1
|
Wang Z, Cheng W, Wang Z, Wen Y, Bai J, Zhou H, Wang Y. Non-starch polysaccharides from nutmeg: Preparation process and bioactivity. Int J Biol Macromol 2025; 310:143341. [PMID: 40254209 DOI: 10.1016/j.ijbiomac.2025.143341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
This study was for the preparation of bioactive non-starch polysaccharides from nutmeg (NEP), addressing the high content of lipids and starch in nutmeg. First, lipids were removed by 3 times defatted with petroleum ether. Then, the optimal extraction process was 170 min at 82 °C with a liquid solid ratio of 15: 1 mL/g. Finally, the removal of starch was confirmed through enzymatic hydrolysis with α-amylase and amyloglucosidase, supported by I2-KI reagent, HPLC, and IR analysis. The yield of NEP was 3.09 %. Compared with non-enzymatic hydrolysis polysaccharides (NNP), total sugar and uronic acid contents were increased by 13.8 % and 18.5 %, respectively. The molecular weight decreased from 1.031 × 106 to 6.31 × 105 Da, exhibiting a porous sheet-like morphology and β-glycosidic bonds. NEP had superior activity, with an IC50 value of 0.47 mg/mL for ABTS radical scavenging, compared to 1.20 mg/mL for NNP, and its total reducing capacity was nearly double that of NNP. 100 μg/mL of NEP stimulated RAW264.7 macrophages to release 12.14 μM of nitric oxide, exceeding the 9.13 μM induced by lipopolysaccharide. These results indicate the antioxidant and immunomodulatory efficacy of NEP, highlighting its potential as an active ingredient in foods or pharmaceuticals.
Collapse
Affiliation(s)
- Zhenlei Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Wenqi Cheng
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zitong Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yanhui Wen
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jing Bai
- Technology Department, Jilin Ji Test Technology Co. LTD, Jilin 130117, China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yahong Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
2
|
Zhu L, Yu X, Ren Y, Jin W, Guo Y, Zong J, Liu Y. Polysaccharide from Asparagus officinalis activated macrophages through NLRP3 inflammasome based on RNA-seq analysis. Biomed Pharmacother 2024; 181:117729. [PMID: 39642446 DOI: 10.1016/j.biopha.2024.117729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Some polysaccharides with established medical and nutritional values have been identified to possess immunomodulatory properties devoid of any toxic or adverse effects. Previous studies have demonstrated that water-soaked polysaccharides from the skin of white asparagus can enhance cytokine release in RAW 264.7 macrophages, however, the underlying mechanism governing immune regulation remains elusive. In this study, we obtained a lower molecular weight polysaccharide (AP) through acid extraction, with an average MW of approximately 9.5 kDa. SEM and AFM spectroscopy analysis revealed well-dispersed spherical particle with triple helix conformation for AP, characterized by intertwined branching structures. Treatment with AP resulted in a time-dependent increase in nitric oxide levels and cytokine production in both RAW 264.7 cells and primary peritoneal macrophages. RNA-seq analysis indicated that AP activated macrophages via NLRP3 inflammasome signaling pathway. Furthermore, AP activated MAPKs and JAK/STAT signaling pathways to amplify the inflammatory response. Additionally, administration of AP improved visceral index and reduced inflammatory cell counts in CYP-induced immunosuppressed mice models. These findings suggest that AP holds potential as an immuno-enhancement mediator, wherein MAPK and JAK/STAT3 signaling pathways play a role in NLRP3 inflammasome activation of macrophages.
Collapse
Affiliation(s)
- Lin Zhu
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Key Laboratory of Immunodiagnosis, Qingdao 266071, China
| | - Xi Yu
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Key Laboratory of Immunodiagnosis, Qingdao 266071, China
| | - Yuqian Ren
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunliang Guo
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China
| | - Jinbao Zong
- Clinical Laboratory, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Key Laboratory of Immunodiagnosis, Qingdao 266071, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Yuan D, Li C, Zhang J, Kong B, Sun F, Zhang H, Liu Q, Cao C. Abelmoschus manihot gum improves the water retention capacity of low-salt myofibrillar protein gels: Perspective on aggregation behaviour and conformational changes during heating. Int J Biol Macromol 2024; 282:137483. [PMID: 39528197 DOI: 10.1016/j.ijbiomac.2024.137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to investigate the effect of Abelmoschus manihot gum (AMG) on the water retention capacity of low-salt myofibrillar protein (MP) gel by analysing its aggregation behaviour and conformational changes during heating (30-80 °C). The results revealed that AMG significantly increased the water holding capacity and facilitated the formation of a more uniform gel network structure in low-salt MP gel (P < 0.05). During the heat-induced gelation process, the solubility of low-salt MP significantly decreased, whereas its turbidity evidently increased as the level of added AMG increased (P < 0.05). Furthermore, the dynamic rheological behaviours indicated that low-salt MP-AMG gels underwent early denaturation and unfolded at 58 °C, finally forming an irreversible three-dimensional network at 80 °C. Moreover, adding AMG promoted α-helix-to-β-sheet transition in low-salt MP and decreased its fluorescence intensity during the heating process. Hydrophobic interactions and disulfide bonds were the two dominant forces governing the formation and maintenance of low-salt MP gel. The present study provides theoretical guidance for the production of novel low-salt healthy meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cheng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Zhu S, Wang W, Liu X, Yi C, Li L, Zhu Z, Guo S, Duan JA. Qualitative and quantitative analysis of major components in Abelmoschus manihot flowers treated with different drying methods using UHPLC Q-exactive MS and HPLC-PDA. J Pharm Biomed Anal 2024; 253:116558. [PMID: 39520810 DOI: 10.1016/j.jpba.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The flowers of Abelmoschus manihot (L.) Medic are commonly used in clinical practice in China to cure forms of chronic kidney disease. Despite a long history of traditional use, the flowers obtained by different drying technologies have never been fully chemically characterized, and the ranges of constituents between different drying methods have not been comprehensively reported. To establish a quality control and chemical characterization method, a total of 14 batches of samples corresponding to 14 postharvest treatments were studied. Seven flavonoids were quantified using a HPLC-PDA method. The method was validated in terms of linearity (r > 0.999), precision (intra- and inter-day: 0.7-1.4 %), accuracy (99.90-100.7 %), detection limit (0.34-0.46 µg/mL) and quantification limit (1.15-1.52 µg/mL). The contents of total flavonoids in manihot flowers were as follows in descending order: Infrared Drying (50.96 mg/g) > Microwave Drying (41.84 mg/g) ≈ Hot-air Drying (39.58 mg/g) ≈ Fresh (39.35 mg/g) ≈ Primary Drying (38.95 mg/g). Principal component analysis showed that samples processed with Fresh, Primary Drying, and the investigated three modern drying methods were well classified into three domains, indicating an important difference between drying methods. For the purpose of saving the flavonoids contents, infrared drying under 80-100 °C would be most acceptable. Furthermore, using UHPLC Q-Exactive Orbitrap MS data with targeted and non-targeted approaches, 28 compounds were identified in Abelmoschus manihot samples. Flavonoids were the main group of compounds found in Abelmoschus manihot flowers. The study could provide the scientific evidence for the selection and optimization of appropriate drying method for manihot flowers, and also provide the reference for the formation of generic primary drying processing technology for medicinal flowers containing flavonoids.
Collapse
Affiliation(s)
- Shaoqing Zhu
- Zhenjiang Key Laboratory of Functional Chemistry, School of Pharmaceutical & Chemical Technology, Zhenjiang College, Zhenjiang 212028, PR China.
| | - Wei Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xiang Liu
- Zhenjiang Key Laboratory of Functional Chemistry, School of Pharmaceutical & Chemical Technology, Zhenjiang College, Zhenjiang 212028, PR China.
| | - Chengxue Yi
- Zhenjiang Key Laboratory of Functional Chemistry, School of Pharmaceutical & Chemical Technology, Zhenjiang College, Zhenjiang 212028, PR China.
| | - Li Li
- Zhenjiang Key Laboratory of Functional Chemistry, School of Pharmaceutical & Chemical Technology, Zhenjiang College, Zhenjiang 212028, PR China.
| | - Zhenhua Zhu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou 215137, PR China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Wang J, Liao E, Ren Z, Wang Q, Xu Z, Wu S, Yu C, Yin Y. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules 2024; 29:2109. [PMID: 38731598 PMCID: PMC11085328 DOI: 10.3390/molecules29092109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.
Collapse
Affiliation(s)
- Junjie Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Enhui Liao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Zixuan Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Qiong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Zenglai Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Shufang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| |
Collapse
|
6
|
Chu Q, Xie S, Wei H, Tian X, Tang Z, Li D, Liu Y. Enzyme-assisted ultrasonic extraction of total flavonoids and extraction polysaccharides in residue from Abelmoschus manihot (L). ULTRASONICS SONOCHEMISTRY 2024; 104:106815. [PMID: 38484470 PMCID: PMC10955658 DOI: 10.1016/j.ultsonch.2024.106815] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Abelmoschus manihot (L) is a traditional chinese herb and the present study focused on its comprehensive development and utilization. Enzyme-assisted ultrasonic extraction (EUAE) was investigated for the extraction and qualitative and quantitative analysis of flavonoids from Abelmoschus manihot (L) using a combination of ultra-performance liquid chromatography-photodiode array (UPLC-PDA), polysaccharides was extracted from residues and compared with directly extracted from raw materials. The optimal yield of 3.46±0.012 % (w/w) was obtained when the weight ratio of cellulase to pectinase was 1:1, the enzyme concentration was 3 %, the pH was 6.0, the solvent was a mixture of 70 % ethanol (v/v) and 0.1 mol/L NaH2PO4 buffer solution, the ultrasonic power was 500 W, the extraction time was 40 min, and the temperature of the extraction was 50 °C. The individual concentrations of interested flavonoids (rutin, neochlorogenic acid, nochlorogenic acid, lsoquercitrin, quercitrin, gossypin, quercetin) were effectively increased with the using of EUAE, compared with ultrasonic extraction (UE) method. Polysaccharides were extracted from each residue, respectively, the Polysaccharides yield in residue from EUAE was higher than that from UE, and closed to the yield from direct extraction in raw materials. The above results shown that the experimental process had the potential to be environmentall, friendly, straightforward and efficient.
Collapse
Affiliation(s)
- Qiming Chu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Shengnan Xie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Hongling Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Xuchen Tian
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Dewen Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China.
| | - Ying Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China.
| |
Collapse
|
7
|
Liu J, Tao Y, Zou X, Liu Q, Meng X, Zhang Y, Su J. In vitro and in vivo exploration of the anti-atopic dermatitis mechanism of action of Tibetan medicine Qi-Sai-Er-Sang-Dang-Song decoction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116155. [PMID: 36634726 DOI: 10.1016/j.jep.2023.116155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tibetan medicine Qi-Sai-Er-Sang-Dang-Song Decoction(QSD, ཆུ་སེར་སེང་ལྡེང་སུམ་ཐང་།)is a traditional Tibetan medical formulation with demonstrated clinical benefits in atopic dermatitis (AD). However, its potential mechanism and molecular targets remain to be elucidated. AIM OF THE STUDY This study aims to explore the activity and mechanism of QSD on AD in multiple dimensions by combining in vitro and in vivo experiments with network pharmacology. MATERIALS AND METHODS The AD effect of QSD was investigated by evaluating the levels of nitric oxide (NO) and interleukin-6 (IL-6) in the lipopolysaccharide (LPS) stimulated RAW264.7 cells. AD-like skin lesions in female BALB/c mice were induced by 2,4-dinitrochlorobenzene (DNCB). QSD or dexamethasone (positive control) were gavagely administered daily for 15 consecutive days. The body weight and skin lesion severity were recorded throughout the study. Enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) analysis were used to illuminate the molecular targets associated with the anti-AD effects of QSD. Meanwhile, the ingredients of QSD in the blood were revealed and analyzed by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method. Network pharmacology was used to predict the targets and mechanism of active ingredient therapy for AD. In addition, the network pharmacology outcomes were further verified by molecular docking. RESULT After treatment with QSD, the levels of NO and IL-6 were decreased in the cell supernatant. Herein, QSD markedly decreased the eosinophil and mast cells infiltration in the dorsal skin of the 2,4-dinitrochlorobenzene. Moreover, QSD reconstructed the epidermal barrier by increasing the content of collagen fibers and changing the arrangement of DNCB-treated mice. QSD not only inhibited the levels of tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) but also inhibited phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) proteins in the dorsal skin. Four active ingredients were identified through UPLC-Q-TOF/MS, including (-)-epicatechin, kaempferol-7-O-glucoside, cassiaside, and questin. After the network pharmacological analysis, six core targets of QSD closely related to AD were obtained, including TNF-α, IL-6, Caspase-3 (CASP3), Epidermal growth factor (EGFR), Peroxisome proliferator-activated receptor gamma (PPARG), and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1). Meanwhile, through Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the Mitogen-activated protein kinase (MAPK) signaling pathway occupies an important position in the QSD treatment of AD. The molecular docking results showed that the six core targets are stable in binding to the four active ingredients as indicated by the molecular docking results. CONCLUSIONS The anti-AD effect of QSD might be related to the reconstruction of the epidermal barrier and inhibition of inflammation, which regulated the MAPK pathway. Hence, it provided a promising idea for the study of Tibetan medicine prescriptions for the treatment of AD.
Collapse
Affiliation(s)
- Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinsong Su
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Effects of Abelmoschus manihot gum content, heating temperature and salt ions on the texture and rheology properties of konjac gum/Abelmoschus manihot gum composite gel. Int J Biol Macromol 2023; 236:123970. [PMID: 36906206 DOI: 10.1016/j.ijbiomac.2023.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
To improve the gelling property of konjac gum (KGM) and enhance the application value of Abelmoschus manihot (L.) medic gum (AMG), a novel type of gel was prepared using KGM and AMG in this study. The effects of AMG content, heating temperature and salt ions on the characteristics of KGM/AMG composite gels were studied by Fourier transform infrared spectroscopy (FTIR), zeta potential, texture analysis and dynamic rheological behavior analysis. The results indicated that the AMG content, heating temperature and salt ions could affect the gel strength of KGM/AMG composite gels. Hardness, springiness, resilience, G', G* and η* of KGM/AMG composite gels increased when AMG content increased from 0 to 2.0 %, but they decreased when AMG increased from 2.0 % to 3.5 %. High-temperature treatment significantly enhanced the texture and rheological properties of KGM/AMG composite gels. The addition of salt ions reduced the zeta potential absolute value and weakened the texture and rheological properties of KGM/AMG composite gels. Furthermore, the KGM/AMG composite gels could be classified as non-covalent gels. The non-covalent linkages included hydrogen bonding and electrostatic interactions. These findings would help understand the properties and formation mechanism of KGM/AMG composite gels and help improve the application value of KGM and AMG.
Collapse
|
9
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
10
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
11
|
Liu X, Chen X, Xie L, Xie J, Shen M. Sulfated Chinese yam polysaccharide enhances the immunomodulatory activity of RAW 264.7 cells via the TLR4-MAPK/NF-κB signaling pathway. Food Funct 2022; 13:1316-1326. [PMID: 35037682 DOI: 10.1039/d1fo03630k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, Chinese yam polysaccharide (CYP) was isolated from yam by hydroextraction and alcoholic precipitation. Subsequently, the chlorosulfate-pyridine (CSA-Pyr) method was used to obtain the sulfated Chinese yam polysaccharide derivative (S-CYP) to evaluate its immunomodulatory activity in RAW 264.7 cells and to investigate its mechanism of action. The results revealed that the sulfated modification altered the physicochemical properties of CYP but had no impact on the main chain structure. S-CYP demonstrated excellent immunomodulatory activity by increasing the viability of RAW 264.7 macrophage cells and stimulating the production of reactive oxygen species (ROS), nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Moreover, signal transduction experiments showed that S-CYP induced the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways through toll-like receptor 4 (TLR4), dramatically increasing p-ERK, p-JNK and p-p38 proteins. Meanwhile, immunofluorescence results showed that S-CYP could significantly promote the entry of NF-κB p65 into the nucleus, which is essential for triggering the NF-κB pathway. Furthermore, blocking antibody experiments revealed that specific inhibitors of TLR4, MAPKs, and NF-κB suppressed the generation of TNF-α and IL-6 in RAW 264.7 cells. These findings suggested that both CYP and S-CYP could be used as immunomodulatory agents and may have potential application prospects in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
12
|
Geum NG, Yu JH, Yeo JH, Choi MY, Lee JW, Beak JK, Jeong JB. Immunostimulatory activity and anti-obesity activity of Hibiscus manihot leaves in mouse macrophages, RAW264.7 cells and mouse adipocytes, 3T3-L1 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Li J, Ye GY, Liu HL, Wang ZH. Complete chloroplast genomes of three important species, Abelmoschus moschatus, A. manihot and A. sagittifolius: Genome structures, mutational hotspots, comparative and phylogenetic analysis in Malvaceae. PLoS One 2020; 15:e0242591. [PMID: 33237925 PMCID: PMC7688171 DOI: 10.1371/journal.pone.0242591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
Abelmoschus is an economically and phylogenetically valuable genus in the family Malvaceae. Owing to coexistence of wild and cultivated form and interspecific hybridization, this genus is controversial in systematics and taxonomy and requires detailed investigation. Here, we present whole chloroplast genome sequences and annotation of three important species: A. moschatus, A. manihot and A. sagittifolius, and compared with A. esculentus published previously. These chloroplast genome sequences ranged from 163121 bp to 163453 bp in length and contained 132 genes with 87 protein-coding genes, 37 transfer RNA and 8 ribosomal RNA genes. Comparative analyses revealed that amino acid frequency and codon usage had similarity among four species, while the number of repeat sequences in A. esculentus were much lower than other three species. Six categories of simple sequence repeats (SSRs) were detected, but A. moschatus and A. manihot did not contain hexanucleotide SSRs. Single nucleotide polymorphisms (SNPs) of A/T, T/A and C/T were the largest number type, and the ratio of transition to transversion was from 0.37 to 0.55. Abelmoschus species showed relatively independent inverted-repeats (IR) boundary traits with different boundary genes compared with the other related Malvaceae species. The intergenic spacer regions had more polymorphic than protein-coding regions and intronic regions, and thirty mutational hotpots (≥200 bp) were identified in Abelmoschus, such as start-psbA, atpB-rbcL, petD-exon2-rpoA, clpP-intron1 and clpP-exon2.These mutational hotpots could be used as polymorphic markers to resolve taxonomic discrepancies and biogeographical origin in genus Abelmoschus. Moreover, phylogenetic analysis of 33 Malvaceae species indicated that they were well divided into six subfamilies, and genus Abelmoschus was a well-supported clade within genus Hibiscus.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guang-ying Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hai-lin Liu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zai-hua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
14
|
Li HW, Liu P, Zhang HQ, Feng WM, Yan H, Guo S, Qian DW, Duan JA. Determination of bioactive compounds in the nonmedicinal parts of Scrophularia ningpoensis using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry and chemometric analysis. J Sep Sci 2020; 43:4191-4201. [PMID: 32975375 DOI: 10.1002/jssc.202000723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/28/2022]
Abstract
Although Scrophulariae Radix (root of Scrophularia ningpoensis) has received much attention, little is known about the nonmedicinal parts of S. ningpoensis. A comprehensive evaluation of the multibioactive constituents in the flowers, rhizomes, leaves, and stems of S. ningpoensis during different growth stages would be of value to fully understand the potential medicinal properties of all parts of the plant. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was performed for accurately determining nine compounds in S. ningpoensis. The results indicated the content of total analytes in S. ningpoensis was in the order of flowers (81.82 mg/g) > roots (31.95 mg/g) > rhizomes (26.68 mg/g) > leaves (16.86 mg/g) > stems (14.35 mg/g). The chemometric analysis showed that these plant parts were rich in iridoids and should not be discarded during the processing of medicinal materials. Dynamic accumulation analysis suggested that the early flowering stage was the optimum time for harvesting flowers and appropriate amounts of stems and leaves. Moreover, considering the accumulation of constituents and biomass of medicinal materials, the medicinal parts should be harvested around December with the rhizomes attached. This research provides a theoretical basis and scientific evidence for comprehensive development and utilization of S. ningpoensis resources.
Collapse
Affiliation(s)
- Hui-Wei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Huang-Qin Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei-Meng Feng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
15
|
Luan F, Wu Q, Yang Y, Lv H, Liu D, Gan Z, Zeng N. Traditional Uses, Chemical Constituents, Biological Properties, Clinical Settings, and Toxicities of Abelmoschus manihot L.: A Comprehensive Review. Front Pharmacol 2020; 11:1068. [PMID: 32973492 PMCID: PMC7482509 DOI: 10.3389/fphar.2020.01068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Abelmoschus manihot, an annual herbal flowering plant, is widely distributed throughout eastern Europe and in temperate and subtropical regions of Asia. Its flowers have been traditionally used for the treatment of chronic kidney disease in China. Currently, more than 128 phytochemical ingredients have been obtained and identified from the flowers, seeds, stems, and leaves of A. manihot. The primary components are flavonoids, amino acids, nucleosides, polysaccharides, organic acids, steroids, and volatile oils. A. manihot and its bioactive constituents possess a plethora of biological properties, including antidiabetic nephropathy, antioxidant, antiadipogenic, anti-inflammatory, analgesic, anticonvulsant, antidepressant, antiviral, antitumor, cardioprotective, antiplatelet, neuroprotective, immunomodulatory, and hepatoprotective activities, and have effects on cerebral infarction, bone loss, etc. However, insufficient utilization and excessive waste have already led to a rapid reduction of resources, meaning that a study on the sustainable use of A. manihot is urgent and necessary. Moreover, the major biologically active constituents and the mechanisms of action of the flowers have yet to be elucidated. The present paper provides an early and comprehensive review of the traditional uses, chemical constituents, pharmacological activities, and pharmaceutical, quality control, toxicological, and clinical settings to emphasize the benefits of this plant and lays a solid foundation for further development of A. manihot.
Collapse
Affiliation(s)
- Fei Luan
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China.,Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianhong Wu
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Haizhen Lv
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Daoheng Liu
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Zhaoping Gan
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Nan Zeng
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Screening and structure study of active components of Astragalus polysaccharide for injection based on different molecular weights. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122255. [DOI: 10.1016/j.jchromb.2020.122255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
|
17
|
Barbosa JDS, Sabry DA, Silva CHF, Gomes DL, Santana-Filho AP, Sassaki GL, Rocha HAO. Immunostimulatory Effect of Sulfated Galactans from the Green Seaweed Caulerpa cupressoides var. flabellata. Mar Drugs 2020; 18:md18050234. [PMID: 32365741 PMCID: PMC7281474 DOI: 10.3390/md18050234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfated polysaccharides (SPs) obtained from green seaweeds are structurally heterogeneous molecules with multifunctional bioactivities. In this work, two sulfated and pyruvated galactans were purified from Caulerpa cupressoides var. flabellata (named SP1 and SP2), and their immunostimulatory effect was evaluated using cultured murine macrophage cells. Both SPs equally increased the production of nitric oxide, reactive oxygen species, and the proinflammatory cytokines TNF-α and IL-6. NMR spectroscopy revealed that both galactans were composed primarily of 3)-β-d-Galp-(1→3) units. Pyruvate groups were also found, forming five-membered cyclic ketals as 4,6-O-(1'carboxy)-ethylidene-β-d-Galp residues. Some galactoses are sulfated at C-2. In addition, only SP2 showed some galactose units sulfated at C-4, indicating that sulfation at this position is not essential for the immunomodulatory activity of these galactans. Overall, the data showed that the galactans of C. cupressoides exhibited immunostimulating activity with potential therapeutic applications, which can be used in the development of new biomedical products.
Collapse
Affiliation(s)
- Jefferson da Silva Barbosa
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN)—Campus, São Gonçalo do Amarante 59291-727, Rio Grande do Norte, Brazil
| | - Diego Araújo Sabry
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
| | - Cynthia Haynara Ferreira Silva
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
| | - Dayanne Lopes Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI)—Campus, BR 020, s/n, São Raimundo Nonato 64770-000, Bairro Primavera, Brazil;
| | - Arquimedes Paixão Santana-Filho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba 81.531-980, Paraná, Brazil; (A.P.S.-F.); (G.L.S.)
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba 81.531-980, Paraná, Brazil; (A.P.S.-F.); (G.L.S.)
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais—BIOPOL, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59.078-970, Rio Grande do Norte, Brazil; (J.d.S.B.); (D.A.S.); (C.H.F.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
18
|
Gastroprotective Activity of the Total Flavones from Abelmoschus manihot (L.) Medic Flowers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6584945. [PMID: 32184895 PMCID: PMC7060849 DOI: 10.1155/2020/6584945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/04/2020] [Indexed: 01/17/2023]
Abstract
Background Abelmoschus manihot (L.) Medic flower is a medicinal plant for the treatment of diseases in China. The present study was carried out to scientifically validate the gastroprotective activity and clarify the possible mechanism of the total flavones from Abelmoschus manihot (L.) Medic flower is a medicinal plant for the treatment of diseases in China. The present study was carried out to scientifically validate the gastroprotective activity and clarify the possible mechanism of the total flavones from Methods Gastric ulcer was induced in mice by oral administration of ethanol. The gastroprotective activity of TFA was evaluated by the gastric ulcer index and histological examinations. The gastric tissue was collected in the form of homogenate. The level of malondialdehyde (MDA) and glutathione (GSH), the activity of superoxide dismutase (SOD), and protein content were measured. Western blotting for the expression of Bax, Bcl-2, TNF-α, and NF-κB(p65) was also carried out. The effect of TFA was compared with that of standard antiulcer drug omeprazole (100 mg/kg). Results This gastroprotective effect of TFA could be attributed to the increase in the activity of SOD and GSH and decrease in the levels of MDA and also decrease in the levels of Bax, TNF-α, and NF-κB(p65) was also carried out. The effect of TFA was compared with that of standard antiulcer drug omeprazole (100 mg/kg). Conclusion The findings of this study demonstrated that TFA could significantly attenuate ethanol-induced gastric injury via antioxidative, anti-inflammatory, and antiapoptotic effects.
Collapse
|
19
|
Li S, Li N, Qin S, Xue L, Chen Y, Li H. Purification, Characterization and Bioactivities of Polysaccharides from the Stalk of <i>Abelmoschus manihot</i> (L.) Medic. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuhong Li
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Nan Li
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Shaoshuang Qin
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Lingyan Xue
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology
| | - Heyu Li
- Yibeijian Biotechnology co. LTD
| |
Collapse
|
20
|
Huang L, Shen M, Morris GA, Xie J. Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wan Y, Wang M, Zhang K, Fu Q, Wang L, Gao M, Xia Z, Gao D. Extraction and determination of bioactive flavonoids from
Abelmoschus manihot
(Linn.) Medicus flowers using deep eutectic solvents coupled with high‐performance liquid chromatography. J Sep Sci 2019; 42:2044-2052. [DOI: 10.1002/jssc.201900031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yuyan Wan
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| | - Min Wang
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| | - Kailian Zhang
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| | - Qifeng Fu
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| | - Lujun Wang
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| | - Manjie Gao
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| | - Zhining Xia
- School of Pharmaceutical SciencesChongqing University Chongqing P. R. China
| | - Die Gao
- School of PharmacySouthwest Medical University Luzhou Sichuan P. R. China
| |
Collapse
|
22
|
Peng B, Luo Y, Hu X, Song L, Yang J, Zhu J, Wen Y, Yu R. Isolation, structural characterization, and immunostimulatory activity of a new water-soluble polysaccharide and its sulfated derivative from Citrus medica L. var. sarcodactylis. Int J Biol Macromol 2019; 123:500-511. [DOI: 10.1016/j.ijbiomac.2018.11.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
|
23
|
Kpodo F, Agbenorhevi J, Alba K, Smith A, Morris G, Kontogiorgos V. Structure and physicochemical properties of Ghanaian grewia gum. Int J Biol Macromol 2019; 122:866-872. [PMID: 30391588 DOI: 10.1016/j.ijbiomac.2018.10.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 01/07/2023]
|
24
|
Yu Z, Song G, Liu J, Wang J, Zhang P, Chen K. Beneficial effects of extracellular polysaccharide from Rhizopus nigricans on the intestinal immunity of colorectal cancer mice. Int J Biol Macromol 2018; 115:718-726. [DOI: 10.1016/j.ijbiomac.2018.04.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|