1
|
Hemavathy N, Umashankar V, Jeyakanthan J. Unveiling novel type 1 inhibitors for targeting LIM kinase 2 (LIMK2) for cancer therapeutics: An integrative pharmacoinformatics approach. Comput Biol Chem 2025; 115:108289. [PMID: 39631222 DOI: 10.1016/j.compbiolchem.2024.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
LIMK2 is crucial in regulating actin cytoskeleton dynamics, significantly contributing to cancer cell proliferation, invasion, and metastasis. Inhibitors like LIMKi3 effectively suppress LIMK2 kinase activity by directly affecting actin polymerization and preventing the formation of structures like filopodia and lamellipodia, which are typical of motile cancer cells. By modulating these actin dynamics, LIMKi3 inhibits cancer cell migration and invasion, reducing the potential for metastasis. Thus, this study aims to explore potential anti-cancer therapeutic LIMK2 inhibitors with properties resembling LIMKi3. Henceforth, molecular docking was utilized in this study to comprehend the ATP mimetic binding mode of LIMKi3, followed by Pharmacophore-based virtual screening to identify small molecules resembling LIMKi3. In addition, molecular dynamics simulations were performed to explore the dynamic behavior of LIMK2 and potential inhibitors. Further, network analysis and binding free energy calculations were implemented to comprehensively assess the interactions between the compounds and LIMK2. In molecular docking, LIMKi3 demonstrated an ATP mimetic hinge binding mode with hydrogen bonds at Ile408. Among the screened compounds (NCI300395, ChemDiv-8020-2508, and ChemDiv-7997-0024), three displayed "ADRH" pharmacophoric features like LIMKi3, with favorable ADMET properties, higher binding affinity, and significant hydrogen bond interactions at Ile408. LIMK2-inhibitor complexes showed lower RMSD than LIMK2-LIMKi3, indicating higher equilibrium by identified compounds. Protein-drug Complexes exhibited significant inter-domain correlation in N-lobe residues of LIMK2, including conserved β3, αC, and Hinge residues. Binding free energy analysis ranked LIMK2-NCI300395 highest, followed by LIMK2-ChemDiv-7997-0024 and LIMK2-ChemDiv-8020-2508, highlighting their potential as effective LIMK2-targeting compounds. Hence, this study emphasizes LIMKi3's significance and identifies potential candidates (NCI300395, ChemDiv-7997-0024, and ChemDiv-8020-2508) for developing cancer therapeutics targeting LIMK2. These findings open avenues for further investigations into the complex interplay between cytoskeletal dynamics and cancer progression.
Collapse
Affiliation(s)
- Nagarajan Hemavathy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vetrivel Umashankar
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu 630 003, India.
| |
Collapse
|
2
|
Haque A, Alenezi KM, Abdul Rasheed MSM, Rahman MA, Anwar S, Ahamad S, Gupta D. Experimental and theoretical studies on structural changes in the microtubule affinity-regulating kinase 4 (MARK4) protein induced by N-hetarenes: a new class of therapeutic candidates for Alzheimer's disease. Front Med (Lausanne) 2025; 12:1529845. [PMID: 40177269 PMCID: PMC11962044 DOI: 10.3389/fmed.2025.1529845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disorder that progressively affects the cognitive function and memory of the affected person. Unfortunately, only a handful of effective prevention or treatment options are available today. Microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine protein that plays a critical role in regulating microtubule dynamics and facilitating cell division. The dysregulated expression of MARK4 has been associated with a range of diseases, including AD. Methods In this study, we synthesized a series of N-hetarenes via Pd(0)-catalyzed Suzuki-Miyaura cross coupling reaction. All compounds were characterized using multi-spectroscopic techniques and evaluated for their activity against the MARK4 enzyme through ATPase inhibition assays. The experimental data was further supported by computational and quantum chemical calculations. We also computed the drug-likeness, bioavailability, and toxicity (ADME/T) profiles of the compounds. Results Six new 4-(6-(arylpyrimidin-4-yl)piperazine-1-carboximidamides 5-10 were prepared in good yields. ATPase inhibition assay conducted on these compounds demonstrated IC50 values in micromolar range (5.35 ± 0.22 to 16.53 ± 1.71 μM). Among the tested compounds, 4-(6-(p-tolyl)pyrimidin-4-yl)piperazine-1-carboximidamide (5; IC50 = 5.35 ± 0.22 μM) and 4-(6-(benzo[b]thiophen-2-yl)pyrimidin-4-yl)piperazine-1-carboximidamide (9; IC50 = 6.68 ± 0.80 μM) showed the best activity. The binding constant (K), as determined by the fluorescence quenching assay was estimated to be 1.5 ± 0.51 × 105 M-1 for 5 and 1.14 ± 0.26 × 105 M-1 for 9. The results of molecular docking and MD simulation studies against MARK4 (PDB: 5ES1) indicated that compounds were able to bind the ATP binding pocket of the MARK4, leading to its stabilization. Additionally, ADME/T analysis revealed a high degree of drug-likeness of the compounds. Conclusion We demonstrated that 4-(6-(arylpyrimidin-4-yl)piperazine-1-carboximidamides) are a promising class of N-hetarenes for developing next-generation anti-AD drugs. The reported class of compounds inhibited MARK4 activity in-vitro at micromolar concentration by targeting the ATP-binding pocket. These findings provide valuable insights for future drug design.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Hail, Saudi Arabia
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Md. Ataur Rahman
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
3
|
Liu Y, Gong F. Natural Products From Plants Targeting Leptin Resistance for the Future Development of Anti-Obesity Agents. Phytother Res 2025; 39:1174-1189. [PMID: 39754514 DOI: 10.1002/ptr.8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a serious health threat, which has affected 16% of adults globally in 2022 and shows a trend toward youthfulness. Leptin, as a regulator of body weight, can suppress appetite and promote energy expenditure, making it potential in obesity treatment. Nevertheless, with the progress of relevant research, it is worth noting that monotherapy with leptin is not an effective strategy since most obese individuals are hyperleptinemic and resistant to leptin, where high levels of leptin fail to exert its weight-loss effects. Therefore, the potential to unlock the weight-loss properties of leptin using pharmacology to improve resistance has provided a new direction for this field. However, most synthetic medicines have retreated from the market due to their undesirable side effects, while natural products are increasingly sought after for drug development due to their minimal side effects. Indeed, natural products are ideal alternatives to oral synthetic agents since a growing body of research has demonstrated their desirable effects on improving leptin resistance through potential therapeutic targets like the JAK2/STAT3 signaling pathway, protein tyrosine phosphatase 1B, the exchange proteins directly activated by cAMP/Ras-related protein 1 signaling pathway, endoplasmic reticulum stress, pro-opiomelanocortin gene, and leptin levels. This review outlines natural products that can improve leptin resistance by inhibiting or activating these targets and evaluates their efficacy in experiments and human clinical trials, offering insights for the development of anti-obesity agents. However, more high-quality clinical research is necessary to validate these findings, as current clinical evidence is constrained by heterogeneity and small sample sizes.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Hussain A, Jairajpuri DS, Anwar S, Choudhury A, Hawwal MF, Firdous A, Alajmi MF, Hassan MI. Apigenin-mediated MARK4 inhibition: a novel approach in advancing Alzheimer's disease therapeutics. Mol Divers 2025:10.1007/s11030-025-11104-x. [PMID: 39841316 DOI: 10.1007/s11030-025-11104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role. In this study, we focus on Microtubule Affinity-Regulating Kinase 4 (MARK4), a key enzyme implicated in tauopathies associated with AD, as well as in cancer progression. Through in silico analysis, we explore the interaction between apigenin and MARK4, revealing significant structural changes within the kinase domain upon ligand binding. These computational findings were confirmed via experimental assays using purified recombinant MARK4, where apigenin demonstrated potent inhibition with an IC50 value of 2.39 µM. Fluorescence binding assays further confirmed a strong binding affinity (Ka = 108 M-1), indicating that apigenin efficiently occupies the MARK4 active site, thereby suppressing its enzymatic activity. These results position apigenin as a potent inhibitor of MARK4, offering a dual therapeutic advantage-both as an anti-cancer agent and as a neuroprotective compound for the potential treatment of AD. This study opens new avenues for the development of apigenin-based therapeutics targeting kinase dysregulation in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anam Firdous
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
5
|
Xu B, Lin X, Zhao Y, Yin C, Cheng Y, Li X, Li Y. The effect of citral loading and fatty acid distribution on the oleogels: Physicochemical properties and in vitro digestion. Food Chem 2024; 459:140337. [PMID: 38996640 DOI: 10.1016/j.foodchem.2024.140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Oleogels containing bioactive substances such as citral (CT) are used as functional food ingredients. However, little information is available on the influence of different oleogel network structure caused by CT addition and fatty acid distribution on its digestion behavior. Coconut oil, palm oil, high oleic peanut oil, safflower seed oil, and perilla seed oil were used in this study. The results showed that perilla seed oil-CT-based oleogels had the highest oil-holding capacity (99.03 ± 0.3), whereas CT addition higher than 10 wt% could lead to the morphology collapse of oleogels. Physical and thermodynamic analyses revealed that CT could reduce oleogel hardness and higher unsaturated fatty acid content is more likely to form oleogel with stable and tight crystalline network. Moreover, the dense structure of oleogels hinders the contact between oleogels and lipase, thus weakening triglyceride digestion. These findings provide valuable insights into the design of oleogels loading with CT.
Collapse
Affiliation(s)
- Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiujun Lin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China..
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China..
| |
Collapse
|
6
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
7
|
Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1307. [PMID: 39458949 PMCID: PMC11510165 DOI: 10.3390/ph17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development from medicinal plants constitutes an important strategy for finding natural anticancer therapies. While several plant secondary metabolites with potential antitumor activities have been identified, well-defined mechanisms of action remained uncovered. In fact, studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dismissing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics has gained huge interest in cancer research as it facilitates the identification of potential anticancer metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treatment. This holds great promise for investigating the mode of action of target metabolites. Although metabolomics has made significant contributions to drug discovery, research in this area is still ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research, which continues to be a potential technique for the development of anticancer drugs in spite of all the challenges encountered. As well, we provide insights into the essential elements required for performing effective metabolomics analyses.
Collapse
Affiliation(s)
- Ranin Dabbousy
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Rahal
- School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers, 49000 Angers, France;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| |
Collapse
|
8
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
9
|
Anwar S, Khan S, Hussain A, Alajmi MF, Shamsi A, Hassan MI. Investigating Pyruvate Dehydrogenase Kinase 3 Inhibitory Potential of Myricetin Using Integrated Computational and Spectroscopic Approaches. ACS OMEGA 2024; 9:29633-29643. [PMID: 39005765 PMCID: PMC11238318 DOI: 10.1021/acsomega.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Protein kinases are involved in various diseases and currently represent potential targets for drug discovery. These kinases play major roles in regulating the cellular machinery and control growth, homeostasis, and cell signaling. Dysregulation of kinase expression is associated with various disorders such as cancer and neurodegeneration. Pyruvate dehydrogenase kinase 3 (PDK3) is implicated in cancer therapeutics as a potential drug target. In this current study, a molecular docking exhibited a strong binding affinity of myricetin to PDK3. Further, a 100 ns all-atom molecular dynamics (MD) simulation study provided insights into the structural dynamics and stability of the PDK3-myricetin complex, revealing the formation of a stable complex with minimal structural alterations upon ligand binding. Additionally, the actual affinity was ascertained by fluorescence binding studies, and myricetin showed appreciable binding affinity to PDK3. Further, the kinase inhibition assay suggested significant inhibition of PDK3 by myricetin, revealing an excellent inhibitory potential with an IC50 value of 3.3 μM. In conclusion, this study establishes myricetin as a potent PDK3 inhibitor that can be implicated in therapeutic targeting cancer and PDK3-associated diseases. In addition, this study underscores the efficacy of myricetin as a potential lead to drug discovery and provides valuable insights into the inhibition mechanism, enabling advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- South
African Medical Research Council, Vaccines and Infectious Diseases
Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, 4545, Saudi Arabia
| | - Mohamed F. Alajmi
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, 4545, Saudi Arabia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab
Emirates
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
10
|
Alam A, Khan MS, Mathur Y, Sulaimani MN, Farooqui N, Ahmad SF, Nadeem A, Yadav DK, Mohammad T. Structure-based identification of potential inhibitors of ribosomal protein S6 kinase 1, targeting cancer therapy: a combined docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024; 42:5758-5769. [PMID: 37365756 DOI: 10.1080/07391102.2023.2228912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Ribosomal protein S6 kinase 1 (S6K1), commonly known as P70-S6 kinase 1 (p70S6), is a key protein kinase involved in cellular signaling pathways that regulate cell growth, proliferation, and metabolism. Its significant role is reported in the PIK3/mTOR signaling pathway and is associated with various complex diseases, including diabetes, obesity, and different types of cancer. Due to its involvement in various physiological and pathological conditions, S6K1 is considered as an attractive target for drug design and discovery. One way to target S6K1 is by developing small molecule inhibitors that specifically bind to its ATP-binding site, preventing its activation and thus inhibiting downstream signaling pathways necessary for cell growth and survival. In this study, we have conducted a multitier virtual screening of a pool of natural compounds to identify potential S6K1 inhibitors. We performed molecular docking on IMPPAT 2.0 library and selected top hits based on their binding affinity, ligand efficiency, and specificity towards S6K1. The selected hits were further assessed based on different filters of drug-likeliness where two compounds (Hecogenin and Glabrene) were identified as potential leads for S6K1 inhibition. Both compounds showed appreciable affinity, ligand efficiency and specificity towards S6K1 binding pocket, drug-like properties, and stable protein-ligand complexes in molecular dynamics (MD) simulations. Finally, our study has suggested that Hecogenin and Glabrene can be potential S6K1 inhibitors which are presumably implicated in the therapeutic management of associated diseases such as diabetes, obesity, and varying types of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Shahzeb Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Yash Mathur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naqiya Farooqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Ahmed S, Queen A, Irfan I, Siddiqui MN, Abdulhameed Almuqdadi HT, Setia N, Ansari J, Hussain A, Hassan MI, Abid M. Vanillin-Isatin Hybrid-Induced MARK4 Inhibition As a Promising Therapeutic Strategy against Hepatocellular Carcinoma. ACS OMEGA 2024; 9:25945-25959. [PMID: 38911744 PMCID: PMC11190929 DOI: 10.1021/acsomega.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a serine-threonine kinase that phosphorylates microtubule-associated proteins (MAPs) and increases the microtubule dynamics. Due to its direct involvement in initiation, cell division, progression, and cancer metastasis, MARK4 is considered a potential therapeutic target. Here, we designed, synthesized, and characterized vanillin-isatin hybrids and evaluated their MARK4 inhibitory potential. All of the compounds strongly bind to MARK4 and interact closely with the active site residues. Finally, the compound VI-9 was selected for further investigation due to its high binding affinity and strong MARK4 inhibitory potential. Tau-phosphorylation assay has further confirmed that VI-9 significantly reduced the activity of MARK4. Compared with vanillin, VI-9 showed a better binding affinity and MARK4 inhibitory potential. Cell viability assays on human hepatocellular carcinoma (HCC) cell lines C3A and SNU-475 revealed that VI-9 inhibited their growth and proliferation. In addition, these compounds were nontoxic (up to 200 μM) for noncancerous (HEK-293) cells. Interestingly, VI-9 induces apoptosis and decreases the metastatic potential of the C3A and SNU-475 cell lines. The present work opens a newer avenue for vanillin-isatin hybrids and their derivatives in developing MARK4-targeted anticancer therapies.
Collapse
Affiliation(s)
- Sarfraz Ahmed
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Aarfa Queen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Iram Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Naseem Siddiqui
- Department
of Orthopaedics, Indira Gandhi Medical College
& Hospital, Shimla, Himachal Pradesh 171001, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department
of Chemistry, College of Science, Al-Nahrain
University, Baghdad 10070, Iraq
| | - Nisha Setia
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Jaoud Ansari
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
12
|
Hakami MA, Alotaibi BS, Hazazi A, Shafie A, Alsaiari AA, Ashour AA, Anjum F. Identification of potential inhibitors of tropomyosin receptor kinase B targeting CNS-related disorders and cancers. J Biomol Struct Dyn 2024; 42:2965-2975. [PMID: 37184150 DOI: 10.1080/07391102.2023.2212786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
13
|
Alharbi B, Alharethi SH, Al-Soud WA, Ahmed Al-Keridis L, Aljohani AA, Jairajpuri DS, Alshammari N, Adnan M. Exploring the potential of phytochemicals as inhibitors of 3'-phosphoadenosine 5'-phosphosulfate synthase 1 targeting cancer therapy. J Biomol Struct Dyn 2024; 42:3193-3203. [PMID: 37184152 DOI: 10.1080/07391102.2023.2212810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) is an enzyme that critically synthesises the biologically active form of sulfate (PAPS) for all sulfation reactions. The discovery of PAPSS1 as a possible drug target for cancer therapy, specifically in non-small cell lung cancer, has prompted us to investigate potential small-molecule inhibitors of PAPSS1. Here, a structure-based virtual screening method was used to search for phytochemicals in the IMPPAT database to find potential inhibitors of PAPSS1. The primary hits were selected based on their physicochemical, ADMET, and drug-like properties. Then, the binding affinities were calculated and analyzed the interactions to identify safer and more effective hits. The research identified two phytochemicals, Guggulsterone and Corylin, that exhibited significant affinity and specific interaction with the ATP-binding pocket of PAPSS1. Structural observations made by molecular docking were further accompanied by molecular dynamics (MD) simulations and principal component analysis (PCA) to examine the conformational changes and stability of PAPSS1 with the elucidated compounds Guggulsterone and Corylin. MD simulation results suggested that the binding of Guggulsterone and Corylin stabilizes the PAPSS1 structure, leading to fewer conformational changes. This implies that these compounds may be useful in developing PAPSS1 inhibitors for the therapeutic development against non-small cell lung cancer (NSCLC). This study highlights the potential of phytochemicals as PAPSS1 inhibitors and the utility of computational approaches in drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah A Aljohani
- Department of Clinical laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
14
|
Anwar S, Choudhury A, Hussain A, AlAjmi MF, Hassan MI, Islam A. Harnessing memantine in Alzheimer's disease therapy through inhibition of microtubule affinity-regulating kinase: Mechanistic insights. Int J Biol Macromol 2024; 262:130090. [PMID: 38342269 DOI: 10.1016/j.ijbiomac.2024.130090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative disorder that primarily affects memory, thinking, and behavior, eventually leading to severe cognitive impairment. Therapeutic management of AD is urgently needed to improve the quality and lifestyle of patients. Tau phosphorylating kinases are considered attractive therapeutic targets. Microtubule affinity-regulating kinase 4 (MARK4) is directly linked with pathological phosphorylations of tau, highlighting its role in the therapeutic targeting of AD. The current manuscript shows the MARK4 inhibitory effect of Memantine (MEM), a drug used in treating AD. We have performed fluorescence based binding measurements, enzyme inhibition assay, docking and molecular dynamics (MD) simulations to understand the binding of of MARK4 and MEM and subsequent inhibition in the kinase activity. A 100 ns MD simulations provided a detailed analysis of MARK4-MEM complex and the role of potential critical residues in the binding. Finally, this study provides molecular insights into the therapeutic implication of MEM in AD therapeutics. We propose MEM effectively inhibits MARK4, it may be implicated in the development of targeted and efficient treatments for AD.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
15
|
Khan A, Bealy MA, Alharbi B, Khan S, Alharethi SH, Al-Soud WA, Mohammad T, Hassan MI, Alshammari N, Ahmed Al-Keridis L. Discovering potential inhibitors of Raf proto-oncogene serine/threonine kinase 1: a virtual screening approach towards anticancer drug development. J Biomol Struct Dyn 2024; 42:1846-1857. [PMID: 37104027 DOI: 10.1080/07391102.2023.2204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Raf proto-oncogene serine/threonine kinase 1 (RAF1 or c-Raf) is a serine/threonine protein kinase crucial in regulating cell growth, differentiation, and survival. Any disruption or overexpression of RAF1 can result in neoplastic transformation and other disorders such as cardiomyopathy, Noonan syndrome, leopard syndrome, etc. RAF1 has been identified as a potential therapeutic target in drug development against various complex diseases, including cancer, due to its remarkable role in disease progression. Here, we carried out a multitier virtual screening study involving different in-silico approaches to discover potential inhibitors of RAF1. After applying the Lipinski rule of five, we retrieved all phytocompounds from the IMPPAT database based on their physicochemical properties. We performed a molecular docking-based virtual screening and got top hits with the best binding affinity and ligand efficiency. Then we screened out the selected hits using the PAINS filter, ADMET properties, and other druglike features. Eventually, PASS evaluation identifies two phytocompounds, Moracin C and Tectochrysin, with appreciable anti-cancerous properties. Finally, all-atom molecular dynamics simulation (MDS) followed by interaction analysis was performed on the elucidated compounds in complex with RAF1 for 200 ns to investigate their time-evolution dynamics and interaction mechanism. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and Dynamical Cross-Correlation Matrix (DCCM) analyses then followed these results from the simulated trajectories. According to the results, the elucidated compounds stabilize the RAF1 structure and lead to fewer conformational alterations. The results of the current study indicated that Moracin C and Tectochrysin could serve as potential inhibitors of RAF1 after required validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsha Khan
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohamed Ahmed Bealy
- Department of Pathology, College of Medicine, University of Ha'il, Hail, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Shama Khan
- Faculty of Health Science, South Africa Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
16
|
Jairajpuri DS, Khan S, Anwar S, Hussain A, Alajmi MF, Hassan I. Investigating the role of thymol as a promising inhibitor of pyruvate dehydrogenase kinase 3 for targeted cancer therapy. Int J Biol Macromol 2024; 259:129314. [PMID: 38211912 DOI: 10.1016/j.ijbiomac.2024.129314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Protein kinases have emerged as major contributors to various diseases. They are currently exploited as a potential target in drug discovery because they play crucial roles in cell signaling, growth, and regulation. Their dysregulation is associated with inflammatory disorders, cancer, and neurodegenerative diseases. Pyruvate dehydrogenase kinase 3 (PDK3) has become an attractive drug target in cancer therapeutics. In the present study, we investigated the effective role of thymol in PDK3 inhibition due to the high affinity predicted through molecular docking studies. Hence, to better understand this inhibition mechanism, we carried out a 100 ns molecular dynamics (MD) simulation to analyse the dynamics and stability of the PDK3-thymol complex. The PDK3-thymol complex was stable and energetically favourable, with many intramolecular hydrogen bond interactions in the PDK3-thymol complex. Enzyme inhibition assay showed significant inhibition of PDK3 by thymol, revealing potential inhibitory action of thymol towards PDK3 (IC50 = 2.66 μM). In summary, we established thymol as one of the potential inhibitors of PDK3, proposing promising therapeutic implications for severe diseases associated with PDK3 dysregulation. This study further advances our understanding of thymol's therapeutic capabilities and potential role in cancer treatment.
Collapse
Affiliation(s)
- Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
17
|
Alharbi B, Alnajjar LI, Alhassan HH, Khan S, Jawaid T, Abdullaev BS, Alshammari N, Yadav DK, Adnan M, Shamsi A. Identification of mitogen-activated protein kinase 7 inhibitors from natural products: Combined virtual screening and dynamic simulation studies. J Mol Recognit 2024; 37:e3067. [PMID: 37956676 DOI: 10.1002/jmr.3067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Lina I Alnajjar
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Bekhzod S Abdullaev
- Department of Strategic Development, Innovation and Research, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
- Arontier Co., Seoul, Republic of Korea
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
18
|
Hassan MI, Anjum D, Mohammad T, Alam M, Khan MS, Shahwan M, Shamsi A, Yadav DK. Integrated virtual screening and MD simulation study to discover potential inhibitors of Lyn-kinase: targeting cancer therapy. J Biomol Struct Dyn 2023; 41:10558-10568. [PMID: 36495308 DOI: 10.1080/07391102.2022.2154849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Tyrosine-protein kinase Lyn (LynK) has emerged as one of the most attractive therapeutic targets for cancer and diabetes. In this study, we used a multistep virtual screening process of natural compounds to discover potential inhibitors of LynK from the IMPPAT database. The primary filters were based on Lipinski rules, ADMET properties, and PAINS patterns. Then, binding affinities and interaction analyses were carried out for the high-affinity selectivity of the compounds towards LynK. Eventually, two natural compounds, Glabrene and Lactupicrin, were identified with high affinity and specificity for the LynK-binding pocket. Both compounds exhibited drug-like properties, as predicted by ADMET analysis and physicochemical parameters. The molecular dynamics (MD) simulation study revealed that these compounds bind to the ATP-binding pocket of LynK and interact with functionally significant residues with stability without inducing any significant structural changes to the protein. Ultimately, the identified compounds may be regarded as promising LynK inhibitors and can be used as lead molecules in the drug development against LynK-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Darakshan Anjum
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
19
|
Ahmed S, Nadeem M, Hussain I, Fatima S, Anwar S, Rizvi MA, Hassan MI, Tabish M. Preparation of nanoformulation of 5-fluorouracil to improve anticancer efficacy: integrated spectroscopic, docking, and MD simulation approaches. J Biomol Struct Dyn 2023; 42:12523-12536. [PMID: 37850451 DOI: 10.1080/07391102.2023.2270704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Nanoformulations (NFs) can be used as a novel drug delivery system to treat all cancer types. One of the major drawbacks of conventional anticancer drugs is that they have poor specificity and higher toxicity towards normal cells. 5-fluorouracil (5-FU) is a well-studied anticancer drug that has a significant role in various cancers, specifically colorectal cancer therapy. This study was performed to determine the functional groups, particle size, surface charge, heterogeneity, and stability of the NF. The NFs of 5-FU were prepared through the ultrasonication technique by increasing the surfactant (Tween-80) concentrations. Among all three NFs, nanoformulated 5-FU (n5-FU) showed the most effective particle size (10.72 nm) with a zeta potential of (-4.57 mV). The cytotoxicity and apoptosis profiles confirmed that n5-FU enhanced the anticancer effect of the pure drug in HCT-116 cells, as evident from MTT assay, fluorescence microscopy, and FACS analysis. In HCT-116 cells, the IC50 values of pure and n5-FU were obtained as 41.3 μM and 18.8 μM, respectively, indicating that n5-FU was more effective against the cancer cell line. The cellular uptake study was performed to check the intake of NF in cancer cells. However, the microtubule-affinity regulating kinase-4 (MARK-4), a cancer-target protein, was purified to study the inhibition and interaction studies. The inhibition assay confirmed the inhibitory potential of 5-FU against MARK-4 protein. the multi-spectroscopic, molecular docking and MD simulation studies were performed to analyse the conformational changes, binding studies, intermolecular interactions, and stability of MARK-4 protein upon binding 5-FU. This demonstrates that NF can enhance the effectiveness of anticancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Masood Nadeem
- Department of Biosciences, Jamia Milia Islamia, New Delhi, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saleha Anwar
- Center for Interdisciplinary Research in Basic Sciences, Jamia Milia Islamia, New Delhi, India
| | | | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Milia Islamia, New Delhi, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
20
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
21
|
Alotaibi BS. Targeting Filamenting temperature-sensitive mutant Z (FtsZ) with bioactive phytoconstituents: An emerging strategy for antibacterial therapy. PLoS One 2023; 18:e0290852. [PMID: 37647309 PMCID: PMC10468062 DOI: 10.1371/journal.pone.0290852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The rise and widespread occurrence of bacterial resistance has created an evident need for novel antibacterial drugs. Filamenting temperature-sensitive mutant Z (FtsZ) is a crucial bacterial protein that forms a ring-like structure known as the Z-ring, playing a significant role in cell division. Targeting FtsZ is an effective approach for developing antibiotics that disrupt bacterial cell division and halt growth. This study aimed to use a virtual screening approach to search for bioactive phytoconstituents with the potential to inhibit FtsZ. The screening process proceeded with the filtering compounds from the IMPPAT library of phytochemicals based on their physicochemical properties using the Lipinski rule of five. This was followed by molecular docking, Pan-assay interference compounds (PAINS) filter, absorption, distribution, metabolism, excretion, and toxicity (ADMET), prediction of activity spectra for biologically active substances (PASS), and molecular dynamics (MD) simulations. These filters ensured that any adverse effects that could impede the identification of potential inhibitors of FtsZ were eliminated. Following this, two phytocompounds, Withaperuvin C and Trifolirhizin, were selected after the screening, demonstrating noteworthy binding potential with FtsZ's GTP binding pocket, acting as potent GTP-competitive inhibitors of FtsZ. The study suggested that these compounds could be further investigated for developing a novel class of antibiotics after required studies.
Collapse
Affiliation(s)
- Bader Saud Alotaibi
- Department of Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Saudi Arabia
| |
Collapse
|
22
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds: Mechanisms and Prospects for Future Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:1086. [PMID: 37631000 PMCID: PMC10458506 DOI: 10.3390/ph16081086] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people each year. Fortunately, the last decades have been marked by considerable advances in the field of cancer therapy. Researchers have discovered many natural substances, some of which are isolated from plants that have promising anti-tumor activity. Among these, essential oils (EOs) and their constituents have been widely studied and shown potent anticancer activities, both in vitro and in vivo. However, despite the promising results, the precise mechanisms of action of EOs and their bioactive compounds are still poorly understood. Further research is needed to better understand these mechanisms, as well as their effectiveness and safety in use. Furthermore, the use of EOs as anticancer drugs is complex, as it requires absolute pharmacodynamic specificity and selectivity, as well as an appropriate formulation for effective administration. In this study, we present a synthesis of recent work on the mechanisms of anticancer action of EOs and their bioactive compounds, examining the results of various in vitro and in vivo studies. We also review future research prospects in this exciting field, as well as potential implications for the development of new cancer drugs.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
23
|
Anwar S, Mohammad T, Azhar MK, Fatima H, Alam A, Hasan GM, Islam A, Kaur P, Hassan MI. Investigating MARK4 inhibitory potential of Bacopaside II: Targeting Alzheimer's disease. Int J Biol Macromol 2023:125364. [PMID: 37315665 DOI: 10.1016/j.ijbiomac.2023.125364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) is known to hyperphosphorylate tau protein, which subsequently causes Alzheimer's disease (AD). MARK4 is a well-validated drug target for AD; thus, we employed its structural features to discover potential inhibitors. On the other hand, complementary and alternative medicines (CAMs) have been used for the treatment of numerous diseases with little side effects. In this regard, Bacopa monnieri extracts have been extensively used to treat neurological disorders because of their neuroprotective roles. The plant extract is used as a memory enhancer and a brain tonic. Bacopaside II is a major component of Bacopa monnieri; thus, we studied its inhibitory effects and binding affinity towards the MARK4. Bacopaside II show a considerable binding affinity for MARK4 (K = 107 M-1) and inhibited kinase activity with an IC50 value of 5.4 μM. To get atomistic insights into the binding mechanism, we performed Molecular dynamics (MD) simulation studies for 100 ns. Bacopaside II binds strongly to the active site pocket residues of MARK4 and a number of hydrogen bonds remain stable throughout the MD trajectory. Our findings provide the basis for the therapeutic implication of Bacopaside and its derivatives in MARK4-related neurodegenerative diseases, especially AD and neuroinflammation.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Hera Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
24
|
Ahmed Atto Al-Shuaeeb R, Abd El-Mageed HR, Ahmed S, Mohamed HS, Hamza ZS, Rafi MO, Ahmad I, Patel H. In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: computer-aided drug design perspective. J Biomol Struct Dyn 2023; 41:14484-14496. [PMID: 37184133 DOI: 10.1080/07391102.2023.2212778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) has been proposed as a potential therapeutic target for diabetes, cancer, and neurological diseases. We used a variety of computational studies techniques to examine the binding affinity and MARK4 inhibitory potential of several isoquinoline alkaloids. MARK4 has been associated with tau protein phosphorylation and, consequently, Alzheimer's disease. The three molecules with the highest binding affinities inside the 5ES1 receptor, according to molecular docking experiments, are isoliensinine, liensinine, and methylcorypalline. Isoliensinine had the highest drug score and drug likeness, coming in at 1.17, while Liensinine and Methylcorypalline came in at 1.15 and 1.07, respectively. The thesis claims that three compounds have a better chance than the others of being identified as therapeutic leads. The bulk of the compounds under investigation didn't break any of Lipinski's five rules, especially methylcorypalline, which did and is probably orally active. The majority of the compounds under investigation, particularly Isoliensinine, Liensinine, and Methylcorypalline, show the potential to exhibit drug-like behaviour, which is strongly confirmed by ADMET characteristics estimates. The chemicals Isoliensinine, Liensinine, and Methylcorypalline, especially Methylcorypalline, form the most stable combination with the 5ES1, according to a 100 ns molecular dynamics simulation of these compounds docked inside 5ES1 complexes. Methylcorypalline has a higher binding affinity inside 5ES1, according to additional MM/GBSA experiments using MD trajectories. Overall, research supports the use of the drug development tool methylcolipalin for its ability to inhibit MARK4, which may have implications for the treatment of neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - H R Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Shimaa Ahmed
- Department of chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Zeinab S Hamza
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
25
|
Elfaki EM, Alhassan HH, Kamal M, Al-Enazi MM, Rub MA, Asiri AM, Ali M, Marwani HM, Alharethi SH, Alotaibi MM, Azum N. Identifying bioactive phytoconstituents as C-terminal Src kinase inhibitors: a virtual screening and molecular simulation approach. J Biomol Struct Dyn 2023; 41:13415-13424. [PMID: 36752377 DOI: 10.1080/07391102.2023.2176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
Tyrosine-protein kinase CSK otherwise known as C-terminal Src kinase (CSK), is involved in multiple pathways and processes, including regulating cell growth, differentiation, migration, and immune responses. Altered expression of CSK has been associated with various complexities, including cancer, CD45 deficiency, Osteopetrosis and lupus erythematosus. Important auxiliary roles of CSK in cancer progression make it a crucial target in developing novel anticancer therapy. Thus, CSK inhibitors are of concern as potent immuno-oncology agents. In this perspective, phytochemicals can be a significant source for unraveling novel CSK inhibitors. In this study, we carried out a systematic structure-based virtual screening of bioactive phytoconstituents against CSK to identify its potential inhibitors. After a multi-step screening process, two hits (Shinpterocarpin and Justicidin B) were selected based on their druglike properties and binding affinity towards CSK. The selected hits were further analyzed for their stability and interaction via all-atom molecular dynamics (MD) simulations. The selected hits indicated their potential as selective binding partners of CSK, which can further be used for therapeutic development against CSK-associated malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Qurayyat, Jouf University, Qurayyat, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maher M Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maroof Ali
- Chemistry Department, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Maha Moteb Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Verma AK, Ahmed SF, Hossain MS, Bhojiya AA, Upadhyay SK, Srivastava AK, Singh N, Harina H, Rahaman MM, Bahadur NM. Unlocking SGK1 inhibitor potential of bis-[1-N,7-N, pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compounds: a computational study. J Biomol Struct Dyn 2022; 40:13412-13431. [PMID: 34696688 DOI: 10.1080/07391102.2021.1988711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SGK1 (Serum and Glucocorticoid Regulated Kinase 1), a serine/threonine kinase that is activated by various stimuli, including serum and glucocorticoids. It controls inflammation, apoptosis, hormone release, neuro-excitability and cell proliferation, all of which play an important role in cancer progression and metastasis. SGK1 was recently proposed as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In this study, molecular docking, physiochemical, toxicological properties and molecular dynamic simulation of the Bis-[1-N,7-N, Pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compoundsand reference EMD638683 against new SGK1 target protein. Compared to the reference inhibitor EMD638683, we choose the best compounds (series 2-6) based on the binding energy (in the range from -11.0 to -10.6 kcal/mol). With the exception of compounds 2 and 6, none of the compounds posed a risk for AMES toxicity or carcinogenicity due to their toxicological properties. 100 ns MD simulation accompanied by MM/PBSA energy calculations and PCA. According to MD simulation results, the binding of compounds 3, 4 and 5 stabilizes the SGK1 structure and causes febrile conformational changes compared to EMD638683. As a result of this research, the final selected compounds 3, 4 and 5 can be used as scaffolds to develop promising SGK1 inhibitors for the treatment of related diseases such as cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Sk Faisal Ahmed
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Ali Asger Bhojiya
- Faculty of Agriculture and Veterinary Sciences, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, India
| | | | - Nripendra Singh
- Department of Pharmacy, V.B.S, Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Harina Harina
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | | | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| |
Collapse
|
27
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:5482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
28
|
Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer's disease. Int J Biol Macromol 2022; 224:188-195. [DOI: 10.1016/j.ijbiomac.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
29
|
Fatima U, Roy S, Ahmad S, Al-Keridis LA, Alshammari N, Adnan M, Islam A, Hassan MI. Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications. Biomed Pharmacother 2022; 153:113469. [DOI: 10.1016/j.biopha.2022.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
|
30
|
Alotaibi BS, Joshi J, Hasan MR, Khan MS, Alharethi SH, Mohammad T, Alhumaydhi FA, Elasbali AM, Hassan MI. Identifying Isoononin and Candidissiol as Rho-associated protein kinase 1 (ROCK1) inhibitors: a combined virtual screening and MD simulation approach. J Biomol Struct Dyn 2022:1-10. [DOI: 10.1080/07391102.2022.2111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Bader Saud Alotaibi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Jatin Joshi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Raghibul Hasan
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
31
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
32
|
Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. PHYTOCHEMISTRY 2022; 200:113213. [PMID: 35472482 DOI: 10.1016/j.phytochem.2022.113213] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Rishi Sharma
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
33
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
34
|
Xue B, Chaddha M, Elasbali AM, Zhu Z, Jairajpuri DS, Alhumaydhi FA, Mohammad T, Abdulmonem WA, Sharaf SE, Hassan MI. Death-Associated Protein Kinase 3 Inhibitors Identified by Virtual Screening for Drug Discovery in Cancer and Hypertension. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:404-413. [PMID: 35759452 DOI: 10.1089/omi.2022.0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Death-associated protein kinase 3 (DAPK3) is a serine/threonine protein kinase that regulates apoptosis, autophagy, transcription, and actin cytoskeleton reorganization. DAPK3 induces morphological alterations in apoptosis when overexpressed, and it is considered a potential drug target in antihypertensive and anticancer drug development. In this article, we report new findings from a structure-guided virtual screening for discovery of phytochemicals that could modulate the elevated expression of DAPK3, and with an eye to anticancer drug discovery. We used the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT), a curated database, as part of the methodology. The potential initial hits were identified based on their physicochemical properties and binding affinity toward DAPK3. Subsequently, various filters for drug likeness followed by interaction analysis and molecular dynamics (MD) simulations for 100 nsec were performed to explore the conformational sampling and stability of DAPK3 with the candidate molecules. Notably, the data from all-atom MD simulations and principal component analysis suggested that DAPK3 forms stable complexes with ketanserin and rotenone. In conclusion, this study supports the idea that ketanserin and rotenone bind to DAPK3, and show stability, which can be further explored as promising scaffolds in drug development and therapeutics innovation in clinical contexts such as hypertension and various types of cancer.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Muskan Chaddha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Zhixin Zhu
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudia Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University, Makkah, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
35
|
Adnan M, Jairajpuri DS, Chaddha M, Khan MS, Yadav DK, Mohammad T, Elasbali AM, Abu Al-Soud W, Hussain Alharethi S, Hassan MI. Discovering Tuberosin and Villosol as Potent and Selective Inhibitors of AKT1 for Therapeutic Targeting of Oral Squamous Cell Carcinoma. J Pers Med 2022; 12:jpm12071083. [PMID: 35887580 PMCID: PMC9322152 DOI: 10.3390/jpm12071083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major cause of death in developing countries because of high tobacco consumption. RAC-alpha serine-threonine kinase (AKT1) is considered as an attractive drug target because its prolonged activation and overexpression are associated with cancer progression and metastasis. In addition, several AKT1 inhibitors are being developed to control OSCC and other associated forms of cancers. We performed a screening of the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database to discover promising AKT1 inhibitors which pass through various important filters such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, physicochemical properties, PAINS (pan-assay interference compounds) filters, PASS (prediction of activity spectra for substances) analysis, and specific interactions with AKT1. Molecules bearing admirable binding affinity and specificity towards AKT1 were selected for further analysis. Initially, we identified 30 natural compounds bearing appreciable affinity and specific interaction with AKT1. Finally, tuberosin and villosol were selected as potent and selective AKT1 inhibitors. To obtain deeper insights into binding mechanism and selectivity, we performed an all-atom molecular dynamics (MD) simulation and principal component analysis (PCA). We observed that both tuberosin and villosol strongly bind to AKT1, and their complexes were stable throughout the simulation trajectories. Our in-depth structure analysis suggested that tuberosin and villosol could be further exploited in the therapeutic targeting of OSCC and other cancers after further clinical validations.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Bahrain;
| | - Muskan Chaddha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
- Health Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66252, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
36
|
A Narrative Review of the Antitumor Activity of Monoterpenes from Essential Oils: An Update. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6317201. [PMID: 35655488 PMCID: PMC9155973 DOI: 10.1155/2022/6317201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Monoterpenes are a group of natural products that have been widely studied due to their therapeutic potential against various pathologies. These compounds are abundant in the chemical composition of essential oils. Cancer is a term that covers more than 100 different types of malignant diseases and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options applicable to cancer is urgent. In this review, studies on the antitumor activity of monoterpenes found in essential oils were selected, and botanical, chemical, and pharmacological aspects were discussed. The most investigated monoterpenes were carvacrol and linalool with highly significant in vitro and in vivo tumor inhibition in several types of cancers. The action mechanisms of these natural products are also presented and are wildly varied being apoptosis the most prevalent followed by cell cycle impairment, ROS production, autophagy, necroptosis, and others. The studies reported here confirm the antitumor properties of monoterpenes and their anticancer potential against various types of tumors, as demonstrated in in vitro and in vivo studies using various types of cancer cells and tumors in animal models. The data described serve as a reference for the advancement in the mechanistic studies of these compounds and in the preparation of synthetic derivatives or analogues with a better antitumor profile.
Collapse
|
37
|
Yang C, Alam A, Alhumaydhi FA, Khan MS, Alsagaby SA, Al Abdulmonem W, Hassan MI, Shamsi A, Bano B, Yadav DK. Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103060. [PMID: 35630545 PMCID: PMC9147520 DOI: 10.3390/molecules27103060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Tyrosine-protein kinase Yes (YES1) belongs to the Tyrosine-protein kinase family and is involved in several biological activities, including cell survival, cell–cell adhesion, cell differentiation, and cytoskeleton remodeling. It is highly expressed in esophageal, lung, and bladder cancers, and thus considered as an attractive drug target for cancer therapy. In this study, we performed a virtual screening of phytoconstituents from the IMPPAT database to identify potential inhibitors of YES1. Initially, the molecules were retrieved on their physicochemical properties following the Lipinski rule of five. Then binding affinities calculation, PAINS filter, ADMET, and PASS analyses followed by an interaction analysis to select safe and clinically better hits. Finally, two compounds, Glabrene and Lupinisoflavone C (LIC), with appreciable affinities and a specific interaction towards the AlphaFold predicted structure of YES1, were identified. Their time-evolution analyses were carried out using an all-atom molecular dynamics (MD) simulation, principal component analysis, and free energy landscapes. Altogether, we propose that Glabrene and LIC can be further explored in clinical settings to develop anticancer therapeutics targeting YES1 kinase.
Collapse
Affiliation(s)
- Chunmin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China;
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 52571, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.I.H.); (A.S.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.I.H.); (A.S.)
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bilqees Bano
- Department of Biochemistry, f/O Life Science, Aligarh Muslim University, Aligarh 202002, India
- Correspondence: (B.B.); (D.K.Y.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (B.B.); (D.K.Y.)
| |
Collapse
|
38
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
39
|
Khan FI, Rehman MT, Sameena F, Hussain T, AlAjmi MF, Lai D, Khan MKA. Investigating the binding mechanism of topiramate with bovine serum albumin using spectroscopic and computational methods. J Mol Recognit 2022; 35:e2958. [PMID: 35347772 DOI: 10.1002/jmr.2958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
Various spectroscopic techniques involving fluorescence spectroscopy, circular dichroism (CD), and computational approaches were used to elucidate the molecular aspects of interaction between the antiepileptic drug topiramate and the multifunctional transport protein bovine serum albumin (BSA) under physiological conditions. Topiramate quenched BSA fluorescence in a static quenching mode, according to the Stern-Volmer quenching constant (Ksv ) data derived from fluorescence spectroscopy for the topiramate-BSA complex. The binding constant was also used to calculate the binding affinity for the topiramate-BSA interaction. Fluorescence and circular dichroism experiments demonstrate that the protein's tertiary structure is affected by the microenvironmental alterations generated by topiramate binding to BSA. To establish the exact binding site, interacting residues, and interaction forces involved in the binding of topiramate to BSA, molecular modeling and simulation approaches were used. According to the MMPBSA calculations, the average binding energy between topiramate and BSA is -421.05 kJ/mol. Topiramate was discovered to have substantial interactions with BSA, changing the structural dynamic and Gibbs free energy landscape patterns.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Fathima Sameena
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and technology, GST Road, Vandalur, Chennai
| | - Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid Alam Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and technology, GST Road, Vandalur, Chennai
| |
Collapse
|
40
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
41
|
Taghvaei S, Minuchehr Z, Sabouni F. Computational drug repurposing of bethanidine for SENP1 inhibition in cardiovascular diseases treatment. Life Sci 2022; 292:120122. [PMID: 34748762 DOI: 10.1016/j.lfs.2021.120122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
AIMS Bethanidine (BW467C60) is a newly presented strong adrenergic neuron blocking factor which has a hypotensive operation in man. SENPs are essential for maintaining a balance between SUMOylation and deSUMOylation which can be disturbed by changing the expression of (sentrin-specific proteases) SENPs. SENP1 is the most studied isoform of SENPs. Hypertrophic stimuli can increase SENP1 expression using calcium/calcineurin-NFAT3 signaling in heart. Moreover, SENP1 expression may positively relate to the expression of mitochondrial genes of the heart, and can cause the heart and mitochondrial dysfunction. MATERIALS AND METHODS In order to inhibit SENP1 using Bethanidine, molecular docking and molecular dynamics (MD) simulation of SENP1 with Bethanidine were performed. Molecular docking showed that Bethanidine can inhibit SENP1. KEY FINDINGS MD Simulation showed that Bethanidine constitutes a stable complex with SENP1 as was evident from RMSD, RMSF, H-bond and DSSP plots. Free binding energy and the interaction patterns were obtained from molecular docking, and MD trajectory exhibited Bethanidine can be a potential drug candidate for SENP1 inhibition. SIGNIFICANCE This study supplies enough evidences that Bethanidine is a potential inhibitor of SENP1 and can be applied for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
42
|
Shamsi A, DasGupta D, Alhumaydhi FA, Khan MS, Alsagaby SA, Al Abdulmonem W, Hassan MI, Yadav DK. Inhibition of MARK4 by serotonin is an attractive therapeutic approach to combat Alzheimer’s disease and neuroinflammation. RSC Med Chem 2022; 13:737-745. [PMID: 35814926 PMCID: PMC9215163 DOI: 10.1039/d2md00053a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) govern various cellular programs and crucial intermediate pathways in signaling. Microtubule affinity-regulating kinase 4 (MARK4) is a part of the kinase family recognized for actively...
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University United Arab Emirates
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan 428 Church Street Ann Arbor Michigan 48109 USA
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University Buraydah Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University Majmaah 11932 Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University Buraydah Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science Hambakmoeiro, Yeonsu-gu Incheon 21924 South Korea
| |
Collapse
|
43
|
Anjum F, Sulaimani MN, Shafie A, Mohammad T, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Alsagaby SA, Yadav DK, Hassan MI. Bioactive phytoconstituents as potent inhibitors of casein kinase-2: dual implications in cancer and COVID-19 therapeutics. RSC Adv 2022; 12:7872-7882. [PMID: 35424745 PMCID: PMC8982221 DOI: 10.1039/d1ra09339h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a conserved serine/threonine-protein kinase involved in hematopoietic cell survival, cell cycle control, DNA repair, and other cellular processes. It plays a significant role in cancer progression and viral infection. CK2 is considered a potential drug target in cancers and COVID-19 therapy. In this study, we have performed a virtual screening of phytoconstituents from the IMPPAT database to identify some potential inhibitors of CK2. The initial filter was the physicochemical properties of the molecules following the Lipinski rule of five. Then binding affinity calculation, PAINS filter, ADMET, and PASS analyses followed by interaction analysis were carried out to discover nontoxic and better hits. Finally, two compounds, stylopine and dehydroevodiamines with appreciable affinity and specific interaction towards CK2, were identified. Their time-evolution analyses were carried out using all-atom molecular dynamics simulation, principal component analysis and free energy landscape. Altogether, we propose that stylopine and dehydroevodiamines can be further explored in in vitro and in vivo settings to develop anticancer and antiviral therapeutics. Showing protein–ligands interactions, electrostatic potential of CK2 bound to selected compounds, free energy landscapes of CK2-stylopine, and CK2-dehydroevodiamines complexes.![]()
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia 21589
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
44
|
Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, Kurjak D, Shahid M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants (Basel) 2021; 11:20. [PMID: 35052524 PMCID: PMC8773226 DOI: 10.3390/antiox11010020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, ISPA-CNR, National Research Council of Italy, Via Monteroni km 7, 73100 Lecce, Italy
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK;
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Mohd Shahid
- Department of Microbiology, Immunology & Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Road 2904 Building 293 Manama, 329, Bahrain;
| |
Collapse
|
45
|
Waseem R, Anwar S, Khan S, Shamsi A, Hassan MI, Anjum F, Shafie A, Islam A, Yadav DK. MAP/Microtubule Affinity Regulating Kinase 4 Inhibitory Potential of Irisin: A New Therapeutic Strategy to Combat Cancer and Alzheimer's Disease. Int J Mol Sci 2021; 22:10986. [PMID: 34681645 PMCID: PMC8537121 DOI: 10.3390/ijms222010986] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Irisin is a clinically significant protein playing a valuable role in regulating various diseases. Irisin attenuates synaptic and memory dysfunction, highlighting its importance in Alzheimer's disease. On the other hand, Microtubule Affinity Regulating Kinase 4 (MARK4) is associated with various cancer types, uncontrolled neuronal migrations, and disrupted microtubule dynamics. In addition, MARK4 has been explored as a potential drug target for cancer and Alzheimer's disease therapy. Here, we studied the binding and subsequent inhibition of MARK4 by irisin. Irisin binds to MARK4 with an admirable affinity (K = 0.8 × 107 M-1), subsequently inhibiting its activity (IC50 = 2.71 µm). In vitro studies were further validated by docking and simulations. Molecular docking revealed several hydrogen bonds between irisin and MARK4, including critical residues, Lys38, Val40, and Ser134. Furthermore, the molecular dynamic simulation showed that the binding of irisin resulted in enhanced stability of MARK4. This study provides a rationale to use irisin as a therapeutic agent to treat MARK4-associated diseases.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa;
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (R.W.); (S.A.); (A.S.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| |
Collapse
|
46
|
Alam S, Mohammad T, Padder RA, Hassan MI, Husain M. Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade. J Cell Biochem 2021; 123:259-274. [PMID: 34636440 DOI: 10.1002/jcb.30162] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
The treatments available for non-small cell lung cancer exert various side effects in patients, and the burden of treatment cost is high. Therefore, exploring the alternative system of medicines, including therapies based on natural compounds, has become inevitable in developing anticancer therapeutics. This study used an integrated approach involving in-silico and in-vitro methods to explore natural compounds targeting Bax and Bcl2 for their apoptotic potential. Molecular docking followed by molecular dynamics (MD) simulation of thymoquinone (Tq) and quercetin (Qu) with Bax and Bcl2 were carried out to explore their interactions and stability under explicit solvent conditions. Tq and Qu showed appreciable binding affinities toward Bax (-6.2 and -7.1 kcal/mol, respectively) and Bcl2 (-5.6 and -6.4 kcal/mol, respectively) with well-organized conformational fitting compatibility. The MD simulation results revealed the development of stable complexes maintained by various noncovalent interactions that were preserved throughout the 100 ns trajectories. Further studies with these compounds were carried out using various in-vitro experimental approaches like MTT assay, apoptotic assay, and Western blot. IC50 values of Tq and Qu alone in A549 cells were found to be 45.78 and 35.69 µM, while in combination, it comes down to 22.49 µM, which is quite impressive. Similarly, in apoptosis assay, a combination of Tq and Qu shows 50.9% early apoptosis compared to Tq (40.6%) and Qu (33.3%) when taken alone. These assays signify their apoptotic induction potential, whereas both compounds significantly reduce the expression of antiapoptotic protein Bcl2 and induce proapoptotic Bax, suggestive of sensitizing NSCLS cells toward apoptosis.
Collapse
Affiliation(s)
- Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rayees A Padder
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
47
|
Anjum F, Ali F, Mohammad T, Shafie A, Akhtar O, Abdullaev B, Hassan I. Discovery of Natural Compounds as Potential Inhibitors of Human Carbonic Anhydrase II: An Integrated Virtual Screening, Docking, and Molecular Dynamics Simulation Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:513-524. [PMID: 34255561 DOI: 10.1089/omi.2021.0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbonic anhydrase II (CAII) is one of the zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide, leading to the formation of bicarbonate and proton. CAII plays a significant role in health and disease. For example, CAII helps to maintain eye pressure while regulating the pH of the tumor microenvironment, and by extension, contributing to cancer progression. Owing to its remarkable role in cancer, visual health, and other human diseases, CAII can serve as an attractive therapeutic target. We report an original study based on high-throughput virtual screening of natural compounds from the ZINC database in search of potential inhibitors of CAII. We selected the hits based on the physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, pan-assay interference compound (PAINS) patterns, and interaction analysis. Importantly, two natural compounds were identified, ZINC08918123 and ZINC00952700, bearing considerable affinity and specific interactions to the residues of the CAII-binding pocket with well-organized conformational fitting compatibility. We investigated the conformational dynamics of CAII in complex with the identified compounds through molecular dynamics simulation, which revealed the formation of a stable complex preserved throughout the 100 ns trajectories. The stability of the protein/ligand complexes is maintained by significant numbers of noncovalent interactions throughout the simulations. In conclusion, natural compounds identified in the present study specifically and computer-assisted drug design broadly offer a reliable resource and strategy to discover potential promising therapeutic inhibitors of CAII to cure various cancers and glaucoma after further experimental validation and clinical studies.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fatima Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Omar Akhtar
- Department of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
48
|
Khan FI, Kang T, Ali H, Lai D. Remdesivir Strongly Binds to RNA-Dependent RNA Polymerase, Membrane Protein, and Main Protease of SARS-CoV-2: Indication From Molecular Modeling and Simulations. Front Pharmacol 2021; 12:710778. [PMID: 34305617 PMCID: PMC8293383 DOI: 10.3389/fphar.2021.710778] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Development of new drugs is a time-taking and expensive process. Comprehensive efforts are being made globally toward the search of therapeutics against SARS-CoV-2. Several drugs such as remdesivir, favipiravir, ritonavir, and lopinavir have been included in the treatment regimen and shown effective results in several cases. Among the existing broad-spectrum antiviral drugs, remdesivir is found to be more effective against SARS-CoV-2. Remdesivir has broad-spectrum antiviral action against many single-stranded RNA viruses including pathogenic SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). In this study, we proposed that remdesivir strongly binds to membrane protein (Mprotein), RNA-dependent RNA polymerase (RDRP), and main protease (Mprotease) of SARS-CoV-2. It might show antiviral activity by inhibiting more than one target. It has been found that remdesivir binds to Mprotease, Mprotein, and RDRP with -7.8, -7.4, and -7.1 kcal/mol, respectively. The structure dynamics study suggested that binding of remdesivir leads to unfolding of RDRP. It has been found that strong binding of remdesivir to Mprotein leads to decrease in structural deviations and gyrations. Additionally, the average solvent-accessible surface area of Mprotein decreases from 127.17 to 112.12 nm2, respectively. Furthermore, the eigenvalues and the trace of the covariance matrix were found to be low in case of Mprotease-remdesivir, Mprotein-remdesivir, and RDRP-remdesivir. Binding of remdesivir to Mprotease, Mprotein, and RDRP reduces the average motions in protein due to its strong binding. The MMPBSA calculations also suggested that remdesivir has strong binding affinity with Mprotein, Mprotease, and RDRP. The detailed analysis suggested that remdesivir has more than one target of SARS-CoV-2.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tongzhou Kang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Haider Ali
- Faculty of Medicine, International Ala-Too University, Bishkek, Kyrgyzstan
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
49
|
Abu-Serie MM, Andrade F, Cámara-Sánchez P, Seras-Franzoso J, Rafael D, Díaz-Riascos ZV, Gener P, Abasolo I, Schwartz S. Pluronic F127 micelles improve the stability and enhance the anticancer stem cell efficacy of citral in breast cancer. Nanomedicine (Lond) 2021; 16:1471-1485. [PMID: 34160295 DOI: 10.2217/nnm-2021-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Improving the stability and anti-cancer stem cell (CSC) activity of citral, a natural ALDH1A inhibitor. Materials & methods: Citral-loaded micelles (CLM) were obtained using Pluronic® F127 and its efficacy tested on the growth of four breast cancer cell lines. The impact of the CLM on the growth and functional hallmarks of breast CSCs were also evaluated using mammosphere and CSC reporter cell lines. Results: CLM improved the stability and growth inhibitory effects of citral. Importantly, CLM fully blocking the stemness features of CSCs (self-renewal, differentiation and migration) and in combination with paclitaxel CLM sensitized breast cancer cells to the chemotherapy. Conclusion: Targeting CSCs with CLM could improve the treatment of advanced breast cancer in combination with the standard chemotherapy.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt
| | - Fernanda Andrade
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain.,Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Diana Rafael
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Zamira V Díaz-Riascos
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain.,Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Petra Gener
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain.,Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| |
Collapse
|
50
|
Anwar S, Khan S, Shamsi A, Anjum F, Shafie A, Islam A, Ahmad F, Hassan MI. Structure-based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases. J Cell Biochem 2021; 122:1445-1459. [PMID: 34121218 DOI: 10.1002/jcb.30022] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of serine/threonine kinase family and considered an attractive drug target for many diseases. Screening of Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) using virtual high-throughput screening coupled with enzyme assay suggested that Naringenin (NAG) could be a potent inhibitor of MARK4. Structure-based molecular docking analysis showed that NAG binds to the critical residues found in the active site pocket of MARK4. Furthermore, molecular dynamics (MD) simulation studies for 100 ns have delineated the binding mechanism of NAG to MARK4. Results of MD simulation suggested that binding of NAG further stabilizes the structure of MARK4 by forming a stable complex. In addition, no significant conformational change in the MARK4 structure was observed. Fluorescence binding and isothermal titration calorimetric measurements revealed an excellent binding affinity of NAG to MARK4 with a binding constant (K) = 0.13 × 106 M-1 obtained from fluorescence binding studies. Further, enzyme inhibition studies showed that NAG has an admirable IC50 value of 4.11 µM for MARK4. Together, these findings suggest that NAG could be an effective MARK4 inhibitor that can potentially be used to treat cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|