1
|
Phochantachinda S, Photcharatinnakorn P, Chatchaisak D, Sakcamduang W, Chansawhang A, Buranasinsup S, Suemanotham N, Chantong B. Plasma-based proteomics analysis of molecular pathways in canine diabetes mellitus after astaxanthin supplementation. PLoS One 2025; 20:e0321509. [PMID: 40333882 PMCID: PMC12057883 DOI: 10.1371/journal.pone.0321509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/06/2025] [Indexed: 05/09/2025] Open
Abstract
The hyperglycemic state in diabetes mellitus induces oxidative stress and inflammation, contributing to diabetic tissue damage and associated complications. Astaxanthin, a potent antioxidant carotenoid, has been investigated for its potential to prevent and manage diabetes across various species; however, its effect on client-owned dogs remains poorly studied. This study explored the impact of astaxanthin supplementation on canine diabetes mellitus using a proteomics approach. A total of 18 client-owned dogs were enrolled: 6 dogs with diabetes mellitus and 12 clinically healthy dogs. The diabetic dogs received their standard treatment regimen along with daily oral supplementation of 12 mg of astaxanthin (1.5-2.4 mg/kg) for 90 days. Plasma samples were collected at the beginning and end of the study period for proteomics analysis. After astaxanthin supplementation, significant alterations in the expression of proteins associated with the complement system, coagulation cascade, JAK-STAT signaling, and protein kinase C signaling (all of which contribute to inflammation and oxidative stress) were observed. Astaxanthin exhibited potential for reducing diabetes-associated complications, such as insulin resistance, vascular dysfunction, nephropathy, and cardiac issues, even though it did not affect clinical parameters (hematology, plasma biochemistry, blood glucose, and serum fructosamine). These findings suggest that astaxanthin may be a valuable complementary therapy for managing diabetes-related complications in canines.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Namphung Suemanotham
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Kaur S, Kumari P, Singh G, Joshi N, Kaur T, Dhiman V, Singh G, Sachdeva N, Kumar D, Barnwal RP, Bhadada SK. Unveiling novel metabolic alterations in postmenopausal osteoporosis and type 2 diabetes mellitus through NMR-based metabolomics: A pioneering approach for identifying early diagnostic markers. J Proteomics 2024; 302:105200. [PMID: 38772440 DOI: 10.1016/j.jprot.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND AIMS Postmenopausal osteoporosis (PMO) and type 2 diabetes mellitus (T2DM) frequently coexist in postmenopausal women. The study aimed to explore metabolic variations linked to these circumstances and their simultaneous presence through proton nuclear magnetic resonance metabolomics (1H NMR). MATERIALS AND METHODS Serum samples from 80 postmenopausal women, including 20 PMO individuals, 20 T2DM, 20 T2DM + PMO, and 20 healthy postmenopausal women, were analyzed using 1H NMR spectroscopy. RESULTS Our study revealed significant metabolic profile differences among the four groups. Notably, the T2DM + PMO group showed elevated levels of alanine, pyruvate, glutamate, lactate, and aspartate, indicating their involvement in lipid metabolism, energy, and amino acids. Importantly, our multivariate statistical analysis identified a metabolite set that accurately distinguished the groups, suggesting its potential as an early diagnostic marker. CONCLUSION The 1H NMR metabolomics approach uncovered metabolic biomarkers intricately linked to postmenopausal osteoporosis (PMO), type 2 diabetes mellitus (T2DM), and their concurrent presence. Among these biomarkers, alanine emerged as a pivotal player, showing its significant role in the metabolic landscape associated with PMO and T2DM. These findings shed light on the pathophysiological mechanisms underlying these conditions and underscore alanine's potential as a diagnostic biomarker.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biophysics, Panjab University, Chandigarh, India; Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Poonam Kumari
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Gurvinder Singh
- Centre of Biomedical Research, SGPGIMS campus, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nainesh Joshi
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Takdeer Kaur
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS campus, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | | | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
3
|
Laniak OT, Winans T, Patel A, Park J, Perl A. Redox Pathogenesis in Rheumatic Diseases. ACR Open Rheumatol 2024; 6:334-346. [PMID: 38664977 PMCID: PMC11168917 DOI: 10.1002/acr2.11668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 06/14/2024] Open
Abstract
Despite being some of the most anecdotally well-known roads to pathogenesis, the mechanisms governing autoimmune rheumatic diseases are not yet fully understood. The overactivation of the cellular immune system and the characteristic development of autoantibodies have been linked to oxidative stress. Typical clinical manifestations, such as joint swelling and deformities and inflammation of the skin and internal organs, have also been connected directly or indirectly to redox mechanisms. The differences in generation and restraint of oxidative stress provide compelling evidence for the broad variety in pathology among rheumatic diseases and explain some of the common triggers and discordant manifestations in these diseases. Growing evidence of redox mechanisms in pathogenesis has provided a broad array of new potential therapeutic targets. Here, we explore the mechanisms by which oxidative stress is generated, explore its roles in autoimmunity and end-organ damage, and discuss how individual rheumatic diseases exhibit unique features that offer targets for therapeutic interventions.
Collapse
Affiliation(s)
- Olivia T. Laniak
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Thomas Winans
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Akshay Patel
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Joy Park
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Andras Perl
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| |
Collapse
|
4
|
Joshi G, Das A, Verma G, Guchhait P. Viral infection and host immune response in diabetes. IUBMB Life 2024; 76:242-266. [PMID: 38063433 DOI: 10.1002/iub.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/05/2023] [Indexed: 04/24/2024]
Abstract
Diabetes, a chronic metabolic disorder disrupting blood sugar regulation, has emerged as a prominent silent pandemic. Uncontrolled diabetes predisposes an individual to develop fatal complications like cardiovascular disorders, kidney damage, and neuropathies and aggravates the severity of treatable infections. Escalating cases of Type 1 and Type 2 diabetes correlate with a global upswing in diabetes-linked mortality. As a growing global concern with limited preventive interventions, diabetes necessitates extensive research to mitigate its healthcare burden and assist ailing patients. An altered immune system exacerbated by chronic hyperinflammation heightens the susceptibility of diabetic individuals to microbial infections, including notable viruses like SARS-CoV-2, dengue, and influenza. Given such a scenario, we scrutinized the literature and compiled molecular pathways and signaling cascades related to immune compartments in diabetics that escalate the severity associated with the above-mentioned viral infections in them as compared to healthy individuals. The pathogenesis of these viral infections that trigger diabetes compromises both innate and adaptive immune functions and pre-existing diabetes also leads to heightened disease severity. Lastly, this review succinctly outlines available treatments for diabetics, which may hold promise as preventive or supportive measures to effectively combat these viral infections in the former.
Collapse
Affiliation(s)
- Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Anushka Das
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Verma
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
5
|
Wu K, Wang P, Deng L, Li Y, Zhang Q, Hou H, Zhu Y, Ye H, Mei S, Cui L. Analysis of bone metabolic alterations linked with osteoporosis progression in type 2 diabetic db/db mice. Exp Gerontol 2024; 185:112347. [PMID: 38097054 DOI: 10.1016/j.exger.2023.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Type 2 diabetes (T2D) is a common chronic disease, characterized by persistent hyperglycemia and insulin resistance. This disorder is associated with decreased bone quality and an elevated risk of bone fractures. However, evidence on the relationship between systemic metabolic change and the development of type 2 diabetic osteoporosis (T2DOP) remains elusive. Herein, we investigate the changes of bone metabolites with bone loss in db/db mice (an animal model of T2DOP exhibited bone loss with age progression), and explore the potential metabolic mechanism underlying type 2 diabetes and osteoporosis. C57BKS male mice were distributed in four groups, consisting six mice in each group: 8w m/m, 24w m/m, 8w db/db and 24w db/db. Bone morphometric and biomechanical parameters of db/db mice were analyzed by micro-CT and materials tester, it was found that 24w db/db mice showed severe bone loss and decreased bone tissue hardness compared with misty/misty littermates. The tibia of misty/misty mice (8 weeks, 24 weeks) and db/db mice (8 weeks, 24 weeks) were screened for differential metabolites by UPLC-Orbitrap MS. Ninety-eight metabolites were identified (35 and 63 metabolites are associated with early staged and late staged, respectively), consisting of amino acids, fatty acyls, and nucleotides. Notably, fatty acyls (such as 18-HEPE, 16(17)-EpDPE, arachidonic acid) and glycerophospholipids (such as phosphocholines (PC) (O-10:1(9E)/0:0), PC (O-16:1(9E)/0:0) [U] and phosphatidylethanolamines (PE) (P-16:0/0:0)) were significantly increased, and metabolites of amino acid pathway (such as l-glutamine, proline, phenylalanine) showed a downregulation trend. Dysregulation of lipid and glutathione pathways is the major contributor to progression of T2DOP in C57BKS mice.
Collapse
Affiliation(s)
- Kefeng Wu
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong (Zhanjiang) provincial laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, PR China.
| | - Pan Wang
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Luming Deng
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yancai Li
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Qian Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Haiyan Hou
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong (Zhanjiang) provincial laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, PR China
| | - Hua Ye
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Si Mei
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Liao Cui
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China.
| |
Collapse
|
6
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
7
|
Man AM, Orăsan MS, Hoteiuc OA, Olănescu-Vaida-Voevod MC, Mocan T. Inflammation and Psoriasis: A Comprehensive Review. Int J Mol Sci 2023; 24:16095. [PMID: 38003284 PMCID: PMC10671208 DOI: 10.3390/ijms242216095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Psoriasis is an immune-mediated disease with a strong genetic component that brings many challenges to sick individuals, such as chronic illness, and which has multiple associated comorbidities like cardiovascular disease, metabolic syndrome, inflammatory bowel disease, and psychological disorders. Understanding the interplay between the innate and adaptative immune system has led to the discovery of specific cytokine circuits (Tumor Necrosis Factor-alpha (TNF-α), IL-23, IL-17), which has allowed scientists to discover new biomarkers that can be used as predictors of treatment response and pave the way for personalized treatments. In this review, we describe the footprint psoriasis leaves on the skin and beyond, key pathophysiological mechanisms, current available therapeutic options, and drawbacks faced by existing therapies, and we anticipate potential future perspectives that may improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Alessandra-Mădălina Man
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Meda Sandra Orăsan
- Physiopathology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania;
| | - Oana-Alina Hoteiuc
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Maria-Cristina Olănescu-Vaida-Voevod
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Felipe LA, Bachi ALL, Oliveira MC, Moreira SMBP, Afonso JPR, Lino MEM, Paixão V, Silva CHM, Vieira RP, Vencio S, Jirjos EI, Malheiros CA, Insalaco G, Júnior WRF, Oliveira LVF. Effects of Roux-en-Y gastric bypass on the metabolic profile and systemic inflammatory status of women with metabolic syndrome: randomized controlled clinical trial. Diabetol Metab Syndr 2023; 15:19. [PMID: 36788619 PMCID: PMC9930348 DOI: 10.1186/s13098-023-00986-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Obesity remains a public health problem worldwide. The high prevalence of this condition in the population raises further concerns, considering that comorbidities are often associated with obesity. Among the comorbidities closely associated with obesity, metabolic syndrome (MS) is particularly important, which potentially increases the risk of manifestation of other disorders, such as the prothrombotic and systemic pro-inflammatory states. METHODS A randomized, controlled clinical trial was performed involving female patients (n = 32) aged between 18 and 65 years, with a clinical diagnosis of MS, with severe obesity undergoing Roux-en-Y gastric bypass (RYGB). The study design followed the Consolidated Standards of Reporting Trials statement (CONSORT). Lipid profile, blood glucose and adipokines (adiponectin, leptin, and resistin) and (cytokines IL-1β, IL-6, IL-17, IL-23, and TNF-α) in blood plasma samples were evaluated before and six months after RYGB. RESULTS Patients undergoing RYGB (BSG) showed a significant improvement from preoperative grade III obesity to postoperative grade I obesity. The results showed that while HDL levels increased, the other parameters showed a significant reduction in their postoperative values when compared not only to the values observed before surgery in the BSG group, but also to the values obtained in the control group (CG). As for systemic inflammatory markers adiponectin, leptin, resistin, IL-1β, IL-6, IL-17, IL-23 and TNF- α it was observed that the levels of resistin and IL-17 in the second evaluation increased significantly when compared to the levels observed in the first evaluation in the CG. In the BSG group, while the levels of adiponectin increased, the levels of the other markers showed significant reductions in the postoperative period, in relation to the respective preoperative levels. The analysis of Spearman's correlation coefficient showed a significant positive correlation between IL-17 and IL-23 in the preoperative period, significant positive correlations between TNF-α and IL-6, TNF-α and IL-17, IL-6 and IL-17, and IL-17 and IL-23 were observed postoperatively. CONCLUSIONS According to our results, the reduction of anthropometric measurements induced by RYGB, significantly improves not only the plasma biochemical parameters (lipid profile and glycemia), but also the systemic inflammatory status of severely obese patients with MS. Trials registration NCT02409160.
Collapse
Affiliation(s)
- Lucenda A Felipe
- Post-Graduation Program in Health Sciences, Santa Casa of Sao Paulo Medical School, Sao Paulo, SP, 01221-010, Brazil
| | - André L L Bachi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP, Brazil
| | - Miriã C Oliveira
- Human Movement and Rehabilitation Post Graduation Program, Evangelical University of Goiás (UniEVANGELICA), Anápolis, GO, Brazil
| | - Sandra M B P Moreira
- Post-Graduation Program in Health Sciences, Santa Casa of Sao Paulo Medical School, Sao Paulo, SP, 01221-010, Brazil
| | - João Pedro R Afonso
- Human Movement and Rehabilitation Post Graduation Program, Evangelical University of Goiás (UniEVANGELICA), Anápolis, GO, Brazil
| | - Maria E M Lino
- Scientific Initiation Program, Evangelical University of Goiás, (UniEVANGELICA), Anápolis, GO, Brazil
| | - Vitória Paixão
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04021-001, Brazil
| | - Carlos H M Silva
- Human Movement and Rehabilitation Post Graduation Program, Evangelical University of Goiás (UniEVANGELICA), Anápolis, GO, Brazil
| | - Rodolfo P Vieira
- Human Movement and Rehabilitation Post Graduation Program, Evangelical University of Goiás (UniEVANGELICA), Anápolis, GO, Brazil
| | - Sergio Vencio
- Institute of Pharmaceutical Sciences, Goiania, (GO), Brazil
| | - Elias I Jirjos
- Post-Graduation Program in Health Sciences, Santa Casa of Sao Paulo Medical School, Sao Paulo, SP, 01221-010, Brazil
| | - Carlos A Malheiros
- Post-Graduation Program in Health Sciences, Santa Casa of Sao Paulo Medical School, Sao Paulo, SP, 01221-010, Brazil
| | - Giuseppe Insalaco
- Institute for Biomedical Research and Innovation, National Research Council of Italy (CNR), 90146, Palermo, Italy
| | - Wilson R Freitas Júnior
- Post-Graduation Program in Health Sciences, Santa Casa of Sao Paulo Medical School, Sao Paulo, SP, 01221-010, Brazil
| | - Luis V F Oliveira
- Human Movement and Rehabilitation Post Graduation Program, Evangelical University of Goiás (UniEVANGELICA), Anápolis, GO, Brazil.
| |
Collapse
|
9
|
Liang R, Yu L, Liu W, Dong C, Tan Q, Wang M, Ye Z, Zhang Y, Li M, Wang B, Feng X, Zhou M, Chen W. Associations of bifenthrin exposure with glucose homeostasis and type 2 diabetes mellitus in a general Chinese population: Roles of protein carbonylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120352. [PMID: 36216181 DOI: 10.1016/j.envpol.2022.120352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The adverse health effects of pyrethroids exposure have attracted wide concern. We aimed to assess the associations of bifenthrin, a widely used pyrethroid, with glucose homeostasis and risk of type 2 diabetes mellitus (T2DM) and to explore the underlying mechanism. Serum bifenthrin, fasting plasma glucose (FPG), fasting plasma insulin (FPI), and plasma protein carbonyl (PCO) were determined among 3822 participants from the Wuhan-Zhuhai cohort. Glucose homeostasis was evaluated by FPG, FPI, homeostasis model assessment of insulin resistance (HOMA-IR), impaired fasting glucose (IFG), and abnormal glucose regulation (AGR). The associations of serum bifenthrin with glucose homeostasis and risk of T2DM were assessed by generalized linear models and logistic regression models. The role of PCO in the above associations was evaluated by mediation analyses. After adjusting for covariates, each 2-fold increase in serum bifenthrin was associated with a 0.21 mmol/L increase in FPG and a 5.19%, 10.49%, and 12.18% increase in FPI, HOMA-IR, and PCO levels, respectively. Monotonically elevated ORs of IFG and AGR (all P and P for trend <0.05), but not T2DM (P > 0.05) were detected to be associated with increased bifenthrin. Compared with the participants with low bifenthrin and low PCO, participants with high bifenthrin exposure and high PCO showed a 0.40 mmol/L, 11.07%, and 22.50% increase in FPG, FPI, and HOMA-IR, as well as a 119.97% and 48.88% increase in risks of IFG and AGR, respectively (P for trend <0.05). Moreover, PCO mediated 13.61%-24.98% of the serum bifenthrin-associated glucose dyshomeostasis. The study suggested that bifenthrin exposure was dose-dependently associated with glucose dyshomeostasis in the general Chinese urban adults, and these associations were exacerbated and partly mediated by PCO. Given that other pollutants were not included in this study, the effect of co-exposure of pyrethroids with multiple pollutants is necessary to be considered in future studies.
Collapse
Affiliation(s)
- Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoqian Dong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mengyi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Minjing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaobing Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Kochumon S, Hasan A, Al-Rashed F, Sindhu S, Thomas R, Jacob T, Al-Sayyar A, Arefanian H, Al Madhoun A, Al-Ozairi E, Alzaid F, Koistinen HA, Al-Mulla F, Tuomilehto J, Ahmad R. Increased Adipose Tissue Expression of IL-23 Associates with Inflammatory Markers in People with High LDL Cholesterol. Cells 2022; 11:3072. [PMID: 36231033 PMCID: PMC9563604 DOI: 10.3390/cells11193072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic low-grade inflammation induced by obesity is a central risk factor for the development of metabolic syndrome. High low-density lipoprotein cholesterol (LDL-c) induces inflammation, which is a common denominator in metabolic syndrome. IL-23 plays a significant role in the pathogenesis of meta-inflammatory diseases; however, its relationship with LDL-c remains elusive. In this cross-sectional study, we determined whether the adipose tissue IL-23 expression was associated with other inflammatory mediators in people with increased plasma LDL-c concentrations. Subcutaneous adipose tissue biopsies were collected from 60 people, sub-divided into two groups based on their plasma LDL-c concentrations (<2.9 and ≥2.9 mmol/L). Adipose expression of IL-23 and inflammatory markers were determined using real-time qRT-PCR; plasma concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and LDL-c were determined using the standard method; and adiponectin levels were measured by enzyme-linked immunosorbent assay (ELISA). Adipose IL-23 transcripts were found to be increased in people with high LDL-c, compared to low LDL-c group (H-LDL-c: 1.63 ± 0.10-Fold; L-LDL-c: 1.27 ± 0.09-Fold; p < 0.01); IL-23 correlated positively with LDL-c (r = 0.471, p < 0.0001). Immunochemistry analysis showed that AT IL-23 protein expression was also elevated in the people with H-LDL-c. IL-23 expression in the high LDL-c group was associated with multiple adipose inflammatory biomarkers (p ≤ 0.05), including macrophage markers (CD11c, CD68, CD86, CD127), TLRs (TLR8, TLR10), IRF3, pro-inflammatory cytokines (TNF-α, IL-12, IL-18), and chemokines (CXCL8, CCL3, CCL5, CCL15, CCL20). Notably, in this cohort, IL-23 expression correlated inversely with plasma adiponectin. In conclusion, adipose IL-23 may be an inflammatory biomarker for disease progression in people with high LDL-c.
Collapse
Affiliation(s)
- Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Amal Hasan
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Reeby Thomas
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Texy Jacob
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Amnah Al-Sayyar
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fawaz Alzaid
- Institut Necker Enfants Malades (INEM), French Institute of Health and Medical Research (INSERM), Immunity & Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, 75014 Paris, France
| | - Heikki A. Koistinen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Department of Public Health, University of Helsinki, 00100 Helsinki, Finland
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
11
|
Hosni A, Abdel-Moneim A, Hussien M, Zanaty MI, Eldin ZE, El-Shahawy AAG. Therapeutic significance of thymoquinone-loaded chitosan nanoparticles on streptozotocin/nicotinamide-induced diabetic rats: In vitro and in vivo functional analysis. Int J Biol Macromol 2022; 221:1415-1427. [PMID: 36096255 DOI: 10.1016/j.ijbiomac.2022.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
To overcome the low bioavailability of lipophilic free thymoquinone (TQ), this study aims to evaluate a novel oral formula of TQ-loaded chitosan nanoparticles (TQ-CsNPs) for the effective treatment of diabetes. The XRD, FTIR, FESEM, HRTEM, and dynamic light scattering were all conducted on the prepared formula. The release pattern of TQ, cytotoxicity against MRC-5 cell line (human lung fibroblast cells), and antidiabetic activity on streptozotocin/nicotinamide (STZ/NA) rat model of diabetes were investigated. The results confirmed the formation of TQ-CsNPs with an entrapment efficiency of 75.7 ± 6.52 %, a mean Zetasizer distribution of 84.25 nm, and an average particle size of about 50 nm. After 24 h, the percentage of free TQ-cumulative release was approximately 35.8 %, whereas TQ-CsNPs showed a sustained release pattern of 78.5 %. The investigated formula was not toxic to normal lung cells, and more efficient in ameliorating the altered glycemia, dyslipidemia, inflammation, and oxidative stress induced by STZ/NA than free TQ, blank CsNPs, and metformin-HCl (as a reference drug). Additionally, TQ-CsNPs restored the normal pancreatic islets' configuration and morphometry, suggesting a potent insulinotropic action. In conclusion, the antidiabetic efficacy of TQ was improved by engaging TQ with CsNPs as an excellent nanoplatform to enhance the oral bioavailability of TQ.
Collapse
Affiliation(s)
- Ahmed Hosni
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt.
| | - Mohammed Hussien
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Mohamed I Zanaty
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Zienab E Eldin
- Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ahmed A G El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| |
Collapse
|
12
|
Chen X, Wu J, Li Z, Han J, Xia P, Shen Y, Ma J, Liu X, Zhang J, Yu P. Advances in The Study of RNA-binding Proteins in Diabetic Complications. Mol Metab 2022; 62:101515. [PMID: 35597446 PMCID: PMC9168169 DOI: 10.1016/j.molmet.2022.101515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background It has been reported that diabetes mellitus affects 435 million people globally as a primary health care problem. Despite many therapies available, many diabetes remains uncontrolled, giving rise to irreversible diabetic complications that pose significant risks to patients’ wellbeing and survival. Scope of Review In recent years, as much effort is put into elucidating the posttranscriptional gene regulation network of diabetes and diabetic complications; RNA binding proteins (RBPs) are found to be vital. RBPs regulate gene expression through various post-transcriptional mechanisms, including alternative splicing, RNA export, messenger RNA translation, RNA degradation, and RNA stabilization. Major Conclusions Here, we summarized recent studies on the roles and mechanisms of RBPs in mediating abnormal gene expression in diabetes and its complications. Moreover, we discussed the potential and theoretical basis of RBPs to treat diabetes and its complications. • Mechanisms of action of RBPs involved in diabetic complications are summarized and elucidated. • We discuss the theoretical basis and potential of RBPs for the treatment of diabetes and its complications. • We summarize the possible effective drugs for diabetes based on RBPs promoting the development of future therapeutic drugs.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiashu Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Wu JJ, Kavanaugh A, Lebwohl MG, Gniadecki R, Merola JF. Psoriasis and metabolic syndrome: implications for the management and treatment of psoriasis. J Eur Acad Dermatol Venereol 2022; 36:797-806. [PMID: 35238067 PMCID: PMC9313585 DOI: 10.1111/jdv.18044] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Psoriasis is a chronic systemic inflammatory disorder associated with several comorbidities in addition to the characteristic skin lesions. Metabolic syndrome (MetS) is the most frequent comorbidity in psoriasis and a risk factor for cardiovascular disease, a major cause of death among patients with psoriasis. Although the exact causal relationship between these two disorders is not fully established, the underlying pathophysiology linking psoriasis and MetS seems to involve overlapping genetic predispositions and inflammatory pathways. Dysregulation of the IL‐23/Th‐17 immune signalling pathway is central to both pathologies and may be key to promoting susceptibility to metabolic and cardiovascular diseases in individuals with and without psoriasis. Thus, biological treatments for psoriasis that interrupt these signals could both reduce the psoriatic inflammatory burden and also lessen the risk of developing atherosclerosis and cardiometabolic diseases. In support of this hypothesis, improvement of skin lesions was associated with improvement in vascular inflammation in recent imaging studies, demonstrating that the beneficial effect of biological agents goes beyond the skin and could help to prevent cardiovascular disease. This review will summarize current knowledge on underlying inflammatory mechanisms shared between psoriasis and MetS and discuss the most recent clinical evidence for the potential for psoriasis treatment to reduce cardiovascular risk.
Collapse
Affiliation(s)
- J J Wu
- Dermatology Research and Education Foundation, Irvine, CA, USA
| | - A Kavanaugh
- University of California San Diego, San Diego, CA, USA
| | - M G Lebwohl
- Department of Dermatology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - R Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - J F Merola
- Department of Medicine, Division of Rheumatology and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
15
|
Shared metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive Disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110351. [PMID: 34000290 DOI: 10.1016/j.pnpbp.2021.110351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease with symptoms that go beyond the domain of glucose metabolism. In fact, research has shown that T2DM is accompanied by neurodegeneration and neuroinflammation. Interestingly, Major Depressive Disorder (MDD), a mood disorder characterized mainly by depressed mood and anhedonia is a key feature of T2DM. A body of evidence demonstrates that there are many shared neuroimmune mechanisms underlying the pathophysiology of T2DM and MDD. Therefore, here we review the state-of-art regarding the underlying factors common to both T2DM and MDD. Furthermore, we briefly discuss how depressive symptoms in diabetic patients could be tackled by using novel therapeutic approaches uncovered by these shared mechanisms. Understanding the comorbidity of depression in diabetic patients is essential to fully address T2DM pathophysiology and treatment.
Collapse
|
16
|
Zak K, Popova V, Orlenko V, Furmanova O, Tronko N. Cytokines in the blood of patients with type 2 diabetes mellitus depending on the level of overweight/obesity (literature review and own data). INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (UKRAINE) 2021; 17:534-551. [DOI: 10.22141/2224-0721.17.7.2021.244969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The paper analyzes the current literature data and the results of our own researches concerning the state of the cytokine network: pro- and anti-inflammatory cytokines (interleukin (IL)1α, IL-1β, IL-4, IL-6, IL-10, IL-17 and tumor necrosis factor (TNF) α), α- and β-chemokines, including IL-8 and IL-16, as well as adipokines (leptin and adiponectin) in the peripheral blood of patients with type 2 diabetes (T2D) with normal and increased body weight/obesity. It has been shown that patients with T2D are characterized by an increased content of proinflammatory cytokines (IL-1, IL-6, IL-17, TNFα), α- and β-chemokines in the peripheral blood, including IL-8 and IL-16, as well as leptin with a decrease in adiponectin content. In lean patients (with body mass index (BMI)<25.5 kg/m2) compared to lean normoglycemic individuals from the control group (BMI<25.5kg/m2), there is a small but significant increase in IL-1β, IL-6, IL-17, TNFα and leptin, which, as BMI increases, significantly increases in severe obesity (BMI>30.0kg/m2), especially in obese women (BMI>35.0kg/m2). Similarly, an increase in proinflammatory cytokines is observed in normoglycemic people, but not as significant as in T2D. Less clear data were obtained when during determination of the anti-inflammatory cytokines IL-4 and IL-10, which is explained by a significant polymorphism of their genes, and both protective and compensatory effects on pro-inflammatory cytokine rise. In T2D patients, especially those with obesity, there is an increase in the leptin level and a decrease in the adiponectin content. The severity of the course and the percentage of mortality are closely associated with the BMI of patients. The effectiveness of the fight against an increase in the incidence of T2D should be primarily aimed at preventing obesity, and in case of already developed T2D— at reducing concomitant obesity. The analysis of the data presented also suggests that a sharp increase in the content of pro-inflammatory cytokines (so called cytokine storm) observed in patients with T2D and obesity infected with COVID-19, is a consequence of the summation and potentiation of already existing inflammatory process.
Collapse
|
17
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
18
|
Hao Y, Zhu YJ, Zou S, Zhou P, Hu YW, Zhao QX, Gu LN, Zhang HZ, Wang Z, Li J. Metabolic Syndrome and Psoriasis: Mechanisms and Future Directions. Front Immunol 2021; 12:711060. [PMID: 34367173 PMCID: PMC8343100 DOI: 10.3389/fimmu.2021.711060] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is an immune-mediated systemic disease with associated comorbidities, including metabolic syndrome (MetS) which contributes substantially to premature mortality in patients with psoriasis. However, the pathological mechanisms underlying this comorbidity are unclear. Studies have shown that the pathological parameters of psoriasis mediate the development of MetS. We reviewed the potential mechanisms which mediate the association between psoriasis and MetS, including endoplasmic reticulum stress, pro-inflammatory cytokine releases, excess production of reactive oxygen species, alterations in adipocytokine levels and gut microbiota dysbiosis. Here, we highlight important research questions regarding this association and offer insights into MetS research and treatment.
Collapse
Affiliation(s)
- Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ya-Juan Zhu
- Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Song Zou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ya-Wen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qi-Xiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin-Na Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hao-Zhou Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
19
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
20
|
Pinna NK, Anjana RM, Saxena S, Dutta A, Gnanaprakash V, Rameshkumar G, Aswath S, Raghavan S, Rani CSS, Radha V, Balasubramanyam M, Pant A, Nielsen T, Jørgensen T, Færch K, Kashani A, Silva MCA, Vestergaard H, Hansen TH, Hansen T, Arumugam M, Nair GB, Das B, Pedersen O, Mohan V, Mande SS. Trans-ethnic gut microbial signatures of prediabetic subjects from India and Denmark. Genome Med 2021; 13:36. [PMID: 33658065 PMCID: PMC7931552 DOI: 10.1186/s13073-021-00851-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies have indicated an association of gut microbiota and microbial metabolites with type 2 diabetes mellitus (T2D). However, large-scale investigation of the gut microbiota of "prediabetic" (PD) subjects has not been reported. Identifying robust gut microbiome signatures of prediabetes and characterizing early prediabetic stages is important for the understanding of disease development and could be crucial in early diagnosis and prevention. METHODS The current study performed amplification and sequencing on the variable regions (V1-V5) of the 16S rRNA genes to profile and compare gut microbiota of prediabetic individuals (N = 262) with normoglycemic individuals (N = 275) from two cohorts in India and Denmark. Similarly, fasting serum inflammatory biomarkers were profiled from the study participants. RESULTS After correcting for strong country-specific cohort effect, 16 operational taxonomic units (OTUs) including members from the genera Prevotella9, Phascolarctobacterium, Barnesiella, Flavonifractor, Tyzzerella_4, Bacteroides, Faecalibacterium, and Agathobacter were identified as enriched in normoglycaemic subjects with respect to the subjects with prediabetes using a negative binomial Wald test. We also identified 144 OTUs enriched in the prediabetic subjects, which included members from the genera Megasphaera, Streptococcus, Prevotella9, Alistipes, Mitsuokella, Escherichia/Shigella, Prevotella2, Vibrio, Lactobacillus, Alloprevotella, Rhodococcus, and Klebsiella. Comparative analyses of relative abundance of bacterial taxa revealed that the Streptococcus, Escherichia/Shigella, Prevotella2, Vibrio, and Alloprevotella OTUs exhibited more than fourfold enrichment in the gut microbiota of prediabetic subjects. When considering subjects from the two geographies separately, we were able to identify additional gut microbiome signatures of prediabetes. The study reports a probable association of Megasphaera OTU(s) with impaired glucose tolerance, which is significantly pronounced in Indian subjects. While the overall results confirm a state of proinflammation as early as in prediabetes, the Indian cohort exhibited a characteristic pattern of abundance of inflammatory markers indicating low-grade intestinal inflammation at an overall population level, irrespective of glycemic status. CONCLUSIONS The results present trans-ethnic gut microbiome and inflammation signatures associated with prediabetes, in Indian and Danish populations. The identified associations may be explored further as potential early indicators for individuals at risk of dysglycemia.
Collapse
Affiliation(s)
- Nishal Kumar Pinna
- TCS Research, Tata Consultancy Services Limited, 54B Hadapsar Industrial Estate, Pune, 411013, India
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India
| | - Shruti Saxena
- Molecular Genetics Laboratory, Infections and Immunology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO box #04, Faridabad, 121001, India
| | - Anirban Dutta
- TCS Research, Tata Consultancy Services Limited, 54B Hadapsar Industrial Estate, Pune, 411013, India
| | - Visvanathan Gnanaprakash
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India
| | - Gnanavadivel Rameshkumar
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India
| | - Sukumaran Aswath
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India
| | - Srividhya Raghavan
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India
| | | | - Venkatesan Radha
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India
| | - Muthuswamy Balasubramanyam
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India.,Present address: SRM Medical College Hospital & Research Centre, SRM Institute of Science & Technology (SRMIST), Kattankulathur, Chennai, India
| | - Archana Pant
- Molecular Genetics Laboratory, Infections and Immunology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO box #04, Faridabad, 121001, India
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospitals, University of Copenhagen, Copenhagen, Denmark
| | | | - Alireza Kashani
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark.,Current affiliation: Qbiom, Microbiome Consultancy Service, Copenhagen, Denmark
| | - Maria Camila Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark.,Department of Cardiology and Endocrinology, Slagelse Hospital, Slagelse, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark
| | - Gopinath Balakrish Nair
- Molecular Genetics Laboratory, Infections and Immunology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO box #04, Faridabad, 121001, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infections and Immunology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO box #04, Faridabad, 121001, India.
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Maersk Tower, Building: 07-8-55, DK-2200, Copenhagen N, Denmark.
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600 086, India.
| | - Sharmila Shekhar Mande
- TCS Research, Tata Consultancy Services Limited, 54B Hadapsar Industrial Estate, Pune, 411013, India.
| |
Collapse
|
21
|
Liu F, Han F, Liu X, Yang L, Jiang C, Cui C, Yuan F, Zhang X, Gong L, Hou X, Liu Y, Chen L. Cross-Sectional Analysis of the Involvement of Interleukin-17A in Diabetic Retinopathy in Elderly Individuals with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4199-4207. [PMID: 34675572 PMCID: PMC8517528 DOI: 10.2147/dmso.s302199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the correlation between serum interleukin-17A (IL-17A) levels and diabetic retinopathy (DR) in elderly individuals with type 2 diabetes mellitus (T2DM). METHODS The study included 194 elderly patients (94 males and 100 females) with T2DM. Digital retinal photography as well as fundus fluorescein angiography was employed to distinguish between nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). In addition, multiple logistic regression analysis was conducted to determine the correlation between serum IL-17A levels and DR status. RESULTS The average age of the study cohort was 69.14 ± 6.33 years, of which 52.08% were male. The study participants with the highest IL-17A (Q4) levels had higher TC, DBP, and low-density lipoprotein cholesterol (LDL-C) values than those the other groups. Analysis using unadjusted and adjusted linear regression revealed that the effect size of 1.09 for DR in the unadjusted model indicates that IL-17A is associated with an increase of 1.09 in DR (mmol/L) (β 1.09, 95% confidence interval (CI) 1.03, 1.16). Using the minimum-adjusted model (the model 2), as IL-17A increased, DR was higher by 1.11 (β 1.11, 95% CI 1.04, 1.18). With the fully adjusted model (the model 3), for each additional IL-17A increase, DR was higher by 1.15 (β 1.15, 95% CI 1.06, 1.24). CONCLUSION Serum IL-17A levels are apparently positively correlated to DR in Chinese elderly individuals with T2DM.
Collapse
Affiliation(s)
- Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Feng Han
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Xiaoli Liu
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Lina Yang
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Caixia Jiang
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Endocrinology, Zhangqiu District People’s Hospital, Jinan, 250200, People’s Republic of China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Fang Yuan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xin Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Lei Gong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Yuan Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Correspondence: Yuan Liu; Li Chen Email ;
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, People’s Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
22
|
Rezaeepoor M, Hoseini-Aghdam M, Sheikh V, Eftekharian MM, Behzad M. Evaluation of Interleukin-23 and JAKs/STATs/SOCSs/ROR-γt Expression in Type 2 Diabetes Mellitus Patients Treated With or Without Sitagliptin. J Interferon Cytokine Res 2020; 40:515-523. [PMID: 33136467 DOI: 10.1089/jir.2020.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of interleukin-23 (IL-23) and the expression levels of related genes were evaluated in type 2 diabetes mellitus patients. The correlations between them were also determined. Thirty patients without sitagliptin (sitagliptin negative; SN), 30 patients with sitagliptin (sitagliptin positive; SP), and 30 healthy controls (HCs) were recruited. The level of IL-23 in the supernatant of anti CD3-activated peripheral blood mononuclear cells (PBMCs) was assessed using enzyme-linked immunosorbent assay. The expressions of IL-23, JAK1/JAK2/TYK2, STAT1/STAT3, ROR-γt, and SOCS1/SOCS3 in PBMCs were evaluated by real-time polymerase chain reaction. The production of IL-23 and the expressions of IL-23, JAK2, STAT3, and ROR-γt were observed to be enhanced in SN patients versus HCs, while the levels were decreased in SP patients versus SN patients (P < 0.05). SOCS1 and SOCS3 expressions were lower in SN patients than HCs, and their expressions were elevated in SP patients versus SN patients (P < 0.05). In SN patients, positive correlations between the IL-23 with fasting plasma glucose and HbA1c were observed, and JAK2/STAT3/ROR-γt were positively correlated with IL-23. JAK2, STAT3, and ROR-γt were positively related to each other and were negatively related to SOCS3. Enhanced IL-23/JAK2/STAT3/ROR-γt and reduced SOCS1/SOCS3 were found in SN patients. Sitagliptin may regulate the IL-23 and related gene expression.
Collapse
Affiliation(s)
- Mahsa Rezaeepoor
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mirhamed Hoseini-Aghdam
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahdi Behzad
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Lebwohl MG, Leonardi CL, Mehta NN, Gottlieb AB, Mendelsohn AM, Parno J, Rozzo SJ, Menter MA. Tildrakizumab efficacy, drug survival, and safety are comparable in patients with psoriasis with and without metabolic syndrome: Long-term results from 2 phase 3 randomized controlled studies (reSURFACE 1 and reSURFACE 2). J Am Acad Dermatol 2020; 84:398-407. [PMID: 32961255 DOI: 10.1016/j.jaad.2020.09.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Data for the effect of metabolic syndrome (MetS) on the efficacy and safety of biologic agents for psoriasis treatment are limited. OBJECTIVE To evaluate long-term tildrakizumab efficacy, drug survival, and safety in patients with psoriasis by baseline MetS status. METHODS Post hoc analyses of up to 3 years of efficacy data and 5 years of safety data from the phase 3, double-blind, randomized controlled reSURFACE 1 and 2 trial (NCT01722331 and NCT01729754) base and extension studies were conducted for patients receiving continuous tildrakizumab 100 or 200 mg. RESULTS Of 338 (n = 124/214 in reSURFACE 1/2) and 307 (n = 147/160 in reSURFACE 1/2) patients continuously receiving tildrakizumab 100 and 200 mg, respectively, throughout the studies, 26/44 (21%/21%) and 34/30 (23%/19%) met MetS criteria. Proportions of patients who achieved a 75% improvement in the Psoriasis Area and Severity Index (PASI) in reSURFACE 1/2 were generally comparable among those with versus without MetS at week 52 (tildrakizumab 100 mg, 85%/86% vs 86%/94%; tildrakizumab 200 mg, 76%/87% vs 76%/87%) and through week 148. Results were similar for responders with 90% and 100% improvement in the PASI. Tildrakizumab's safety profile did not vary by MetS status. LIMITATIONS Small sample size and post hoc analysis limit interpretation. CONCLUSION Long-term tildrakizumab efficacy and safety were comparable between patients with and without MetS.
Collapse
Affiliation(s)
- Mark G Lebwohl
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Craig L Leonardi
- Central Dermatology and Saint Louis University School of Medicine, St Louis, Missouri
| | - Nehal N Mehta
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Alice B Gottlieb
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Jeff Parno
- Sun Pharmaceutical Industries, Inc, Princeton, New Jersey
| | | | - M Alan Menter
- Division of Dermatology, Baylor Scott & White, Dallas, Texas; Texas A&M College of Medicine, Dallas, Texas
| |
Collapse
|
24
|
Subramaniam R, Aliakbarian H, Bhutta HY, Harris DA, Tavakkoli A, Sheu EG. Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Attenuate Pro-inflammatory Small Intestinal Cytokine Signatures. Obes Surg 2020; 29:3824-3832. [PMID: 31363962 DOI: 10.1007/s11695-019-04059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Bariatric surgery rapidly induces improvements in type 2 diabetes (T2D) in concert with reduction in systemic markers of inflammation. The impact of bariatric surgery on local intestinal immunity is not known. We hypothesize that sleeve gastrectomy (SG) and gastric bypass (RYGB) surgeries resolve obesity-induced intestinal inflammation, thereby promoting T2D resolution. METHODS SG and RYGB, or control surgery was performed in SD rats (n = 4-6/group). Key cytokines involved in insulin resistance (TNF-α, IFN-γ), inflammasome activation (IL-1β, IL-18), inflammation resolution (IL-10, IL-33), and Th17 cell responses (IL-17, IL-23) were measured by qPCR in mucosal scrapings of jejunum at 4 weeks post-surgery. Intestinal cytokine expressions were correlated with weight change, systemic and portal glucose, and insulin levels in response to an enteral glucose load. RESULTS SG downregulated IL-17 and IL-23 in both proximal and distal jejunum, and IFN-γ was reduced only in distal jejunum (p < 0.05). Jejunal IL-17 and IL-23 expression correlated positively with weight changes after SG (0.93 and 0.98, respectively; p < 0.05). Changes in IFN-γ correlated strongly with insulin levels in portal and systemic circulation (0.99 and 0.95, respectively, p < 0.05). As with SG, IFN-γ, IL-17, and IL-23 were significantly reduced by RYGB. RYGB also reduced TNF-α and IL-18 and increased IL-33 levels (p < 0.05). CONCLUSIONS RYGB and SG reduce expression of pro-inflammatory cytokines IL-17, IL-23, and IFN-γ in the jejunum. RYGB showed attenuation of additional pro-inflammatory cytokines and enhanced expression of IL-33. Post-surgical changes in intestinal IL-17, IL-23, and IFN-γ correlate strongly with changes in weight and glucose-triggered insulin responses.
Collapse
Affiliation(s)
- Renuka Subramaniam
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hassan Aliakbarian
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hina Y Bhutta
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - David A Harris
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tavakkoli
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eric G Sheu
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Egeberg A, Gisondi P, Carrascosa JM, Warren RB, Mrowietz U. The role of the interleukin-23/Th17 pathway in cardiometabolic comorbidity associated with psoriasis. J Eur Acad Dermatol Venereol 2020; 34:1695-1706. [PMID: 32022950 PMCID: PMC7496750 DOI: 10.1111/jdv.16273] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Alterations in the innate and adaptive immunity underpin psoriasis pathophysiology, with the Th17 cells subset now recognized as the fundamental cells in the key controlling pathway involved in its pathogenesis. Since psoriasis is a systemic disease with important comorbidity, further knowledge on the interleukin (IL)‐23/Th17 axis led to the hypothesis that there may be shared pathogenic pathways between primary skin disease and comorbidity. Psoriasis has been identified as a risk factor for cardiovascular and metabolic disease, and increasing evidence gives support to this epidemiological observation from the clinical‐pathologically field. As an example, increased levels of IL‐23 and IL‐23R have been found in human atherosclerotic plaque, and levels correlated with symptom duration and mortality. Also, upregulation of IL‐23/IL‐17 seems to play an important role in both myocardial damage and stroke, with interesting reports on deleterious effect neutralization after administration of related anti‐bodies in both associated conditions. In diabetic patients, increased levels of IL‐23/IL‐17 have also been observed and available data support a synergistic role of IL‐23/IL‐17 in β‐cells damage. In obesity, signs of an expansion of Th17 subset in adipose tissue have been reported, as well as elevated concentrations of IL‐23 in obese patients. In non‐alcoholic fatty liver disease, closely related to metabolic syndrome, but also in other mentioned cardiometabolic disorders, a predominance of IL‐23 and other related pro‐inflammatory factors has been identified as participating in their pathogenesis. Thus, the involvement of the IL‐23/Th17 axis in these shared psoriasis‐cardiometabolic pathogenic mechanisms is reviewed and discussed in the light of the existing preclinical and clinical evidence, including that from comorbid psoriasis patients.
Collapse
Affiliation(s)
- A Egeberg
- Department of Dermatology and Allergy, Gentofte Hospital, Hellerup, Denmark
| | - P Gisondi
- Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - J M Carrascosa
- Department of Dermatology, University Hospital Germans Trias i Pujol, Autonomous University of Barcelona (UAB), Badalona, Spain
| | - R B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - U Mrowietz
- Psoriasis-Center at the Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
26
|
Saeed M, Kushwaha V, Faisal SM, Verma R, Ahmad I, Mustafa H, Ganash M, Kamal MA, Ashraf GM. A Study on Serological Reactivity Profile of Different Antigen Preparations with Bancroftian filariasis Human Infection Sera. Protein Pept Lett 2020; 27:841-850. [PMID: 32096736 DOI: 10.2174/0929866527666200225123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphatic Filariasis (LF) is one of the incapacitating and mosquito-borne sicknesses that on progression may prompt a few recognizable types of clutters like extreme lymphedema, hydrocele, and elephantiasis. METHODS Antigenic preparations of B. malayi adult (BmA), S. cervi adult parasites and microfilariae (mf) total parasite extract were used to analyze the serological reactivity profile with human infectious sera collected from endemic areas of Bancroftian filariasis by performing Western blot and ELISA analysis. Sera from healthy human subjects were also included in the study to determine the variation incurred in the reactivity due to the filariasis infection. Gelelectrophoresis analysis of the crude-extract of BmA revealed seven protein bands while more than ten bands were recognized in S. cervi. RESULTS our results represent a clear variation in protein patterns among the crude-antigens. ELISA results showed highest prevalence of IgG, IgM and IgG4 antibodies against all antigen preparations when recorded among microfilaraemic chronic infected patients. In both the antigenic preparations, the positive reactions were in the order of microfilaraemic>endemic normal>chronic>acute>nonendemic normal subjects. All sera of Mf+ patients were uniformly positive, while sera of both chronic and endemic normal subjects showed less reactivity. CONCLUSION In the present study, we endeavoured to establish the extent of cross-reactivity of antigens derived from animal filarial parasites such as B. malayi and S. cervi with W. bancrofti filariasis sera of human patients. Besides, we further analyzed antibody-isotype profile of IgG, IgG4 and IgM in various human infection sera of bancroftian filarial subjects reactive to heterologous parasite antigens derived from adult worms of S. cervi from bovine and B. malayi from bovine and jirds.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences University of Hail, Hail, Saudi Arabia.,Department of Biosciences, Integral University, Lucknow, India
| | - Vikas Kushwaha
- Department of Zoology, Panjab University, Chandigarh, India
| | - Syed Mohd Faisal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Richa Verma
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia,Research Center for Advanced Material Sciences, King Khalid University, Abha, Saudi Arabia,Department of Microbiology, King George's Medical University, Lucknow, India
| | - Huma Mustafa
- Council of Science and Technology, Lucknow, UP, India
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia,Novel Global Community Educational Foundation, Australia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Withatanung P, Kurian D, Tangjittipokin W, Plengvidhya N, Titball RW, Korbsrisate S, Stevens JM. Quantitative Proteomics Reveals Differences in the Response of Neutrophils Isolated from Healthy or Diabetic Subjects to Infection with Capsule-Variant Burkholderia thailandensis. J Proteome Res 2019; 18:2848-2858. [PMID: 31244210 DOI: 10.1021/acs.jproteome.9b00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Thailand, diabetes mellitus is the most significant risk factor for melioidosis, a severe disease caused by Burkholderia pseudomallei. In this study, neutrophils isolated from healthy or diabetic subjects were infected with B. thailandensis E555, a variant strain with a B. pseudomallei-like capsular polysaccharide used here as a surrogate micro-organism for B. pseudomallei. At 2 h post-infection, neutrophil proteins were subjected to 4-plex iTRAQ-based comparative proteomic analysis. A total of 341 proteins were identified in two or more samples, of which several proteins involved in oxidative stress and inflammation were enriched in infected diabetic neutrophils. We validated this finding by demonstrating that infected diabetic neutrophils generated significantly elevated levels of pro-inflammatory cytokines TNFα, IL-6, IL-1β, and IL-17 compared to healthy neutrophils. Our data also revealed that infected neutrophils from healthy or diabetic individuals undergo apoptotic cell death at distinctly different rates, with infected diabetic neutrophils showing a diminished ability to delay apoptosis and an increased likelihood of undergoing a lytic form of cell death, compared to infected neutrophils from healthy individuals. Increased expression of inflammatory proteins by infected neutrophils could contribute to the increased susceptibility to infection and inflammation in diabetic patients in melioidosis-endemic areas.
Collapse
Affiliation(s)
- Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok 10700 , Thailand
| | - Dominic Kurian
- The Roslin Institute & Royal (Dick) School of Veterinary Studies , University of Edinburgh, Easter Bush , Midlothian EH25 9RG , United Kingdom
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok 10700 , Thailand
| | - Nattachet Plengvidhya
- Department of Medicine, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok 10700 , Thailand
| | - Richard W Titball
- Department of Biosciences , University of Exeter , Exeter EX4 4QD , United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok 10700 , Thailand
| | - Joanne M Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies , University of Edinburgh, Easter Bush , Midlothian EH25 9RG , United Kingdom
| |
Collapse
|
28
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|