF for PP films but decreased with higher CNF content in PPO films. Further, the developed films were used as a cling wrapper for chicken meat and storage study was checked. The cling wrapper maintained the color of the chicken meat, minimizing weight loss from 42.08 % (unwrapped) to 6.13-11.59 % (cling wrapped) and limits the increase in hardness over 10 days. Microbial analysis revealed a significant reduction in mesophilic and psychrophilic bacterial counts in cling wrapped chicken meat as compared to unwrapped one.
Collapse
Affiliation(s)
- Nurin Afzia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - Susmita Bora
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - Tabli Ghosh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India.
| |
Collapse
|
8
|
Sathyaraj WV, Pravin YR, Prabakaran L, Gokulnath A, Bhoopathy J, Rajendran S. Therapeutic potency of marine collagen/pectin scaffolds - Fabrication, characterization and evaluation. Eur J Pharmacol 2024; 984:177066. [PMID: 39427858 DOI: 10.1016/j.ejphar.2024.177066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Skin is an important vital organ that must be given proper care and protection from external damage and harmful microbes. If injured, it must be treated with an ideal wound dressing material with potent hemostatic and non-toxic properties. In the present study, fish collagen (FC) was extracted from the fins and tails of Black pomfret (Parastromateus niger). The isolated fish collagen was homogenized with pectin (P) and freeze dried to obtain fish collagen/pectin (FC/P) scaffolds. Scanning electron microscopic analysis showed the porous nature of scaffolds with intermittent holes. UV-Visible and Fourier infrared spectroscopic analyses demonstrated the physicochemical properties of FC/P scaffolds. Hemolytic assay performed using human blood demonstrated the percentage of hemolysis as 0.5 %. In vitro blood clotting assay carried out to determine the hemostatic behaviour displayed the formation of blood clot within 60 s in the presence of FC/P scaffolds. 95 % of cells were viable with the highest concentration of FC/P scaffold used for MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Scratch wound assay demonstrated complete closure of wound in FC/P scaffold treated cells after 48 h of treatment. Chick embryo chorioallantoic membrane (CAM) assay showed the development of new blood vessels within 6 h of incubation with the FC/P scaffolds, thereby proving their angiogenic potency. These results indicate the potential use of FC/P scaffolds as effective biomaterials for tissue regenerative applications.
Collapse
Affiliation(s)
- Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India.
| | - Yovan Raja Pravin
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| | - Anbalagan Gokulnath
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| | - Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| | - Selvarajan Rajendran
- Centre for Nano Science and Technology, Alagappa College of Technology Campus, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
9
|
Khajeh Hesami SR, Keshavarzi F, Khodabandeh Z, Jamhiri I, Rezaee M. The effects of Fe 3O 4NPs@SiO2 and Fe 3O 4NPs@pectin nanoparticles on the MCF-7 breast cancer cell line and the expression of BAX, TPX1 and BCL2 genes. Int J Biol Macromol 2024; 282:137082. [PMID: 39481708 DOI: 10.1016/j.ijbiomac.2024.137082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Breast cancer is a cause of death in women, making it a significant issue in women's health. The aim of this study was to evaluate the effects of nanoparticles (NPs) of Fe3O4NPs@pectin and Fe3O4NPs@SiO2 on MCF-7 cells. Fe3O4NPs@pectin and Fe3O4NPs@SiO2 NPs were prepared using the chemical coprecipitation technique. The characteristics of the NPs were determined using physical methods. The cytotoxic effects of the NPs were assessed by the MTT assay. The expression levels of BAX, BCL2, and TPX1 genes were determined using real-time PCR. The results indicated a density ratio of 0.11, a saturation magnetism value of 68.5 emu/g, and a spherical with sizes of 98 nm for the NPs. The MTT assay showed that 500 μg/mL of NPs had 75 % toxicity on MCF-7 cells after five days. The increased expression of BAX with 250 μg/mL of Fe3O4@pectin showed a significant relationship (p-value = 0.0030). Down-regulated expression of BCL2 showed a significant relationship between the three groups treated with 250 μg/mL and 500 μg/mL of Fe3O4@SiO2 and 250 μg/mL of Fe3O4@pectin (p-values of 0.0014, 0.0009 and 0.0030, respectively). Additionally, decreased TPX indicated a significant relationship between treatment at 125, 250 and 500 μg/mL of Fe3O4@SiO2 (p-values of 0.0388, 0.0063 and 0.0496, respectively).
Collapse
Affiliation(s)
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Malahat Rezaee
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
10
|
Stanciu MC, Ionita D, Tȋmpu D, Popescu I, Suflet DM, Doroftei F, Tuchilus CG. Novel Quaternary Ammonium Derivatives Based on Apple Pectin. Polymers (Basel) 2024; 16:3352. [PMID: 39684100 DOI: 10.3390/polym16233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
New quaternary ammonium derivatives (quats) based on apple pectin (PA) were synthesized by the chemical modification of native polysaccharides with various quaternization mixtures containing epichlorohydrin (ECH) and a tertiary amine. Pectin derivatives (QPAs) were studied by elemental analysis, conductometric titration, Fourier-transform infrared spectroscopy (FTIR), and 13C nuclear magnetic resonance (13C NMR). Viscosity measurements enabled the evaluation of the viscosity average molar mass (Mv) for the unmodified polysaccharide, as well as its intrinsic viscosity ([η]) value. Dynamic light scattering (DLS) analysis revealed that the PA and its quats formed aggregates in an aqueous solution with either a unimodal (PA) or bimodal (QPAs) distribution. Scanning transmission electron microscopy analysis (STEM) of the PA and its derivatives demonstrated the presence of individual polymeric chains and aggregates in aqueous solution, with the smallest sizes being specific to amphiphilic polymers. Thermal stability, as well as wide-angle X-ray diffraction (WAXD) studies, generally indicated a lower thermal stability and crystallinity of the QPAs compared with those of the PA. Antipathogenic activity demonstrated that the PA and its derivatives exhibited effectiveness against S. aureus ATCC 25923 bacterium and C. albicans ATCC 10231 pathogenic yeast.
Collapse
Affiliation(s)
| | - Daniela Ionita
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Daniel Tȋmpu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Cristina G Tuchilus
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania
| |
Collapse
|
11
|
Wen B, Weng X, Zhu S, Wu X, Lin X, Chen H, He Y. Carbohydrate polymer-driven nanoparticle synthesis and functionalization in the brain tumor therapy: A review. Int J Biol Macromol 2024; 285:138194. [PMID: 39617244 DOI: 10.1016/j.ijbiomac.2024.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The brain tumors have been characterized with aggressive and heterogeneous nature. The treatment of brain tumors has been challenging due to their sensitive location and also, presence of blood-brain barrier (BBB) that reduces the entrance of bioactive compounds to the brain tissue. Therefore, the new treatment strategies should be focused on improving the efficacy of conventional therapeutics, crossing over biological barriers and introducing new kinds of methods for brain tumor elimination. In the recent years, the application of carbohydrate polymers in the treatment of human cancers has been increased as they possess biocompatibility, biodegradability and selective targeting of tumor cells. Moreover, carbohydrate polymer-based nanoparticles demonstrate desirable drug loading and encapsulation, making them suitable for the delivery of bioactive compounds. Accordingly, the carbohydrate polymers and their nanoparticles have been developed to improve the drug and gene delivery to brain tumors. Moreover, these nanoparticles can increase sensitivity of chemotherapy and immunotherapy. In addition to providing combination therapy, the carbohydrate polymer-based nanoparticles can elevate the phototherapy-mediated tumor ablation. These nanocarriers have demonstrated desirable particle size, zeta potential and encapsulation efficiency that are beneficial for brain tumor therapy. Moreover, these nanoparticles have high biocompatibility that can be subsequently utilized in clinical studies.
Collapse
Affiliation(s)
- Baoquan Wen
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiqing Weng
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Shujun Zhu
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiujuan Wu
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiaofeng Lin
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Hong Chen
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China.
| | - Yuqin He
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China.
| |
Collapse
|
12
|
Xiang T, Yang R, Li L, Lin H, Kai G. Research progress and application of pectin: A review. J Food Sci 2024; 89:6985-7007. [PMID: 39394044 DOI: 10.1111/1750-3841.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pectin, an acidic polysaccharide, is naturally present primarily in the cell walls and inner layers of higher plants. Pectin is extensively used in food, pharmaceutical, cosmetic, and other industries owing to its exceptional attributes encompassing superior gelation, emulsification, antioxidant activity, stability, biocompatibility, and nontoxicity. Due to the increasing demand for pectin, there is a short supply in the domestic pectin market. Currently, the domestic production of pectin is heavily reliant on imports, thus emphasizing the urgent need to enhance its local manufacturing capabilities. Due to the diverse sources of pectin and variations in extraction and purification methods, its content, physicochemical properties, and biological activity are influenced, consequently impacting the market application of pectin. Therefore, this paper comprehensively reviews the extraction and purification process of pectin, in vivo metabolism, and biological activities (including antitumor, immunomodulatory, anti-inflammatory, antioxidant, hypoglycemic and hypolipidemic effects, antimicrobial properties, accelerated wound healing potential, promotion of gastrointestinal peristalsis, and alleviation of constipation as well as cholesterol-lowering effect). Furthermore, it explores the diverse applications of pectin in food science, biomedicine, and other interdisciplinary fields. This review serves as a valuable resource for enhancing the efficiency of pectin content improvement and exploring the potential value and application of pectin in a more scholarly and scientifically rigorous manner.
Collapse
Affiliation(s)
- Tingting Xiang
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Frosi I, Colombo R, Pugliese R, Milanese C, Papetti A. Pectin Microwave Assisted Extraction from Pumpkin Peels: Process Optimization and Chemical-Physical and Rheological Characterization. Foods 2024; 13:3157. [PMID: 39410192 PMCID: PMC11475461 DOI: 10.3390/foods13193157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Recently, pectin, a versatile polysaccharide with different industrial applications, has gained significant attention as an eco-friendly and functional ingredient. This study investigates pumpkin peels (Cucurbita maxima L., Mantua variety) as a novel source of pectin, using a microwave-assisted extraction method with citric acid-acidified water as solvent. The extraction conditions were optimized using a Design of Experiments approach, considering the solvent-to-solid ratio (SSR), pH, temperature, and extraction time. The optimized conditions (94.8 °C, 5 min, pH 1.5, and 46 mL/g SSR) resulted in a pectin yield of 18.05%. A comprehensive characterization of the extracted pectin was performed, including FT-IR spectroscopy, DSC, TGA, rheological properties, and techno-functional assessments such as water holding capacity and fat binding capacity. The results indicated a high degree of esterification (56.19 ± 0.87%), classifying the pumpkin peels (PP) extract as a high methoxyl pectin. PP pectin demonstrated potential as a stabilizer and emulsifying agent, although its high methoxyl content limits its use as a carrier for targeted bioactive delivery. The findings support the viability of using agricultural by-products to obtain valuable polysaccharides, contributing to waste valorization and sustainable industrial practices.
Collapse
Affiliation(s)
- Ilaria Frosi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (R.C.)
| | - Raffaella Colombo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (R.C.)
| | - Raffaele Pugliese
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Chiara Milanese
- Department of Chemistry, Physical Chemistry Section & C.S.G.I., University of Pavia, 27100 Pavia, Italy;
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (R.C.)
| |
Collapse
|
14
|
Im JH, Yi HY, Chun JY. Impact of diverse mineral hardness in electrodialysis water on the ionotropic gelation mechanism of low methoxyl pectin. Int J Biol Macromol 2024; 280:135695. [PMID: 39299436 DOI: 10.1016/j.ijbiomac.2024.135695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
In this study, the effect of desalinated lava seawater via electrodialysis (ED water) on the formation and properties of low methoxyl pectin (LMP) gels was investigated. Additionally, the syneresis, microstructure, gelation mechanism, and thermostability of the gel samples were analyzed. When the ED water content exceeded 25 %, pectin gels with viscosities and textures that differed from those of the sol were formed. The highest gel hardness (9.38 N) was observed when 50 % ED water was mixed with LMP. However, when 75 % ED water was added, the pore size of the LMP gel became the largest, and excess water was released from the gel, resulting in a weak gel strength (4.98 N). The formation and properties of the gel structure were found to be mainly due to the ionic bonds between the minerals in the ED water and the free carboxyl groups of pectin, and it was confirmed that the hydrogen bonds within the pectin chains also had an effect. These results suggest that the interaction between the ED water and LMP can be widely used in various industrial fields, including low-sugar gels or viscosity-enhancing agents with diverse rheological properties.
Collapse
Affiliation(s)
- Ji-Hyun Im
- Department of Food Bioengineering, Jeju National University, Jeju 63243, South Korea
| | - Hye-Yoon Yi
- Department of Food Bioengineering, Jeju National University, Jeju 63243, South Korea
| | - Ji-Yeon Chun
- Department of Food Bioengineering, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
15
|
Zhang H, Fan Z, Peng D, Huang C, Wu X, Sun F. Tunning the hydrophobic performance and thermal stability of pectin film by acetic anhydride esterification. Int J Biol Macromol 2024; 276:133746. [PMID: 39004252 DOI: 10.1016/j.ijbiomac.2024.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Pectin, a polysaccharide found in plant cell walls, is characterized by a high abundance of hydroxyl groups and carboxylic acid groups, which results in a strong affinity for water and limits its suitability as a film material. This study aimed to modulate the esterification degree of PEC films by adjusting the concentration of acetic anhydride, and assess the impact of acetic anhydride esterification modification on the properties of the resultant PEC films. The results demonstrated successful grafting of acetic anhydride onto the galacturonic acid ring in the PEC molecule through the esterification process. The hydrophobicity, thermal stability, barrier properties, and mechanical properties of the esterified PEC films were investigated. Among the various concentrations tested, the E-PEC-0.25 film exhibited the highest contact angle of 103.46° and tensile strength of 33.44 MPa, showcasing optimal performance. The E-PEC-0.1 film achieved the highest esterification degree of 0.94 and elongation at a break of 21.11 %. It also exhibited the transparency of 11.66 and the lowest water vapor transmission rate of 0.56 g·mm/(m2·h·kpa). Additionally, TGA and DSC tests revealed enhanced thermal stability of the esterification-prepared films. These findings highlight the potential of acetic anhydride tuning as a promising strategy for optimizing pectin film production.
Collapse
Affiliation(s)
- Huili Zhang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhiwei Fan
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Dandan Peng
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Xinxing Wu
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, China.
| | - Fangli Sun
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
16
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
17
|
Costa W, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS OMEGA 2024; 9:30035-30070. [PMID: 39035931 PMCID: PMC11256335 DOI: 10.1021/acsomega.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.
Collapse
Affiliation(s)
- Wanderson
Barros Costa
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | - Ana F. Félix Farias
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | | | - Josy A. Osajima
- Interdisciplinary
Laboratory for Advanced Materials − LIMAV, UFPI, 64049-550, Teresina, Piaui, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla
(CITIUS), 41012, Sevilla, Spain
| | - Maria Del Mar Orta
- Departamento
de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012 Sevilla, Spain
| | - Maria G. Fonseca
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| |
Collapse
|
18
|
Li Z, Geng Y, Bu K, Chen Z, Xu K, Zhu C. Construction of a pectin/sodium alginate composite hydrogel delivery system for improving the bioaccessibility of phycocyanin. Int J Biol Macromol 2024; 269:131969. [PMID: 38697419 DOI: 10.1016/j.ijbiomac.2024.131969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
In this study, different concentrations of sodium alginate were compounded with pectin and phycocyanin to co-prepare composite hydrogel spheres (HP-PC-SA 0.2 %, 0.6 %, 1.0 %, 1.4 %) to evaluate the potential of the composite hydrogel spheres for the application as phycocyanin delivery carriers. The hydrogel spheres' physicochemical properties and bioaccessibility were assessed through scanning electron microscopy, textural analysis, drug-carrying properties evaluation, and in vitro and in vivo controlled release analysis in the gastrointestinal environment. Results indicated that higher sodium alginate concentrations led to smaller pore sizes and denser networks on the surface of hydrogel spheres. The textural properties of hydrogel spheres improved, and their water-holding capacity increased from 93.01 % to 97.97 %. The HP-PC-SA (1.0 %) formulation achieved the highest encapsulation rate and drug loading capacity, at 96.87 % and 6.22 %, respectively. Within the gastrointestinal tract, the composite hydrogel's structure significantly enhanced and protected the phycocyanin's digestibility, achieving a bioaccessibility of up to 88.03 %. In conclusion, our findings offer new insights into improving functionality and the effective use of phycocyanin via pectin-based hydrogel spheres.
Collapse
Affiliation(s)
- Zhixin Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Yuxin Geng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Jinan, Shandong Province 250117, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Zhengtao Chen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699, Qingdao Road, Jinan, Shandong Province 250117, PR China.
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
19
|
Soomro MA, Khan S, Majid A, Bhatti S, Perveen S, Phull AR. Pectin as a biofunctional food: comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. DISCOVER APPLIED SCIENCES 2024; 6:298. [DOI: 10.1007/s42452-024-05968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
AbstractPectin is a complex polysaccharide found in a variety of fruits and vegetables. It has been shown to have potential antidiabetic activity along with other biological activities, including cholesterol-lowering properties, antioxidant activity, anti-inflammatory and immune-modulatory effects, augmented healing of diabetic foot ulcers and other health benefits. There are several pectin-associated antidiabetic mechanisms, such as the regulation of glucose metabolism, reduction of oxidative stress, increased insulin sensitivity, appetite suppression and modulation of the gut microbiome. Studies have shown that pectin supplementation has antidiabetic effects in different animal models and in vitro. In human studies, pectin has been found to have a positive effect on blood glucose control, particularly in individuals with type 2 diabetes. Pectin also shows synergistic effects by enhancing the potency and efficacy of antidiabetic drugs when taken together. In conclusion, pectin has the potential to be an effective antidiabetic agent. However, further research is needed to fully understand its detailed molecular mechanisms in various animal models, functional food formulations and safety profiles for the treatment and management of diabetes and associated complications in humans. The current study was carried out to provide the critical approach towards therapeutical potential, anti-diabetic potential and underlying molecular mechanisms on the basis of existing knowledge.
Collapse
|
20
|
Thenrajan T, Madhu Malar M, Wilson J. Natural Polymer Encapsulated Zeolitic Imidazolate Framework-12 Composite toward Electrochemical Sensing of Antitumor Agent. ACS APPLIED BIO MATERIALS 2024; 7:3375-3387. [PMID: 38693867 DOI: 10.1021/acsabm.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Encapsulation of natural polymer pectin (Pec) into a zeolitic imidazolate framework-12 (ZIF-12) matrix via a simple chemical method toward anticancer agent gallic acid (GA) detection is reported in this work. GA, a natural phenol found in many food sources, has gained attention by its biological effects on the human body, such as an antioxidant and anti-inflammatory. Therefore, it is crucial to accurately and rapidly determine the GA level in humans. The encapsulation of Pec inside the ZIF-12 has been successfully confirmed from the physiochemical studies such as XRD, Raman, FTIR, and XPS spectroscopy along with morphological FESEM, BET, and HRTEM characterization. Under optimized conditions, the Pec@ZIF-12 composite exhibits wide linear range of 20 nM-250 μM with a detection limit of 2.2 nM; also, it showed excellent selectivity, stability, and reproducibility. Furthermore, the real sample analysis of food samples including tea, coffee, grape, and pomegranate samples shows exceptional recovery percentage in an unspiked manner. So far, there is little literature for encapsulating proteins, enzymes, metals, etc., that have been reported; here, we successfully encapsulated a natural polymer Pec inside the ZIF-12 cage. This encapsulation significantly enhanced the composite electrochemical performance, which could be seen from the overall results. All of these strongly suggest that the proposed Pec@ZIF-12 composite could be used for miniaturized device fabrication for the evaluation of GA in both home and industrial applications.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer electronics lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Madasamy Madhu Malar
- Polymer electronics lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Jeyaraj Wilson
- Polymer electronics lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| |
Collapse
|
21
|
Hao JW, Liu HS, Liu LY, Zhang QH. Citrus pectin protects mice from burn injury by modulating intestinal microbiota, GLP-1 secretion and immune response. Int Immunopharmacol 2024; 131:111912. [PMID: 38522140 DOI: 10.1016/j.intimp.2024.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Water-soluble rhamnogalacturonan-I enriched citrus pectin (WRP) has promising effect on antimicrobial defense. We aim to determine whether the modified acidic (A) or neutral (B) WRP solutions can improve intestinal microbial dysbiosis in burn-injured mice. Male Balb/c mice were gavaged with WRPs at 80, 160, 320 mg/kg. Body weight daily for 21 days before exposed to thermal injury of 15 % total body surface area and mortality was monitored. Mice with 80 mg/kg WRPs were also subjected to fecal DNAs and T cell metabonomics analysis, intestinal and plasma glucagon-like peptide 1 (GLP-1) detection, plasma defensin, immunoglobin and intestinal barrier examinations at 1 and 3d postburn (p.b.). Burn-induced mortality was only improved by low dose WRP-A (P = 0.039). Both WRPs could prevent the dysbiosis of gut microbiota in burn injury by reducing the expansion of inflammation-promoting bacteria. Both WRPs suppressed ileum GLP-1 production at 1d p.b. (P = 0.002) and plasma GLP-1 levels at 3d p.b. (P = 0.013). Plasma GLP-1 level correlated closely with ileum GLP-1 production (P = 0.019) but negatively with microbiota diversity at 1d p.b. (P = 0.003). Intestinal T cell number was increased by both WRPs in jejunum at 3d p.b. However, the exaggerated splenic T cell metabolism in burn injury was reversed by both WRPs at 1d p.b. The burn-increased plasma defensin β1 level was only reduced by WRP-B. Similarly, the intestinal barrier permeability was only rescued by WRP-B at 1d p.b. WRP-A rather than WRP-B could reduce burn-induced mortality in mice by suppressing intestinal GLP-1 secretion, restoring gut microbiota dysbiosis and improving adaptive immune response.
Collapse
Affiliation(s)
- Ji-Wei Hao
- Trauma Repair and Tissue Regeneration Center, Department of Medical Innovation Study, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China
| | - Hong-Sheng Liu
- Department of Emergency, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ling-Ying Liu
- Department of Medical Nutrition, Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, People's Republic of China
| | - Qing-Hong Zhang
- Trauma Repair and Tissue Regeneration Center, Department of Medical Innovation Study, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China.
| |
Collapse
|
22
|
Shabeena M, Warale D, Prabhu A, Kouser S, Manasa DJ, Nagaraja GK. Pectin wrapped halloysite nanotube reinforced Polycaprolactone films for potential wound healing application. Int J Biol Macromol 2024; 262:130140. [PMID: 38365152 DOI: 10.1016/j.ijbiomac.2024.130140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The current research work focuses on preparing the polycaprolactone (PCL) based nanocomposite films embedded with surface modified Halloysite Nanotube (HNT). The avenue of the study is to unravel the applicability of polymer nanocomposites for wound healing. The flexible property of HNT was taken as the major force to accomplish the addition of biopolymer pectin onto its surface. Functionalization of HNT with pectin has certainly enhanced its binding nature with the polymer. The PCL nanocomposite films were characterized by several promising techniques such as FTIR, XRD, DSC-TGA, FESEM, TEM, AFM, and mechanical properties were too examined along. When compared to the plane PCL film, the nanocomposite films manifested favorable results in terms of mechanical and chemical properties. Additionally, biometric studies such as in-vitro swelling, enzymatic degradation, and hemolysis performed on the films gave extremely good results. The haemolytic percentage recorded for the films exhibited a steady decrease with increasing amount of nanofillers. The MTT assay showed cell proliferation and its increase as the embedded HNT is more in the matrix. Wound closure study performed on NIH3T3 cell line with 1, 3 and 5wt% of films has given a strong proof for the involvement of polymer and HNT in the healing procedure.
Collapse
Affiliation(s)
- M Shabeena
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India
| | - Deepali Warale
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Sabia Kouser
- Department of P.G.Studies in chemistry, Karnataka Science College, Dharwad 577007, Karnataka, India
| | - D J Manasa
- Department of Botany, Davangere university, Davangere 577007, Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India.
| |
Collapse
|
23
|
Dambuza A, Rungqu P, Oyedeji AO, Miya G, Oriola AO, Hosu YS, Oyedeji OO. Therapeutic Potential of Pectin and Its Derivatives in Chronic Diseases. Molecules 2024; 29:896. [PMID: 38398646 PMCID: PMC10892547 DOI: 10.3390/molecules29040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024] Open
Abstract
Non-communicable diseases (NCDs) are described as a collection of chronic diseases that do not typically develop from an acute infection, have long-term health effects, and frequently require ongoing care and therapy. These diseases include heart disease, stroke, cancer, chronic lung disease, neurological diseases, osteoporosis, mental health disorders, etc. Known synthetic drugs for the treatment or prevention of NCDs become increasingly dangerous over time and pose high risks due to side effects such as hallucination, heart attack, liver failure, etc. As a result, scientists have had to look for other alternatives that are natural products and that are known to be less detrimental and contain useful bioactive compounds. The increasing understanding of the biological and pharmacological significance of carbohydrates has helped to raise awareness of their importance in living systems and medicine, given they play numerous biological roles. For example, pectin has been identified as a class of secondary metabolites found in medicinal plants that may play a significant role in the treatment and management of a variety of NCDs. Pectin is mainly made of homogalacturonan, which is a linear polymer composed primarily of D-galacturonic acid units (at least 65%) linked in a chain by α-(1,4)-glycosidic linkages. There are also modified pectins or derivatives that improve pectin's bioavailability. Pectin is found in the cell walls of higher plants (pteridophytes, angiosperms, and gymnosperms), particularly in the middle lamella of the plant material. Citrus pectin is used in various industries. This article compiles information that has been available for years about the therapeutic importance of pectin in chronic diseases, different modes of pectin extraction, the chemistry of pectin, and the potency of pectin and its derivatives.
Collapse
Affiliation(s)
- Anathi Dambuza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa;
| | - Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa; (A.O.O.); (G.M.); (A.O.O.)
| | - Gugulethu Miya
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa; (A.O.O.); (G.M.); (A.O.O.)
| | - Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa; (A.O.O.); (G.M.); (A.O.O.)
| | - Yiseyon Sunday Hosu
- Department of Business Management and Economics, Faculty of Economics and Financial Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa;
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa;
| |
Collapse
|
24
|
Dias IP, Barbieri SF, da Costa Amaral S, Silveira JLM. Development and characterization of films from Campomanesia xanthocarpa and commercial citrus pectins with different degrees of methyl-esterification. Int J Biol Macromol 2024; 257:128554. [PMID: 38056731 DOI: 10.1016/j.ijbiomac.2023.128554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, pectins from commercial citrus and isolated from gabiroba (Campomanesia xanthocarpa) fruits, were obtained with different degrees of methyl-esterification (DM) and applied in the films. The DM ranged from 0 % to 62.5 % and the gradual de-esterification process was confirmed by mono-dimensional analysis (1H NMR). In order to investigate the influence of DM values in pectin film properties, PCP (DM: 62.5 %); PCP-5 (DM: 37.4 %); PCP-15 (DM: 19.1 %), and a fully de-esterified sample PCP-35 (DM: 0 %) were selected. The functional properties of the films clearly showed that the DM and cross-linking process are necessary to obtain a material with water resistance. Furthermore, pectin isolated from the fruits of gabiroba was purified (GW-Na, DM: 51.9 %) and partially de-esterified (GW-Na-5, DM: 37.1 %). These pectins were used, for the first time, in development of films and the physical and mechanical properties were compared with films made with PCP and PCP-5 samples. GW-Na and GW-Na-5 films presented suitable properties, with reduced solubility reduced (57.1 and 26.2 %), high degree of swelling (2.14 and 2.26), low flexibility (18.05 and 6.11 MPa), respectively. High strength and rigidity (99.36 and 1040.9 MPa), for both films (GW-Na and GW-Na-5) were demonstrated, similar to that obtained by analyzed citrus pectin.
Collapse
Affiliation(s)
- Isabela Pereira Dias
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81531-990, Brazil
| | - Shayla Fernanda Barbieri
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81531-990, Brazil
| | - Sarah da Costa Amaral
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81531-990, Brazil
| | - Joana Léa Meira Silveira
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81531-990, Brazil.
| |
Collapse
|
25
|
Rani S, Lal S, Kumar S, Kumar P, Nagar JK, Kennedy JF. Utilization of marine and agro-waste materials as an economical and active food packaging: Antimicrobial, mechanical and biodegradation studies of O-Carboxymethyl chitosan/pectin/neem composite films. Int J Biol Macromol 2024; 254:128038. [PMID: 37963501 DOI: 10.1016/j.ijbiomac.2023.128038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
The present work deals with the eco-friendly preparation of highly degradable food packaging films consisting of O-CMC (O-Carboxymethyl Chitosan) and pectin, incorporated with neem (Azadirachta indica) leaves powder and extract. This study aimed to investigate the tensile properties, antimicrobial activity, biodegradability, and thermal behavior of the composite films. The results of tensile strength and elongation at break, showed that the incorporation of neem leaves powder improved the tensile properties (7.11 MPa) of the composite films compared to the neat O-CMC and pectin films (3.02 MPa). The antimicrobial activity of the films was evaluated against a panel of microorganisms including both gram-positive and gram-negative bacteria as well as fungi. The composite films exhibited excellent antimicrobial activity with a zone of inhibition (12-17.6 mm) against the tested microorganisms. The opacity of the composite films ranges from 1.14 to 4.40 mm-1 and the addition of fiber causes a decrease in opacity value. Biodegradability studies were conducted by Soil burial method and the films demonstrated complete biodegradability within 75 days. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of composite films show that they are thermally stable and might be used in food packaging.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India; Department of Chemistry, Pt. CLS Government College, Karnal, Haryana 132001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Sumit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Jitendra K Nagar
- Dr. Bhim Rao Ambedkar College, University of Delhi, Delhi 110094, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| |
Collapse
|
26
|
Yaqoob N, Imtiaz F, Shafiq N, Rehman S, Munir H, Bourhia M, Almaary KS, Nafidi HA. Oleogels for the Promotion of Healthy Skin Care Products: Synthesis and Characterization of Allantoin Containing Moringa-based Oleogel. Curr Pharm Biotechnol 2024; 25:2326-2336. [PMID: 38867525 DOI: 10.2174/0113892010295050240508114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Oleogelation is an efficient and emerging approach for obtaining biocompatible and biodegradable elastic semisolid crystals to be used in various cosmetic and pharmaceutical formulations. Recently, drug incorporation in oil structuring has been a promising strategy under consideration due to the effectiveness of this method. Plant oils have very beneficial characteristics for skin care and wound healing due to the presence of certain antioxidants. METHODS In this study, the oleogels of Moringa oleifera seed oil with natural polysaccharides, including pectin, chitosan, and xanthan gum, were prepared using the emulsion template method. Moringa oil was selected because it can hydrate and moisturize the skin and has great antioxidant activity. Also, the natural polysaccharides, i.e., pectin and chitosan, exhibited good gelling properties. Allantoin, which is a wound healer and eucalyptus leaf oil with antioxidant potential, was incorporated into the emulsion-based-oleogels to enhance the antioxidant and antimicrobial activity of the oleogels. RESULTS Allantoin and eucalyptus-loaded oleogels exhibited good antibacterial activity against E. coli. The FTIR spectra of moringa-based oleogels in the range between 3226-3422 cm-1 indicate the presence of hydrogen bonding in oleogels. CONCLUSION The antioxidant potential of allantoin and eucalyptus-containing oleogel was maximized, and an IC50 value of 0.9719 μM was found. Maximum release of allantoin from oleogel was observed in the first hour.
Collapse
Affiliation(s)
- Nazia Yaqoob
- Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Fazeelat Imtiaz
- Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Products drug discovery Lab., Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Saima Rehman
- Department of Chemistry, Government College for Women University Faisalabad, 38000, Pakistan
| | - Huma Munir
- Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325 Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
27
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
28
|
Damiri F, Fatimi A, Santos ACP, Varma RS, Berrada M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: a review. J Mater Chem B 2023; 11:10538-10565. [PMID: 37909361 DOI: 10.1039/d3tb01712e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Polysaccharides have found extensive utilization as biomaterials in drug delivery systems owing to their remarkable biocompatibility, simple functionalization, and inherent biological properties. Within the array of polysaccharide-based biomaterials, there is a growing fascination for self-assembled polysaccharide nanogels (NG) due to their ease of preparation and enhanced appeal across diverse biomedical appliances. Nanogel (or nanohydrogel), networks of nanoscale dimensions, are created by physically or chemically linking polymers together and have garnered immense interest as potential carriers for delivering drugs due to their favorable attributes. These include biocompatibility, high stability, the ability to adjust particle size, the capacity to load drugs, and their inherent potential to modify their surface to actively target specific cells or tissues via the attachment of ligands that can recognize corresponding receptors. Nanogels can be engineered to respond to specific stimuli, such as pH, temperature, light, or redox conditions, allowing controlled release of the encapsulated drugs. This intelligent targeting capability helps prevent drug accumulation in unintended tissues and reduces the potential side effects. Herein, an overview of nanogels is offered, comprising their methods of preparation and the design of stimulus-responsive nanogels that enable controlled release of drugs in response to specific stimuli.
Collapse
Affiliation(s)
- Fouad Damiri
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
| | - Ana Cláudia Paiva Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| |
Collapse
|
29
|
Mikhalchik EV, Maltseva LN, Firova RK, Murina MA, Gorudko IV, Grigorieva DV, Ivanov VA, Obraztsova EA, Klinov DV, Shmeleva EV, Gusev SA, Panasenko OM, Sokolov AV, Gorbunov NP, Filatova LY, Balabushevich NG. Incorporation of Pectin into Vaterite Microparticles Prevented Effects of Adsorbed Mucin on Neutrophil Activation. Int J Mol Sci 2023; 24:15927. [PMID: 37958911 PMCID: PMC10649924 DOI: 10.3390/ijms242115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility. Hybrid microparticles composed of vaterite and pectin (CCP) were prepared using co-precipitation. In comparison with vaterite (CC), they had a smaller diameter and pores, a greater surface area, and a negative zeta-potential. We aimed to study the cytotoxicity and mucin-dependent neutrophil-activating effect of CCP microparticles. The incorporated pectin did not influence the neutrophil damage according to a lactate dehydrogenase test. The difference in the CC- and CCP-elicited luminol or lucigenin chemiluminescence of neutrophils was insignificant, with no direct pro- or antioxidant effects from the incorporated pectin. Unlike soluble pectin, the CCP particles were ineffective at scavenging radicals in an ABAP-luminol test. The fluorescence of SYTOX Green demonstrated a CCP-stimulated formation of neutrophil extracellular traps (NETs). The pre-treatment of CC and CCP with mucin resulted in a 2.5-times-higher CL response of neutrophils to the CC-mucin than to the CCP-mucin. Thus, the incorporation of pectin into vaterite microspheres enabled an antioxidant effect to be reached when the neutrophils were activated by mucin-treated microparticles, presumably via exposed ligands.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Liliya N. Maltseva
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Roxalana K. Firova
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Marina A. Murina
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Viktor A. Ivanov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Ekaterina A. Obraztsova
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Dmitry V. Klinov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Sergey A. Gusev
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Oleg M. Panasenko
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
| | - Alexey V. Sokolov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Lyubov Y. Filatova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Nadezhda G. Balabushevich
- Department of Biophysics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (L.N.M.); (R.K.F.); (M.A.M.); (V.A.I.); (E.A.O.); (D.V.K.); (E.V.S.); (S.A.G.); (O.M.P.); (A.V.S.); (N.P.G.); (N.G.B.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
30
|
Liu Y, Zhou H, Fan J, Huang H, Deng J, Tan B. Potential mechanisms of different methylation degrees of pectin driving intestinal microbiota and their metabolites to modulate intestinal health of Micropterus salmoides. Int J Biol Macromol 2023; 251:126297. [PMID: 37591422 DOI: 10.1016/j.ijbiomac.2023.126297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Four diets containing 8 % cellulose, low methyl-esterified pectin (LMP), high methyl-esterified pectin (HMP) and MMP (half LMP and half HMP) were designed to evaluate the potential mechanisms by which different esterification degrees of pectin drive intestinal microbiota and their metabolites modulating the intestinal health of Micropterus salmoides. The results showed that both dietary LMP and HMP consistently upregulated intestinal zonula occludens protein 1 (Zo-1), Caludin-1, and Caludin-4, and downregulated intestinal tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and interleukin-1 beta (IL-1β) gene expression (P < 0.05). Dietary HMP separately upregulated intestinal Occludin, nuclear factor erythroid2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated agonist of cell death (BAD) gene expression, as well as the digesta propionate content, OTUs, Sobs, Shannon, Chao, and ACE indices (P < 0.05), whereas dietary LMP decreased digesta arginine, 4-aminobutyric, L-tyrosine, and phenylalanine contents (P < 0.05). Moreover, dietary HMP decreased plasma lipopolysaccharide and d-lactic acid contents and increased intestinal superoxide dismutase and glutathione peroxidase activities and immunoglobulin (Ig) receptor and IgM levels (P < 0.05). Collectively, dietary HMP improves intestinal health by increasing intestinal flora α-diversity and enhancing intestinal mechanical barrier, anti-inflammatory, antioxidant, and immune functions. On the contrary, the interference of dietary LMP with butyrate, tyrosine, arginine, and 4-aminobutyric acid metabolism is the main reason for its detrimental effects on intestinal health.
Collapse
Affiliation(s)
- Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China.
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
31
|
Tian G, Huo M, Yang X, Mao K, Liu X, Sang Y, Li J. Amino acid regulated citrus pectin-based emulsion stability mediated by pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6912-6919. [PMID: 37319235 DOI: 10.1002/jsfa.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Citrus residuals are rich in nutrients like pectin, essential oil, and amino acids, which are wasted in the food industry. Moreover, citrus components often coexist with amino acids during emulsion preparation and application. RESULTS Adding glutamic or arginine after emulsification resulted in a stable emulsion compared with adding them before emulsification. Adding glycine before or after emulsification had no effect on the emulsion stability. Emulsion stability was improved by adding glutamic acid at pH 6. Ionic interaction and hydrogen bonding were the main forms of bonding. The rhamnogalacturonan II domain was the potential binding site for the amino acids. CONCLUSIONS The emulsions prepared by adding acidic amino acids or basic amino acids after emulsification were stable relative to those in which the amino acids were added before emulsification. However, the order in which neutral amino acids were added did not affect the emulsion stability after storage for 7 days. With an increase in the pH level, droplet size increased and emulsion stability decreased. All the results could be attributed to changes in the structure and properties of citrus pectin, as well as the interaction between citrus pectin and amino acids. This study may expand the application of citrus-derived emulsions in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Man Huo
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaohan Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangtao Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
32
|
Mohammadi F, Yousefi M. Characterizations and effects of pectin-coated nanoliposome loaded with Gijavash ( Froriepia subpinnata) extract on the physicochemical properties of cheese. Heliyon 2023; 9:e21564. [PMID: 38027869 PMCID: PMC10660039 DOI: 10.1016/j.heliyon.2023.e21564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, pectin-coated nanoliposomes containing Gijavash extract were used to formulate cheese and evaluate its shelf life, physicochemical, and sensory aspects. The study used a central composite design with three independent variables to prepare the cheese. The results showed that the optimal particle size, zeta potential, encapsulation efficiency, and DPPH radical antioxidant activity were 201.22 nm, -29.33 mV, 61.87%, and 57.54%, respectively. Adding nanoliposomes with varying extract amounts improved pH and lowered acidity in fortified cheeses. Moisture and lipolysis indices also improved after applying nanoliposomes. Sensory evaluation revealed that sensory acceptance was highest in the cheese with 15% extract. The study suggests that adding pectin-coated nanoliposomes containing Gijavash extract to cheese formulations may create novel products and improve their physicochemical properties.
Collapse
Affiliation(s)
| | - Mahsa Yousefi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Penang, 11800, Malaysia
| |
Collapse
|
33
|
Owusu FWA, Acquah PGJ, Boakye-Gyasi MEL, Johnson R, Yeboah GN, Archer MA, Antwi MB, Asare SO. Pharmaceutical Assessment of the Impact of the Method of Extraction on the Suitability of Pectin from Plantain ( Musa paradisiaca) Peels as a Suspending Agent in Oral Liquid Formulations. ScientificWorldJournal 2023; 2023:8898045. [PMID: 37808477 PMCID: PMC10558270 DOI: 10.1155/2023/8898045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Natural polymers such as pectin have gained increased utilization in pharmaceutical and biotechnology sectors because they are affordable, easily accessible, nontoxic, and chemically modifiable, with the potential to be biodegradable and biocompatible. Musa paradisiaca (plantain) peels make up 30-40% of the overall weight of the fruit. The extraction of pectin from these residues can therefore be viewed as a possible waste of wealth. This study, therefore, focused on evaluating the suspending properties of pectin obtained from Musa paradisiaca (plantain) peels (through acid and alkaline extraction) and presented an alternative suspending agent in the pharmaceutical formulation of suspensions. The unripe peels of Musa paradisiaca were acquired and authenticated at the Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Pectin was extracted from the peels using both acid and alkaline extraction processes, respectively, characterized, and evaluated for its phytochemical properties. Different concentrations of the acid and alkaline pectin extracts were employed as a suspending agent in paracetamol suspensions, using acacia gum as a standard. The pectin yields obtained were 4.88% and 7.61% for the acid and alkaline extraction processes, respectively, while phytochemical screening revealed the presence of glycosides, tannins, saponins, and phenols in both extracts. The alkaline pectin extract recorded higher equivalent weight, degree of esterification, ash content, and crude content than the acid pectin extract, while FTIR identified similar functional groups in both acid and alkaline pectin extracts. The test suspensions reported significant differences (P < 0.05) in flow rates, ease of redispersion, sedimentation volumes, and rates compared with acacia gum. Moreover, when the acid and alkaline pectin extracts were compared, significant differences (P < 0.05) were observed in sedimentation rates and sedimentation volumes, suggesting that the extraction method may affect suspending properties. Ultimately, the alkaline pectin extract had better suspending properties than the acid pectin extract; however, they both can be used as an alternative to acacia gum as a suspending agent.
Collapse
Affiliation(s)
- Frederick William Akuffo Owusu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince George Jnr Acquah
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mariam E. L. Boakye-Gyasi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael Johnson
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Genevieve Naana Yeboah
- Department of Pharmaceutics and Quality Control, Centre for Plant Medicine Research, Mampong, Ghana
| | - Mary-Ann Archer
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mercy Birago Antwi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Obenewaa Asare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
34
|
Dai Y, Qiao K, Li D, Isingizwe P, Liu H, Liu Y, Lim K, Woodfield T, Liu G, Hu J, Yuan J, Tang J, Cui X. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Adv Healthc Mater 2023; 12:e2202827. [PMID: 36977522 DOI: 10.1002/adhm.202202827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Indexed: 03/30/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.
Collapse
Affiliation(s)
- Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Kai Qiao
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Phocas Isingizwe
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Haohao Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Yu Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 518001, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
35
|
Hameed AR, Majdoub H, Jabrail FH. Effects of Surface Morphology and Type of Cross-Linking of Chitosan-Pectin Microspheres on Their Degree of Swelling and Favipiravir Release Behavior. Polymers (Basel) 2023; 15:3173. [PMID: 37571067 PMCID: PMC10421508 DOI: 10.3390/polym15153173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The cross-linked microspheres were prepared and loaded with Favipiravir SARS-CoV-2 antiviral drug, by copolymerization of chitosan (CS) with a polysaccharide extracted from fresh pomegranate peels. Moreover, glutaraldehyde (Glu) has been used as a chemical cross-linker and sodium hexametaphosphate (SHMP) as a physical cross-linker. The extracted polysaccharide was analyzed, and different techniques have been used. The analyses lead to the conclusion that it is pectin. The surface morphology of the prepared microspheres was studied using a scanning electron microscope, where the size and shape factor (S) of the Glu microspheres showed high values (74.27 μm) and (0.852), respectively, meaning their surfaces tend to be rough, whereas the SHMP microspheres showed a smaller size particle (20.47 μm) and a smaller shape factor (0.748), which gives an indication that the SHMP microspheres have smooth surfaces. The swelling studies have shown that Glu microspheres have a higher degree of swelling, which means SHMP microspheres are more compact. The prepared microspheres have shown a higher loading percentage of Favipiravir antiviral drug in SHMP microspheres (37% w/w) in comparison with Glu microspheres (35% w/w), where the electrostatic interaction between the Favipiravir ions and SHMP anions helps for more loading. The microspheres prepared under different types of cross-linking have shown initial burst release of Favipiravir, followed by a step of controlled release for a certain period of time, whose period depends on the pH of the release medium. Both Glu and SHMP cross-linked microspheres have shown high controlled release times in buffered release solutions at pH = 7.4 and for shorter periods at pH = 1.3 and pH = 9.4, which may be related to the type of electrostatic interactions between drug and polymer systems and their reactions with release solution ions.
Collapse
Affiliation(s)
- Amer Rashid Hameed
- The State Company for Drugs Industry and Medical Appliances, Samaraa 34010, Iraq;
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Fawzi Habeeb Jabrail
- Polymer Research Laboratory, Department of Chemistry, Collage of Science, University of Mosul, Mosul 41002, Iraq
| |
Collapse
|
36
|
Khan AA, Bari A, Abdullah Al-Kheraif A, Alsunbul H, Alhaidry H, Alharthi R, Aldegheishem A. Oxidized Natural Biopolymer for Enhanced Surface, Physical and Mechanical Properties of Glass Ionomer Luting Cement. Polymers (Basel) 2023; 15:2679. [PMID: 37376329 DOI: 10.3390/polym15122679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
This laboratory investigation aimed to synthesize and characterize micron-sized Gum Arabic (GA) powder and incorporate it in commercially available GIC luting formulation for enhanced physical and mechanical properties of GIC composite. Oxidation of GA was performed and GA-reinforced GIC in 0.5, 1.0, 2.0, 4.0 & 8.0 wt.% formulations were prepared in disc-shaped using two commercially available GIC luting materials (Medicem and Ketac Cem Radiopaque). While the control groups of both materials were prepared as such. The effect of reinforcement was evaluated in terms of nano hardness, elastic modulus, diametral tensile strength (DTS), compressive strength (CS), water solubility and sorption. Two-way ANOVA and post hoc tests were used to analyze data for statistical significance (p < 0.05). FTIR spectrum confirmed the formation of acid groups in the backbone of polysaccharide chain of GA while XRD peaks confirmed that crystallinity of oxidized GA. The experimental group with 0.5 wt.% GA in GIC enhanced the nano hardness while 0.5 wt.% and 1.0 wt.% GA in GIC increased the elastic modulus compared to the control. The CS of 0.5 wt.% GA in GIC and DTS of 0.5 wt.% and 1.0 wt.% GA in GIC demonstrated elevation. In contrast, the water solubility and sorption of all the experimental groups increased compared to the control groups. The incorporation of lower weight ratios of oxidized GA powder in GIC formulation helps in enhancing the mechanical properties with a slight increase in water solubility and sorption parameters. The addition of micron-sized oxidized GA in GIC formulation is promising and needs further research for improved performance of GIC luting composition.
Collapse
Affiliation(s)
- Aftab Ahmed Khan
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Abdullah Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Alsunbul
- Restorative Dentistry Department, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hind Alhaidry
- Advanced General Dentistry, Prince Sultan Military Medical City, Riyadh 13514, Saudi Arabia
| | - Rasha Alharthi
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Alhanoof Aldegheishem
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
37
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
38
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int J Biol Macromol 2023; 242:124902. [PMID: 37210054 DOI: 10.1016/j.ijbiomac.2023.124902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Eyes are directly exposed to the outer environment and susceptible to infections, leading to various ocular disorders. Local medication is preferred to treat eye diseases due to its convenience and compliance. However, the rapid clearance of the local formulations highly limits the therapeutic efficacy. In the past decades, several carbohydrate bioadhesive polymers (CBPs), such as chitosan and hyaluronic acid, have been used in ophthalmology for sustained ocular drug delivery. These CBP-based delivery systems have improved the treatment of ocular diseases to a large extent but also caused some undesired effects. Herein, we aim to summarize the applications of some typical CBPs (including chitosan, hyaluronic acid, cellulose, cyclodextrin, alginate and pectin) in treating ocular diseases from the general view of ocular physiology, pathophysiology and drug delivery, and to provide a comprehensive understanding of the design of the CBP-based formulations for ocular use. The patents and clinical trials of CBPs for ocular management are also discussed. In addition, a discussion on the concerns of CBPs in clinical use and the possible solutions is presented.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
40
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
41
|
Saucedo-Acuña RA, Meza-Valle KZ, Cuevas-González JC, Ordoñez-Casanova EG, Castellanos-García MI, Zaragoza-Contreras EA, Tamayo-Pérez GF. Characterization and In Vivo Assay of Allantoin-Enriched Pectin Hydrogel for the Treatment of Skin Wounds. Int J Mol Sci 2023; 24:ijms24087377. [PMID: 37108540 PMCID: PMC10138972 DOI: 10.3390/ijms24087377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This work describes a liquid allantoin-enriched pectin hydrogel with hydrophilic behavior that is supported by the presence of functional groups related to healing efficacy. A topical study shows the effect of the hydrogel application on surgically induced skin wound healing in a rat model. Contact angle measurements confirm hydrophilic behavior (11.37°), while Fourier-transform infrared spectroscopy indicates the presence of functional groups related to the healing effectiveness (carboxylic acid and amine groups). Allantoin is distributed on the surface and inside the amorphous pectin hydrogel surrounded by a heterogeneous distribution of pores. This promotes wound drying with better interaction between the hydrogel and cells involved in the wound healing process. An experimental study with female Wistar rats indicates that the hydrogel improves wound contraction, reducing around 71.43% of the total healing time and reaching total wound closure in 15 days.
Collapse
Affiliation(s)
- Rosa Alicia Saucedo-Acuña
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Av. Benjamín Franklin No. 4650, Zona Pronaf Condominio La Plata, Ciudad Juárez C.P. 32310, Mexico
| | - Karen Zulema Meza-Valle
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Av. Benjamín Franklin No. 4650, Zona Pronaf Condominio La Plata, Ciudad Juárez C.P. 32310, Mexico
| | - Juan Carlos Cuevas-González
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Av. Benjamín Franklin No. 4650, Zona Pronaf Condominio La Plata, Ciudad Juárez C.P. 32310, Mexico
| | - Elsa Gabriela Ordoñez-Casanova
- Institute of Engineering and Technology, Autonomous University of Ciudad Juarez, Av. del Charro y Henry Dunan s/n, Omega, Ciudad Juárez C.P. 32584, Mexico
| | - Manuel Iván Castellanos-García
- Institute of Engineering and Technology, Autonomous University of Ciudad Juarez, Av. del Charro y Henry Dunan s/n, Omega, Ciudad Juárez C.P. 32584, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico
| | - Genaro Federico Tamayo-Pérez
- Jefatura de Investigación, Hospital Ángeles Ciudad Juárez, Av. Campos Eliseos 9371, Campos Elíseos, Ciudad Juárez C.P. 32472, Mexico
| |
Collapse
|
42
|
Xie J, Zhang Y, Klomklao S, Simpson BK. Pectin from plantain peels: Green recovery for transformation into reinforced packaging films. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:225-233. [PMID: 36898246 DOI: 10.1016/j.wasman.2023.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Plantain peels as agro-waste are generated in the millions of tons per year with no profitable management strategies. On the other hand, the excessive use of plastic packaging threatens the environment and human health. This research aimed to address both problems via a green approach. High-quality pectin was recovered from plantain peels via an enzyme-assisted and ethanol-recycling process. The yield and galacturonic acid (GalA) content of the recovered low methoxy pectin was 12.43% and 25.0%, respectively, when cellulase was added at 50 U per 5 g peel powder, with a significantly higher recovery rate and purity than the pectin products extracted with no cellulase (P ≤ 0.05). The recovered pectin was further integrated and reinforced with beeswax solid-lipid nanoparticles (BSLNs) to fabricate films as a potential alternative packaging material to single-use plastics. The reinforced pectin films showed improved light barrier, water resistance, mechanical, conformational, and morphological properties. This study presents a sustainable strategy to transform plantain peels into pectin products and pectin-based packaging films with broad applications.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand.
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
43
|
Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023; 306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Pectin exists extensively in nature and has attracted much attention in biological applications for its unique chemical and physical characteristics. Functionalized pectin, especially pectic conjugates, has given many possibilities for pectin to improve its properties and bioactivity as well as to deliver active molecules. To better exploit this strategy of pectic functionalization, this review presents in detail the structural modifications of pectin, different synthetic methods, and design strategies of pectic conjugates involving both traditional chemical and "green" approaches. Here, the research ideas and applications of pectic prodrugs as well as the development of preparation based on pectic conjugates are reviewed, with emphasis on crosslinking systems of functionalized pectin and nanosystems based on self-assembly techniques. We hope this review will provide comprehensive and valuable information for the functionalization and systematization of the pectic conjugate from synthesis to application.
Collapse
|
44
|
Biocompatible pectin-functionalised-halloysite loaded poly(vinyl alcohol) nanocomposite films for tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
45
|
Favaretto DPC, Rempel A, Lanzini JR, Silva ACM, Lazzari T, Barbizan LD, Brião VB, Colla LM, Treichel H. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World J Microbiol Biotechnol 2023; 39:144. [PMID: 37004675 DOI: 10.1007/s11274-023-03588-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
The commercialization of fruits in markets generates a large amount of waste because they are perishable and have a short shelf life, so, they are discarded. This study aimed to provide a noble end to discarded fruits that have fermentable sugars. Banana, apple, mango and papaya residues were collected from supermarkets and underwent an enzymatic hydrolysis process. The ability of four pectinases, two amylases, one xylanase and one cellulase to release reducing sugars from fruit biomass before fermentation with two yeast strains (S. cerevisiae CAT-1 and S. cerevisiae Angel) for bioethanol production was investigated, obtaining a total of RS (Reducing sugar) of 268.08 mg/mL in banana residues. A fermentation with yeast S. cerevisiae CAT-1 resulted in 98% consumption of RS and the production of a total of 28.02 g/L of ethanol. Furthermore, fermentation with the yeast S. cerevisiae Angel, resulted in 97% RS consumption and 31.87 g/L ethanol production, which was the best result obtained throughout all the tests of hydrolysis, highlighting the banana residue as a promising biomass for the production of bioethanol.
Collapse
Affiliation(s)
- Danúbia Paula Cadore Favaretto
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil.
| | - Alan Rempel
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Julia Roberta Lanzini
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Ana Carolina Mattana Silva
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Tauane Lazzari
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Luiza Desengrini Barbizan
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Vandré Barbosa Brião
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Luciane Maria Colla
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Helen Treichel
- Federal University of the South Border - Campus Erechim, RS 135, Km 72, Erechim City, Rio Grande do Sul State, 99700-000, Brazil
| |
Collapse
|
46
|
Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int J Biol Macromol 2023; 239:124248. [PMID: 37003387 DOI: 10.1016/j.ijbiomac.2023.124248] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Pectin is an abundant complex polysaccharide obtained from various plants. Safe, biodegradable, and edible pectin has been extensively utilized in the food industry as a gelling agent, thickener, and colloid stabilizer. Pectin can be extracted in a variety of ways, thus affecting its structure and properties. Pectin's excellent physicochemical properties make it suitable for many applications, including food packaging. Recently, pectin has been spotlighted as a promising biomaterial for manufacturing bio-based sustainable packaging films and coatings. Functional pectin-based composite films and coatings are useful for active food packaging applications. This review discusses pectin and its use in active food packaging applications. First, basic information and characteristics of pectin, such as the source, extraction method, and structural characteristics, were described. Then, various methods of pectin modification were discussed, and the following section briefly described pectin's physicochemical properties and applications in the food sector. Finally, the recent development of pectin-based food packaging films and coatings and their use in food packaging were comprehensively discussed.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Łukasz Łopusiewicz
- Center of Bioimmobilization and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
47
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
48
|
Pectin-based nanoencapsulation strategy to improve the bioavailability of bioactive compounds. Int J Biol Macromol 2023; 229:11-21. [PMID: 36586647 DOI: 10.1016/j.ijbiomac.2022.12.292] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Pectin is one of the polysaccharides to be used as a coating nanomaterial. The characteristics of pectin are suitable to form nanostructures for protection, increased absorption, and bioavailability of different active compounds. This review aims to point out the structural features of pectins and their use as nanocarriers. It also indicates the principal methodologies for the elaboration and application of foods. The research carried out shows that pectin is easily extracted from natural sources, biodegradable, biocompatible, and non-toxic. The mechanical resistance and stability in different pH ranges and the action of digestive enzymes allow the nanostructures to pass intact through the gastrointestinal system and be effectively absorbed. Pectin can bind to macromolecules, especially proteins, to form stable nanostructures, which can be formed by different methods; polyelectrolyte complexes are the most frequent ones. The pectin-derived nanoparticles could be added to foods and dietary supplements, demonstrating a promising nanocarrier with a broad technological application.
Collapse
|
49
|
Teshima R, Osawa S, Kawano Y, Hanawa T, Kikuchi A, Otsuka H. Physicochemical Properties of Egg-Box-Mediated Hydrogels with Transiently Decreased pH Employing Carbonated Water. ACS OMEGA 2023; 8:7800-7807. [PMID: 36872983 PMCID: PMC9979317 DOI: 10.1021/acsomega.2c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Anionic polysaccharides, including low-methoxy (LM) pectin, are extensively used in biomaterial applications owing to their safety, biocompatibility, and feasibility in constructing supramolecular assemblies by forming egg-box structures with divalent cations. Mixing an LM pectin solution with CaCO3 spontaneously forms a hydrogel. The gelation behavior can be controlled by adding an acidic compound to change the solubility of CaCO3. CO2 is used as the acidic agent and can be easily removed after gelation, thereby reducing the acidity of the final hydrogel. However, CO2 addition has been controlled under varied thermodynamical conditions; therefore, specific CO2 effects on gelation are not necessarily visualized. To evaluate the CO2 impact on the final hydrogel, which would be extended to control hydrogel properties further, we utilized carbonated water to supply CO2 into the gelation mixture without changing its thermodynamic conditions. The addition of the carbonated water accelerated gelation and significantly increased the mechanical strength, promoting cross-linking. However, the CO2 volatilized into the atmosphere, and the final hydrogel became more alkaline than that without the carbonated water, probably because a considerable amount of the carboxy group was consumed for cross-linking. Moreover, when aerogels were prepared from the hydrogels with carbonated water, they exhibited highly ordered networks of elongated porosity in scanning electron microscopy, proposing an intrinsic structural change by CO2 in the carbonated water. We also controlled the pH and strength of the final hydrogels by changing the CO2 amounts in the carbonated water added, thereby validating the significant effect of CO2 on hydrogel properties and the feasibility of using carbonated water.
Collapse
Affiliation(s)
- Ryota Teshima
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Shigehito Osawa
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
- Water
Frontier Research Center (WaTUS), Research Institute for Science and
Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yayoi Kawano
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takehisa Hanawa
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akihiko Kikuchi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Hidenori Otsuka
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
- Water
Frontier Research Center (WaTUS), Research Institute for Science and
Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
50
|
Soury R, Alhar MSO, Jabli M. Synthesis, Characterization, and Application of Dichloride (5,10,15,20-Tetraphenylporphyrinato) Antimony Functionalized Pectin Biopolymer to Methylene Blue Adsorption. Polymers (Basel) 2023; 15:polym15041030. [PMID: 36850313 PMCID: PMC9968078 DOI: 10.3390/polym15041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
In this work, pectin biopolymers were functionalized with dichloride (5,10,15,20-tetraphenylporphyrinato) antimony [Sb(TPP)Cl2] at various compositions (0.5%, 1%, and 2%). The prepared compounds were characterized with several analytical methods, including X-ray fluorescence (XRF) spectrometry, Fourier-transform infrared spectroscopy (FT-IR), electrospray ionization mass spectrometry (EIS), scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric-differential thermal (TGA/DTG) analysis. The XRF technique evidenced the presence of Sb metal in the composite beads. FT-IR suggested that the interaction between pectin and the [Sb(TPP)Cl2] complex was assured by inter- and intramolecular C-H⋯O, C-H⋯Cl hydrogen bonds and weak C-H⋯Cg π interactions (Cg is the centroid of the pyrrole and phenyl rings). The morphological features of the prepared polymeric beads were affected by the addition of [Sb(TPP)Cl2] particles, and the surface became rough. The thermal residual mass for the composite beads (29%) was more important than that of plain beads (23%), which confirmed the presence of inorganic matter in the modified polymeric beads. At 20 °C, the highest adsorption amounts of methylene blue were 39 mg/g and 68 mg/g for unmodified pectin and pectin-[Sb(TPP)Cl2] beads, respectively. The adsorption mechanism correlated well with the kinetic equation of the second order and the isotherm of Freundlich. The prepared polymeric beads were characterized as moderate-to-good adsorbents. The calculated thermodynamic parameters demonstrated an exothermic and thermodynamically nonspontaneous mechanism.
Collapse
Affiliation(s)
- Raoudha Soury
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
- Correspondence: (R.S.); (M.J.)
| | | | - Mahjoub Jabli
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Correspondence: (R.S.); (M.J.)
| |
Collapse
|