1
|
Wang M, Zheng X, Bian X, Ren J, Bai L, Yao Y, Dong B, Zhao G. Bacillus licheniformis and Wickerhamiella versatilis: Sources of the pleasant smoky and fruity flavors of soybean paste. Food Chem 2025; 477:143218. [PMID: 40088753 DOI: 10.1016/j.foodchem.2025.143218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
4-Vinylguaiacol (4-VG) and 4-Ethylguaiacol (4-EG) are key aromatic compounds that contribute to the characteristic smoky and soy-like aromas of soybean paste, thereby influencing its overall flavor. 4-EG in soybean paste reached 13.76 mg/kg through the inoculation of two bacterial strains: Bacillus licheniformis, which promotes the production of 4-VG, and Wickerhamiella versatilis, which enhances the generation of 4-EG. The results indicated that the 4-VG produced by Bacillus licheniformis during fermentation can be converted into 4-EG by Wickerhamiella versatilis. Furthermore, Wickerhamiella versatilis promoted the development of ethyl ester flavors, which added sweet and fruity compounds to the soybean paste. Notably, the levels of alcohols and esters increased by 59 and 22 times, respectively, while the organic acid concentration increased by 1.5 times. This study underscored that both B. licheniformis and W. versatilis significantly enhance appealing smoky and fruity flavors through the production of 4-EG and aromatic compounds.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuelian Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkai Bian
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingwei Ren
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lulu Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Feng X, Zhang H, Qayum A, Meng H, Zhu C. Characteristics and functional properties of soybean peptides-Hawthorn pectin Maillard conjugates synthesized/obtained under controlled temperature conditions. Int J Biol Macromol 2025; 309:143232. [PMID: 40246115 DOI: 10.1016/j.ijbiomac.2025.143232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
In the study, soybean peptide-Hawthorn pectin Maillard conjugates (SBP-HP-MC) were first obtained through the Maillard reaction at different temperature (50 °C, 70 °C, 90 °C) and were investigated using a series of characterization methods. UV, Intrinsic fluorescence, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FT-IR) analyses confirmed that SBP and hawthorn pectin (HP) formed high-molecular-weight conjugates. The results demonstrated that the degree of the grafting (DG) (43.37 ± 0.05 % to 49.53 ± 0.05 %) of the product exhibited an initial increase with rising temperature. The conjugation of HP significantly enhanced the gelling ability, rheological properties (viscosity up to 301.68 mPa· s), emulsifying activity (14.79-28.09 m2/g), and antioxidant capacity (53.04-72.31 %) of soybean peptides (SBP). Notably, these improvements were positively correlated with the DG. Texture analysis indicated an increase in hardness (up to 3085.16 ± 2.08 N/m2), cohesiveness, and adhesiveness in SBP-HP-MC/Ca complex gels at 12.5 %. Furthermore, the liquid viscosity (Viscosity at 50 1/S of 10 % SBP-HP-MC70: 301.68 ± 0.32 mPa·s) of SBP-HP-MC varied from "nectar type" (51-350 mPa·s) to "honey type" (351-1750 mPa·s). SBP-HP-MC demonstrates significant potential as a texture modifier in the food industry.
Collapse
Affiliation(s)
- Xiaoshen Feng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Haocheng Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Abdul Qayum
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Huanmei Meng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
3
|
Du L, Liu M, Weng H, Zhang Y, Chen J, Xiao A, Xiao Q. A novel Pickering emulsion stabilized solely by agar-glycine Maillard conjugates. Int J Biol Macromol 2025; 304:140711. [PMID: 39920927 DOI: 10.1016/j.ijbiomac.2025.140711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
A novel Pickering emulsifier was developed through the Maillard reaction between acidolyzed agar and glycine. The resulting agar-glycine (Agar-Gly) Maillard product particles effectively stabilized a long-term Pickering emulsion at low pH (as low as 3) and medium oil content (40 %-50 %) with a particle concentration of 1 %. Microstructural analysis revealed that Agar-Gly particles adsorbed around the droplets, forming a typical O/W Pickering emulsion. The formation of a dense and regular three-dimensional gel network around the droplets was crucial in restricting droplet movement and ensuring emulsion stability. This stability was significantly superior to emulsions stabilized solely with agar or a mixture of agar and glycine (Agar+Gly), owing to synergistic effects between particle interfacial layers and spatial site resistance. Incorporating the Agar-Gly Maillard product into low-fat mayonnaise not only markedly reduces its greasiness but also provides consumers with a low-fat, healthy alternative. Furthermore, Agar-Gly used as a Pickering stabilizer, it offers an easy mode of application for agar that does not require dissolution at elevated temperatures. This provides a straightforward and promising avenue for the use of agar in the high-value food industry.
Collapse
Affiliation(s)
- Lipeng Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Meixi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
4
|
Zhang CY, Guo YR, Hou TY, Ning QR, Han WY, Zhao XY, Cui F, Li H. Formation of advanced glycation end products in glucose-amino acid models of Maillard reaction under dry- and wet-heating conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2342-2351. [PMID: 39501682 DOI: 10.1002/jsfa.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are compounds formed by non-enzymatic processes in the Maillard reaction and can cause various chronic diseases. This study explores the AGE formation process in a glucose-amino acid system under both wet- and dry-heating conditions, and analyzes the effect of cysteine in AGE formation. RESULTS Under wet-heating conditions, Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) concentrations rose for the initial 90 min and subsequently declined after 120 min; after 90 min of heating, the maximum yields in the absence of cysteine were 1151.04 ± 14.01 and 3386.90 ± 26.55 ng mL-1, respectively. The concentration of pyrraline (Pyr) increased after 30 min and then decreased after 60 min with a maximum yield of 777.68 ± 23.36 ng mL-1. However, in dry-heating models, the AGE concentrations consistently increased with increasing heating time; the maximum yields for CML, CEL and Pyr were 468.66 ± 10.96, 1993.57 ± 14.81 and 1085.74 ± 58.06 ng mL-1, respectively. The addition of cysteine showed an inhibitory effect on AGE formation, especially for Pyr in the dry-heating model, with inhibition rates ranging from 17.14% to 95.60%. CONCLUSION Although wet-heating models produced more CML and CEL, they produced less Pyr than dry-heating models. The AGE formation in wet-heating models positively correlated with the reaction rate; however, the dry-heating reaction demonstrated a more complex relationship between reaction rate and reaction protocol. Moreover, cysteine exhibited a significant inhibitory effect on AGE production, and the degree of inhibition was proportional to the cysteine concentration. This study provides important insights into the mechanisms for AGE formation under various heating conditions, such as those representing baking (dry-heating) and steaming conditions (wet-heating). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Yu-Rong Guo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Qian-Ru Ning
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Wan-Yu Han
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Xing-Yun Zhao
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Feng Cui
- Research and development center, Research Institute of Bozhou Hi-tech Pharmaceutical Industry Technology, Bozhou, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| |
Collapse
|
5
|
Wang X, Cui B, Lin H, Pan R, Zeng J, Fang X, Liu Y, Chen ZY, Chen Y, Zhu H. Research Progress in Saltiness Perception and Salty Substitutes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2745-2759. [PMID: 39843245 DOI: 10.1021/acs.jafc.4c10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Salty taste in foods is a key sensory attribute for appetite enhancement, however, consumption of a high salt diet is associated with a high risk of hypertension, stroke, and heart diseases. To address this issue, the World Health Organization (WHO) has recommended reducing the global per capita salt consumption by 30% by 2025, with adults optimally consuming less than 5 g/day of salt. Therefore, the search for new salty substitutes to reduce salt intake in foods has become a research hotspot. Despite the ongoing endeavors of global research, multiple studies have focused on the application of a single category of salty alternatives or food processing quality (such as preservative effects and process characteristics), and there is still little comprehensive evaluation of these alternatives in terms of nutritional value, health impact, and consumer acceptance in the literature. This review will first outline the urgency of global salt reduction, followed by thorough discussion of salty substitutes and associated mechanisms from the perspective of human salty taste perception. Second, the present review will explore the potential application of salty substitutes and highlight the interaction between taste and odor in foods. Additionally, the potential impacts of salty substitutes on human health will be discussed. The present review will provide a scientific basis for the development of low salt products by food industry.
Collapse
Affiliation(s)
- Xiaojun Wang
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Biyan Cui
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Huiqi Lin
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Rongzeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Jia Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Yanping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hanyue Zhu
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| |
Collapse
|
6
|
Hao J, Zhang X, Wang Z, Zhao Q, Zhang S, Li Y. Maillard reaction products of soybean protein hydrolysates and reducing sugar: Structure and flavor insights. Food Res Int 2025; 202:115790. [PMID: 39967121 DOI: 10.1016/j.foodres.2025.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Maillard reaction products (MRPs) were prepared at high temperatures using soybean protein hydrolysates (SPH) and reducing pentose (xylose and arabinose), hexose (galactose and glucose), and disaccharide (maltose), and their potential as flavoring in plant protein foods was evaluated. The results indicated that, after sugar was involved in the reaction, the unfolding of proteins enabled aromatic amino acid residues to enter a more hydrophobic environment, contributing to the reduction of bitterness in MRPs and formation of caramelization. This effect was partially attributed to the interaction forces, hydrogen bonds and van der Waals forces, that existed between the sugars and SPH involved in Maillard reaction. More basic amino acid residues interacted with pentose during the reaction, which exhibited faster reaction rate and promoted the formation of pyrazines and oxygen containing compounds, thereby contributing to meaty, roasted and caramelized flavors. Trimethyl pyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-methylpyrazine, and 2-heptanone were the most abundant in pentose MRPs, and these volatile compounds were positively correlated with umami and richness. Overall, MRPs prepared with arabinose may serve as a potential meaty flavoring with notable umami, and hexose contributed to the enrichment of nutty flavor profiles, while the MRPs formed by disaccharide exhibited the characteristics of superior fruity aromas. MRPs from different reducing sugar may be used to develop different food ingredients.
Collapse
Affiliation(s)
- Jiaqi Hao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziwei Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Zhou Y, Wu J, Monto AR, Yuan L, Gao R. Elevated levels of branched chain fatty acids in low-salt fish sauce by co-fermentation: flavor improvement and metabolism analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:305-314. [PMID: 39166735 DOI: 10.1002/jsfa.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Traditional fish sauce products rely on relatively long fermentation time and high salt concentration, resulting in inconsistent quality and health risks. Branched-chain fatty acids (BCFAs) are associated with nutritional benefits and health-care effects, mainly derived from food fermentation. This study aimed to screen BCFAs-producing bacteria with high protease and aminotransferase activity as starter cultures for fish sauce fermentation. RESULTS The low-salt fish sauce products were obtained by co-fermentation with three chosen strains. Trichloroacetic acid (TCA)-soluble peptides and amino acid nitrogen concentrations were higher in the co-fermentation group (FH group). The organoleptic evaluation showed co-fermentation optimized flavor composition and endured with rich taste. The levels of BCFAs and branched-chain amino acids (BCAAs) significantly increased by co-fermentation. Volatile metabolomics analysis indicated that BCFAs, branched-chain esters, and pyrazines were the key flavor compounds in the co-fermented group. CONCLUSION The co-fermentation system with selected strains to ferment low-salt fish sauce has the potential to increase BCFA content and improve flavor and nutrition. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junxiao Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Ciobanu LT, Constantinescu-Aruxandei D, Farcasanu IC, Oancea F. Spent Brewer's Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry. Int J Mol Sci 2024; 25:12655. [PMID: 39684367 DOI: 10.3390/ijms252312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer's yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer's yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer's yeast extracts and cell walls to become an important source for a variety of bioactive compounds.
Collapse
Affiliation(s)
- Livia Teodora Ciobanu
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
9
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
11
|
Chu Z, Liu L, Mu D, Chen X, Zhang M, Li X, Wu X. Research on pear residue dietary fiber and Monascus pigments extracted through liquid fermentation. J Food Sci 2024; 89:4136-4147. [PMID: 38778561 DOI: 10.1111/1750-3841.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Pear residue, a byproduct of pear juice extraction, is rich in soluble sugar, vitamins, minerals, and cellulose. This study utilized Monascus anka in liquid fermentation to extract dietary fiber (DF) from pear residue, and the structural and functional characteristics of the DF were analyzed. Soluble DF (SDF) content was increased from 7.9/100 g to 12.6 g/100 g, with a reduction of average particle size from 532.4 to 383.0 nm by fermenting with M. anka. Scanning electron microscopy and infrared spectroscopic analysis revealed more porous and looser structures in Monascus pear residue DF (MPDF). Water-, oil-holding, and swelling capacities of MPDF were also enhanced. UV-visible spectral analysis showed that the yield of yellow pigment in Monascus pear residue fermentation broth (MPFB) was slightly higher than that in the Monascus blank control fermentation broth. The citrinin content in MPFB and M. anka seed broth was 0.90 and 0.98 ug/mL, respectively. Therefore, liquid fermentation with M. anka improved the structural and functional properties of MPDF, suggesting its potential as a functional ingredient in food.
Collapse
Affiliation(s)
- Zhaolin Chu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lanhua Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, China
| | - Min Zhang
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Anhui Huafeng Plant Perfume Co. Ltd., Fuyang, China
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
12
|
Ma F, Li Y, Zhang Y, Zhang Q, Li X, Cao Q, Ma H, Xie D, Zhang B, Yu J, Li X, Xie Q, Wan G, Guo M, Guo J, Yin J, Liu G. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res Int 2024; 185:114248. [PMID: 38658067 DOI: 10.1016/j.foodres.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.
Collapse
Affiliation(s)
- Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jia Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoling Wan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
13
|
Su T, Le B, Zhang W, Bak KH, Soladoye PO, Zhao Z, Zhao Y, Fu Y, Wu W. Technological challenges and future perspectives of plant-based meat analogues: From the viewpoint of proteins. Food Res Int 2024; 186:114351. [PMID: 38729699 DOI: 10.1016/j.foodres.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bei Le
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Center for Sustainable Protein, DeePro Technology (Beijing) Co., Ltd., Beijing 101200, China
| | - Kathrine H Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Philip O Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Gao Y, Lian W, Zhang H, Zhu Y, Huang Y, Liu L, Zhu X. Mechanism of l-cysteine-induced fibrous structural changes of soybean protein at different high-moisture extrusion zones. Int J Biol Macromol 2024; 268:131621. [PMID: 38631588 DOI: 10.1016/j.ijbiomac.2024.131621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
In this study, the fibrous structure formation mechanism of soybean protein during high moisture extrusion processing was investigated using a dead-stop operation, and based on the interaction between soybean protein concentrate (SPC) and L-cysteine (CYS). The thermal properties, SDS-PAGE and particle size distribution of the samples from different extrusion zones were investigated. It was revealed that the addition of a moderate amount of CYS (0.1 %) promoted the fibrous structure formation in the SPC extrudates and optimised the textural properties of the SPC extrudates. In the extruder barrel, addition of CYS (0.1 %) promoted protein depolymerisation and unfolding in the mixing and cooking zones, and facilitated protein aggregation in the die and cooling zones. Protein solubility and raman spectroscopy revealed that disulfide bonds were principally responsible for fibrous structure formation; favoured when the intermolecular disulfide bonds (t-g-t mode) was increased. Finally, the transformation of protein conformation was revealed by secondary structure and surface hydrophobicity, which confirmed that the effect of CYS on protein conformation mainly occurred in the cooling zone. This study provides a theoretical basis for the application of CYS to regulate the fibrous structure of meat analogues.
Collapse
Affiliation(s)
- Yang Gao
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Wentao Lian
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Haojia Zhang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| |
Collapse
|
15
|
Hossain MJ, Alam AMMN, Lee EY, Hwang YH, Joo ST. Umami Characteristics and Taste Improvement Mechanism of Meat. Food Sci Anim Resour 2024; 44:515-532. [PMID: 38765277 PMCID: PMC11097012 DOI: 10.5851/kosfa.2024.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/21/2024] Open
Abstract
Taste is one of the five senses that detect vital information about what we are eating. Comprehending taste is crucial for enhancing the flavor of foodstuffs and high-protein foods like meat. Umami has global recognition as the fifth elementary taste, alongside sweetness, sourness, saltiness, and bitterness. Umami compounds are known to enhance the sensation of recognized flavors such as salty, sweet, bitter, and others. This could end up in greater food consumption by consumption by consumers. With the rising global population, meat consumption is rising and is projected to double by 2025. It is crucial to comprehend the umami mechanism of meat and meat products, identify novel compounds, and employ laboratory methodologies to gather varied information. This knowledge will aid in the development of new consumer products. Although very limited information is available on umami taste and compounds in meat through research data. This article discusses recent advancements in umami compounds in other foodstuff as well as meat to aid in designing future research and meat product development. Moreover, another objective of this review is to learn present techniques in foodstuffs to enhance umami taste and utilize that knowledge in meat products.
Collapse
Affiliation(s)
- Md. Jakir Hossain
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - AMM Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
16
|
Jiang W, Yang X, Li L. Flavor of extruded meat analogs: A review on composition, influencing factors, and analytical techniques. Curr Res Food Sci 2024; 8:100747. [PMID: 38708099 PMCID: PMC11066600 DOI: 10.1016/j.crfs.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Meat analogs are anticipated to alleviate environmental and animal welfare concerns as the demand for meat rises. High moisture extrusion is commonly employed to produce meat analogs, and its flavor could influence consumers' choice. To improve the development and market demand of extruded meat analogs, flavor precursors and natural spices have been used in high moisture extrusion process to directly improve the flavor profile of extruded meat analogs. Although there have been many studies on the flavor of high moisture extruded meat analogs, flavor composition and influencing factors have not been summarized. Thus, this review systematically provides the main pleasant and unpleasant flavor-active substances with 79 compounds, as well as descriptive the influence of flavor-active compounds, chemical reactions (such as lipid oxidation and the Maillard reaction), and fiber structure formation (based on extrusion process, extrusion parameters, and raw materials) on flavor of extruded meat analogs. Flavor evaluation of extruded meat analogs will toward multiple assessment methods to fully and directly characterize the flavor of extruded meat analogs, especially machine learning techniques may help to predict and regulate the flavor characteristics of extruded meat analogs.
Collapse
Affiliation(s)
- Wanrong Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
17
|
Gao P, Sun B, Chen Z, Yuan Q, Zhong W, Yin J, Hu C, He D, Wang X. Effects of different amino acid enzymatic preparations on the quality and flavor of fragrant rapeseed oil. Food Chem X 2024; 21:101219. [PMID: 38384688 PMCID: PMC10878852 DOI: 10.1016/j.fochx.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Enzymatically prepared aromatic oils commonly have high purity and aroma quality. However, amino acid type and content vary greatly according to the type of oil, which impacts overall aroma and quality. In this study, the effects of lysine (Lys), arginine (Arg), proline (Pro), and glutamic (Glu) acid on physicochemical indices, nutrients, hazardous substances, fatty acid composition, and flavor during fragrant rapeseed oil (FRO) enzymatic preparation were investigated using the Maillard reaction (MR). In the lysine-treated group, the unsaturated fatty acids (93.16 %), α-tocopherol (183.06 mg/kg), γ-tocopherol (404.37 mg/kg), and δ-tocopherol (12.69 mg/kg) contents were the highest, whereas the acid value (1.27 mg/g) and moisture (0.10 %) and benzo[a]pyrene (1.45 μg/kg) contents were the lowest. Sensory evaluation showed that lysine effectively enhanced FRO flavor by enhancing the nutty/toasted flavor (4.80 scores). Principle component analysis (PCA) showed that the nutty/toasted flavor correlated mainly with 2,6-dimethylpyrazine, 2,5-dimethyl-pyrazine, 2-methyl-pyrazine, and trimethylpyrazine, nutty/toasted flavor strength increased with pyrazine content, which were the highest in the lysine group (24.02 μg/g). This study provides a guide for FRO preparation by adding external MR prerequisites.
Collapse
Affiliation(s)
- Pan Gao
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Bobo Sun
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Zhe Chen
- Wuhan Institute for Food and Cosmetic Control, Wuhan, PR China
| | - Qiaona Yuan
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Wu Zhong
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Jiaojiao Yin
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Chuanrong Hu
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Dongping He
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
18
|
Li L, Liu S, Sun N, Cui W, Cheng L, Ren K, Wang M, Tong X, Jiang L, Wang H. Effects of sucrase enzymatic hydrolysis combined with Maillard reaction on soy protein hydrolysates: Bitterness and functional properties. Int J Biol Macromol 2024; 256:128344. [PMID: 38007016 DOI: 10.1016/j.ijbiomac.2023.128344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
In this study, sucrase was added to convert non-reducing sugars into reducing sugars in skim obtained by enzyme-assisted aqueous extraction processing (EAEP), then the variation of soy protein hydrolysates (SPH) from the skim under different Maillard reaction times were studied. We conducted one-factor experiment and selected 2 mg/mL sucrase for enzymatic hydrolysis for 2 h. The structure of SPH was investigated by Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, and amino acid composition. Results showed that the Maillard reaction loosened the SPH structure and produced new functional groups. Sensory evaluation, electronic tongue, electronic nose and GC-MS were used to study the sensory characteristics of SPH, we found that the bitterness value was significantly reduced to 1.71 from 4.63 after 2 h of the Maillard reaction. The change of bitterness was related to amino acid composition and the production of pyrazine. Additionally, the iron reduction ability, DPPH free radical scavenging ability, and emulsifying activity reached the highest at 2 h of reaction with 0.80, 73.94 %, and 56.09 %. The solubility, emulsifying stability, and foaming capacity increased and gradually stabilized with the increasing reaction time. Therefore, this paper presents an effective method for generating SPH with low bitterness and high functional properties.
Collapse
Affiliation(s)
- Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Na Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenyu Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Ding Y, Yan C, Dai W, Wang Y, Liu S, Zheng R, Zhou X. Flavor improving effects of cysteine in xylose-glycine-fish waste protein hydrolysates (FPHs) Maillard reaction system. BIORESOUR BIOPROCESS 2023; 10:95. [PMID: 38647832 PMCID: PMC10992153 DOI: 10.1186/s40643-023-00714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 04/25/2024] Open
Abstract
A promising way to utilize fish by-products is to develop hydrolysis of fish proteins with enzymes. The obtained fish protein hydrolysates (FPHs) are rich in peptides and amino acids, but bitterness and aroma defects impede further utilization of FPHs. The present study adopted Maillard reaction to improve FPHs' flavor and illustrated the role of cysteine in this system. We investigated the impact of cysteine (0, 0.25%, 0.5%, 0.75%, and 1%) on the browning intensity, free amino acids (FAAs), molecular weight distribution, structure of MRPs, volatile compounds changes and organoleptic characteristics of xylose-glycine-FPHs Maillard reaction systems. Results showed that the addition of cysteine lowered the browning degree of Maillard reaction products (MRPs) by inhibiting the cross-linking of small peptides and reducing the production of melanin. GC-MS and GC-IMS analysis indicated that cysteine inhibited the formation of furans and nitrogen-containing compounds and facilitated the formation of sulfur-containing compounds contributing to the meaty flavor. Sensory analysis revealed that 0.25-0.75% range of cysteine increased the meaty, caramel, umami, mouthfulness and salty notes, and caused a decrease in bitter taste of the MRPs as confirmed by GC-MS. A highly significant correlation between the organoleptic characteristics and physicochemical indicators of MRPs was found by Mantel test. These results elucidated the influence of cysteine on the formation of Maillard reaction products and will help improve the flavor profile of meat flavorings.
Collapse
Affiliation(s)
- Yicheng Ding
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Chen Yan
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wangli Dai
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yanbo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Shulai Liu
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Xuxia Zhou
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
20
|
Chen T, Wei CK, Li T, Zhang HL, Ni ZJ, Khan MR, Wei ZJ. Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal. Foods 2023; 12:4346. [PMID: 38231852 DOI: 10.3390/foods12234346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Lycium barbarum seed meal contains a variety of bioactive compounds, but the use of L. barbarum seed meal in the food industry is rare. This study aimed to evaluate the effect of reducing sugars on the structural and flavor properties of the Maillard reaction products (MRPs) of the Lycium barbarum seed meal hydrolysate (LSH). The results showed that the flavors and tastes of the MRPs were affected by reducing sugars. In comparison to oligosaccharides, monosaccharides were more suitable for the development of MRPs with good sensory qualities. The structural characteristics of L. barbarum seed meal precursor MRPs were also affected by reducing sugars. The MRPs produced with the participation of monosaccharides had higher ultraviolet absorption and browning than the MRPs produced with oligosaccharides. The molecular weights of the MRPs were found to be 128-500 Da and 500-1000 Da. Compared to the MRPs made from other sugars, xylose-meridian products (X-MRPs) had a stronger meaty flavor. The mellowness and continuity of the MRPs made from monosaccharides were superior to those made from oligosaccharides. The MRPs formed by L. barbarum seed meal exhibited the characteristics of umami and meat flavor. MRPs with better flavors may be used to develop new types of seasoning salts.
Collapse
Affiliation(s)
- Tao Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Chao-Kun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tong Li
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui-Lin Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
21
|
Huang X, Wang P, Xue W, Cheng J, Yang F, Yu D, Shi Y. Preparation of meaty flavor additive from soybean meal through the Maillard reaction. Food Chem X 2023; 19:100780. [PMID: 37780247 PMCID: PMC10534126 DOI: 10.1016/j.fochx.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/25/2023] [Accepted: 07/02/2023] [Indexed: 10/03/2023] Open
Abstract
Meaty flavor additive was prepared from soybean meal hydrolysate and xylose in the method of Maillard reaction. Under the conditions of reaction temperature 120 ℃, time 120 min and cysteine addition 10%, the Maillard products had strong flavor of meat. The content of free amino acids was 4.941 μ mol/mL in the products. There were 50 volatile flavor substances in Maillard reaction products according to GC-MS analysis. 4 mercaptans, 4 sulfur substituted furans, 3 thiophenes, 7 furans, 6 pyrazine, 3 pyrrole, 1 pyrimidine, 7 aldehydes, 4 ketones, 7 esters, 2 alcohols and 2 acids were included. The Maillard reaction products also have strong antioxidant activity. The scavenging ability of FRAP, DPPH radical, hydroxyl radical and ABTS+ radical was 1.82%, 69.8%, 68.7% and 71.6% respectively. The products of Mailard reaction have potential to be used in food additives.
Collapse
Affiliation(s)
- Xianhui Huang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenlin Xue
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jie Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongge Shi
- Jiusan Grains and Oils Industrial Group Co., Ltd, Harbin 150090, China
| |
Collapse
|
22
|
Wang X, Zhang D, Guo Q, Pu Y, Huang A, Fan J. Identification and Characterization of Novel Umami Peptides from Protein Hydrolysates of Morchella esculenta and Their Interaction with T1R1/T1R3 Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14046-14056. [PMID: 37709731 DOI: 10.1021/acs.jafc.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The study aimed to explore umami peptides derived from protein hydrolysates of Morchella esculenta. According to the electronic tongue and sensory evaluation, the ultrafiltration fractions (<3 kDa) of the protein hydrolysates exhibited the strongest umami taste. The overall flavor of the screened fractions was significantly improved after the Maillard reaction, based on the electronic nose and electronic tongue analyses, and the content of total free amino acid increased from 387.35 to 589.30 μg/mL. A total of 37 peptides with high confidence were identified from the fractions using LC-MS/MS. Additionally, two novel umami peptides were screened through bioinformatics and molecular docking, and their recognition threshold was 0.43 (EYPPLGRFA) and 0.52 mmol/L (TVIDAPGHRDFI), respectively. In addition, molecular docking analysis revealed that the key binding sites, such as Ser148, Leu51, Arg327, and Leu468 in T1R1/T1R3 contributed to docking, and hydrogen bonding and hydrophobic interactions were the dominant interaction forces between the two umami peptides and T1R1/T1R3 receptor. This study contributes to the development and utilization of Morchella esculenta in flavored foods.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Dan Zhang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qihong Guo
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yuehong Pu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Jiangping Fan
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
23
|
Sousa R, Portmann R, Recio I, Dubois S, Egger L. Comparison of in vitro digestibility and DIAAR between vegan and meat burgers before and after grilling. Food Res Int 2023; 166:112569. [PMID: 36914338 DOI: 10.1016/j.foodres.2023.112569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Plant-based meat alternatives of high quality and digestibility could be a way to reduce meat consumption and, consequently, the environmental impact. However, little is known about their nutritional characteristics and digestion behaviour. Therefore, in the present study, the protein quality of beef burgers, known as excellent source of protein, was compared with the protein quality of two highly transformed veggie burgers, based on soy or pea-faba proteins, respectively. The different burgers were digested according to the INFOGEST in vitro digestion protocol. After digestion, total protein digestibility was determined, either based on total nitrogen (Kjeldahl) analysis, or after acid hydrolysis based on total amino groups (o-phthalaldehyde method) or total amino acids (TAA; by HPLC). The digestibility of individual amino acids was also determined, and the digestible indispensable amino acid score (DIAAS) was calculated based on in vitro digestibility. The impact of texturising and grilling on in vitro protein digestibility and the digestible indispensable amino acid ratio (DIAAR) was evaluated at the level of the ingredients and the finished products. As expected, the grilled beef burger had the highest in vitro DIAAS values (Leu 124 %), and grilled soy protein-based burger reached in vitro DIAAS values that could be rated as good (soy burger, SAA 94 %) protein source, according to the Food and Agriculture Organization. The texturing process did not significantly affect the total protein digestibility of the ingredients. However, grilling led to a decrease in digestibility and DIAAR of the pea-faba burger (P < 0.05), which was not observed in the soy burger, but led to an increase in DIAAR in the beef burger (P < 0.005).
Collapse
Affiliation(s)
- Raquel Sousa
- Agroscope, Schwarzenburgstrasse, 161, 3003 Bern, Switzerland; Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Reto Portmann
- Agroscope, Schwarzenburgstrasse, 161, 3003 Bern, Switzerland
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | | | - Lotti Egger
- Agroscope, Schwarzenburgstrasse, 161, 3003 Bern, Switzerland.
| |
Collapse
|
24
|
Yang L, Zhang T, Li H, Chen T, Liu X. Control of Beany Flavor from Soybean Protein Raw Material in Plant-Based Meat Analog Processing. Foods 2023; 12:foods12050923. [PMID: 36900440 PMCID: PMC10001211 DOI: 10.3390/foods12050923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The development of plant-based meat analogs is currently hindered by the beany flavor generated by raw soybean protein and extrusion processing. Wide concern has led to extensive research on the generation and control of this unwanted flavor, as an understanding of its formation in raw protein and extrusion processing and methods through which to control its retention and release are of great significance for obtaining ideal flavor and maximizing food quality. This study examines the formation of beany flavor during extrusion processing as well as the influence of interaction between soybean protein and beany flavor compounds on the retention and release of the undesirable flavor. This paper discusses ways to maximize control over the formation of beany flavor during the drying and storage of raw materials and methods to reduce beany flavor in products by adjusting extrusion parameters. The degree of interaction between soybean protein and beany compounds was found to be dependent on conditions such as heat treatment and ultrasonic treatment. Finally, future research directions are proposed and prospected. This paper thus provides a reference for the control of beany flavor during the processing, storage, and extrusion of soybean raw materials used in the fast-growing plant-based meat analog industry.
Collapse
Affiliation(s)
- Lingyu Yang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Tianyu Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan 056000, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence:
| | - Tianpeng Chen
- Shandong Gulin Food Technology Limited Company, Yantai 264010, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
25
|
Effect of l-cysteine and l-ascorbic acid addition on properties of meat analogues. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Application of Maillard Reaction Products Derived Only from Enzymatically Hydrolyzed Sesame Meal to Enhance the Flavor and Oxidative Stability of Sesame Oil. Molecules 2022; 27:molecules27248857. [PMID: 36557989 PMCID: PMC9781902 DOI: 10.3390/molecules27248857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The low-temperature roasting of sesame oil has become increasingly popular because of its nutritional benefits; however, the flavor is reduced. In order to improve the quality of sesame oil without exogenous addition, sesame meal was hydrolyzed and further used to prepare Maillard reaction products (MRPs) while protease hydrolysis (PH) and glucoamylase-protease hydrolysis (GPH) were used, and their respective Maillard products (PHM and GPHM) were added in the oils for reducing sugar and total sugar content determination, free amino acid determination, and color and descriptive sensory analysis, as well as electronic nose, SPME-GC-MS, odor activity value, and oxidative stability analyses. Results showed that the MRPs could be produced using the enzymatically hydrolyzed sesame meal without exogenous addition, and the oil flavor blended with GPHM (GPHM-SO) was significantly (p < 0.05) improved with the best sensory quality. The composition of pyrazines (119.35 μg/mL), furans (13.95 μg/mL), and sulfur substances (6.25 μg/mL) contributed positively to sensory properties in GPHM-SO, and 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, and 2,3-dimethylpyrazine were characterized as the key flavor compounds with odor activity values of 7.01, 14.80, and 31.38, respectively. Furthermore, the oxidative stability of the oil was significantly improved with the addition of MRPs, and the shelf life of GPHM-SO was predicted to be extended by 1.9 times more than that of the crude oil based on the accelerated oxidation fitting analysis. In general, the MRPs derived only from sesame meal can enhance the flavor and oxidative stability of sesame oil and can be applied in the oil industry.
Collapse
|
27
|
Le B, Yu B, Amin MS, Liu R, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. Salt taste receptors and associated salty/salt taste-enhancing peptides: A comprehensive review of structure and function. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Schmid EM, Farahnaky A, Adhikari B, Torley PJ. High moisture extrusion cooking of meat analogs: A review of mechanisms of protein texturization. Compr Rev Food Sci Food Saf 2022; 21:4573-4609. [PMID: 36120912 DOI: 10.1111/1541-4337.13030] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
High-moisture extrusion cooking (HMEC) is an efficient method for converting proteins and polysaccharides into fibrous structure that is used in the industrial production of meat analogs. The purpose of this review is to systematically evaluate current knowledge regarding the modification of protein structure including denaturation and reassembly upon extrusion processing and to correlate this understanding to the structure of the final products. Although there is no consensus on the relative importance of a certain type of bond on extrudates' structure, literature suggests that, regardless of moisture level, these linkages and interactions give rise to distinctive hierarchical order. Both noncovalent and disulfide bonds contribute to the extrudates' fibrous structure. At high water levels, hydrogen and disulfide bonds play a dominant role in extrudates' texture. The process parameters including cooking temperature, screw speed, and moisture content have significant albeit different levels of impact on the texturization process. Their correlation with the ingredients' physiochemical properties provides a greater insight into the process-structure-function relationship of meat analogs. The tendency of protein and polysaccharide blends to phase separate rather than produce a homogeneous mix is a particularly important aspect that leads to the formation of fibrous layers when extruded. This review shows that systematic studies are required to measure and explain synergistic and competitive interactions between proteins and other ingredients such as carbohydrates with a focus on their incompatibility. The wide range of plant protein source can be utilized in the HMEC process to produce texturized products, including meat analogs.
Collapse
Affiliation(s)
- Eva-Maria Schmid
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Asgar Farahnaky
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Benu Adhikari
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Peter J Torley
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Ye Y, Dai S, Zhang H, He S, Hu W, Cao X, Wei Z. Ultrasound-Assisted Preparation of Maillard Reaction Products Derived from Hydrolyzed Soybean Meal with Meaty Flavor in an Oil-In-Water System. Molecules 2022; 27:molecules27217236. [PMID: 36364060 PMCID: PMC9655089 DOI: 10.3390/molecules27217236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
In the present work, we prepared Maillard reaction products (MRPs) derived from enzyme hydrolyzed soybean meal with ultrasound assistance in an oil-(oxidized lard)-in-water system (UEL-MRPs) or oil-free system (UN-MRPs), and the effect of ultrasound on the properties of the obtained MRPs was evaluated. The analysis of fatty acids in lard with different treatments showed that ultrasound can generate more unsaturated fatty acids in the aqueous phase. The UV–Vis absorbances of UEL-MRPs, UN-MRPs, and MRPs obtained in an oil-in-water system (EL-MRPs) and MRPs obtained in an oil-free system (N-MRPs) at 294 and 420 nm indicated that ultrasound could increase the amount of Maillard reaction intermediates and melanoids in the final products of the Maillard reaction. This was in line with the result obtained from color change determination—that ultrasound can darken the resultant MRPs. Volatile analysis showed ultrasound can not only increase the number of volatile substances, but also greatly increase the composition of volatile substances in UEL-MRPs and UN-MRPs, especially the composition of those contributing to the flavor of the MRPs, such as oxygen-containing heterocycles, sulfur-containing compounds, and nitrogen-containing heterocycles. Descriptive sensory evaluation revealed that UN-MRPs and UEL-MRPs had the highest scores in total acceptance, ranking in the top two, and UEL-MRPs had the strongest meaty flavor among these four kinds of MRPs. Furthermore, the measurements of antioxidant activities, including DPPH radical-scavenging activity, hydroxyl radical scavenging ability, and ferric ion reducing antioxidant power, were conducted, showing that UN-MRPs exhibited the highest antioxidant activity among all the MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengquan Dai
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongyan Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd., Huangshan 245000, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Correspondence: (X.C.); (Z.W.)
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Correspondence: (X.C.); (Z.W.)
| |
Collapse
|
30
|
Liu S, Sun H, Ma G, Zhang T, Wang L, Pei H, Li X, Gao L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front Nutr 2022; 9:973677. [PMID: 36172529 PMCID: PMC9511141 DOI: 10.3389/fnut.2022.973677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
During food processing, especially heating, the flavor and color of food change to a great extent due to Maillard reaction (MR). MR is a natural process for improving the flavor in various model systems and food products. Maillard reaction Products (MRPs) serve as ideal materials for the production of diverse flavors, which ultimately improve the flavor or reduce the odor of raw materials. Due to the complexity of the reaction, MR is affected by various factors, such as protein source, hydrolysis conditions, polypeptide molecular weight, temperature, and pH. In the recent years, much emphasis is given on conditional MR that could be used in producing of flavor-enhancing peptides and other compounds to increase the consumer preference and acceptability of processed foods. Recent reviews have highlighted the effects of MR on the functional and biological properties, without elaborating the flavor compounds obtained by the MR. In this review, we have mainly introduced the Maillard reaction-derived flavors (MF), the main substances producing MF, and detection methods. Subsequently, the main factors influencing MF, from the selection of materials (sugar sources, protein sources, enzymatic hydrolysis methods, molecular weights of peptides) to the reaction conditions (temperature, pH), are also described. In addition, the existing adverse effects of MR on the biological properties of protein are also pointed out.
Collapse
|
31
|
Yang Y, Ai L, Mu Z, Liu H, Yan X, Ni L, Zhang H, Xia Y. Flavor compounds with high odor activity values (OAV > 1) dominate the aroma of aged Chinese rice wine (Huangjiu) by molecular association. Food Chem 2022; 383:132370. [PMID: 35183960 DOI: 10.1016/j.foodchem.2022.132370] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Aging is an essential operation to perfect the flavor quality of Hungjiu. In this study, formation mechanism of flavor compounds responsible for the characteristic flavor of aged Huangjiu was investigated. The contents of umami and bitter free amino acids (FAA) increased with the storage period prolonged, while that of sweet FAA showed downward trend. Gas chromatograph-mass spectrometry and principal component analysis indicated that the volatile flavor compounds with OAV exceed 1, especially middle-chain fatty-acid-ethyl-esters and aromatic compounds, dominated the characteristic flavor of aged Huangjiu. Low field-NMR was firstly applied to characterize the molecular association between water and dissolved flavor compounds in aged Huangjiu. The results showed that basic amino acids contributed greatly to the flavor formation of aged Huangjiu via molecular association. In addition, the molecular association significantly promoted the accumulation of flavor compounds with OAV > 1, especially ethyl esters.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Haodong Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xin Yan
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou, Fujian 200093, People's Republic of China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd, Shanghai 200120, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| |
Collapse
|
32
|
Xiang X, Hu G, Yu Z, Li X, Wang F, Ma X, Huang Y, Liu Y, Chen L. Changes in the textural and flavor characteristics of egg white emulsion gels induced by lipid and thermal treatment. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Li J, Shi L, Ren Z, Weng W. Physicochemical, Sensory and Digestive Properties of Eel Burgers at Different Baking Temperatures. Front Nutr 2022; 9:923433. [PMID: 35845780 PMCID: PMC9277584 DOI: 10.3389/fnut.2022.923433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022] Open
Abstract
The effect of baking temperature on the physicochemical, sensory and digestive properties of eel burgers was investigated. The moisture content of eel burgers gradually decreased with increased baking temperature, whereas the water-holding capacity remained unchanged. The breaking force of eel burgers baked at 160°C was significantly higher than that at other baking temperatures. With increased baking temperature from 100 to 220°C, amide I in the Fourier transform infrared spectroscopy of eel burgers shifted from 1,645 to 1,633 cm-1, and the peak intensity of 1,744 cm-1 initially increased and then decreased. When the baking temperature exceeded 160°C, the band intensity of protein aggregate increased gradually with increased baking temperature. Scanning electron microscopy result indicated that the muscle fibers in eel burgers contracted significantly with increased baking temperature, and a honeycomb-like network structure appeared in eel burgers baked at 220°C. The sulfur compounds in the eel burgers baked at 130°C were lower than those of the sample baked at 100°C, but it increased gradually with further increased baking temperature. The aftertaste astringency, richness, saltiness, and overall acceptability of eel burgers increased with increased baking temperature. The eel burgers baked at 130-160°C could be easily digested according to the in vitro digestibility and confocal laser confocal microscopy of gastrointestinal digests. In conclusion, the texture properties, barbecue aroma, and digestibility of eel burgers could be controlled by the baking temperature.
Collapse
Affiliation(s)
- Jieyu Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
- Research Center of Marine Functional Food, Xiamen, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Xiamen, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
- Research Center of Marine Functional Food, Xiamen, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, China
- Research Center of Marine Functional Food, Xiamen, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Xiamen, China
| |
Collapse
|
34
|
Huang Y, Li P, Li Z, Zhu D, Fan Y, Wang X, Zhao C, Jiao J, Du X, Wang S. Red yeast rice dietary intervention reduces oxidative stress-related inflammation and improves intestinal microbiota. Food Funct 2022; 13:6583-6595. [PMID: 35621018 DOI: 10.1039/d1fo03776e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammation and oxidative stress play key roles in the aging process, while red yeast rice (RYR), a traditional Chinese fermented food, has anti-oxidant and anti-inflammatory effects. To understand the anti-aging function of RYR in vivo, this study established a D-galactose-induced aging mouse model to verify the positive effects of RYR dietary intervention on aging and explore the related underlying mechanism. Eight weeks of RYR dietary intervention was shown to have a significant inhibitory effect on cognitive decline and hippocampal damage. The molecular mechanistic studies showed that the anti-aging effects of RYR were achieved by (i) improving the oxidative stress-related damage (increasing SOD, CAT, and GSH, and reducing MDA), (ii) regulating the NF-κB inflammation pathway induced by oxidative stress (decreasing the pro-inflammatory cytokines IL-6, TNF-α, IFN-γ, iNOs, and IL-1β, increasing the anti-inflammatory cytokine IL-10, and decreasing the expression of the NF-κB protein), (iii) slowing down apoptosis caused by oxidative stress (reducing the expression of P21 and P53), (iv) restoring the abundance of Lactobacillus, Lachnospiraceae and Rikenellaceae downregulated by D-galactose, and (v) reducing the abundance of Akkermansia and Helicobacter enriched by D-galactose. Mass spectrometry revealed orange pigments (rubropunctatin and monascorubrin) as the main antioxidant components in RYR, which might play key roles in aging inhibition. This study provides theoretical support for the wide application of orange pigments as an antioxidant dietary supplement.
Collapse
Affiliation(s)
- Yaping Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhengang Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoyi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. .,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
36
|
The potential application of vegetable oils in the D-xylose and L-cysteine Maillard reaction system for meaty aroma production. Food Res Int 2022; 155:111081. [DOI: 10.1016/j.foodres.2022.111081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022]
|
37
|
Liao X, Wang S, Li Y, Michael Olajide T, Zhai X, Qian J, Miao S, Huang J. Effects of "nine steaming nine sun-drying" on proximate composition, protein structure and volatile compounds of black soybeans. Food Res Int 2022; 155:111070. [PMID: 35400448 DOI: 10.1016/j.foodres.2022.111070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
Nine steaming nine sun-drying is a traditional processing technology for food or medicinal materials. The dynamic changes of the proximate composition, protein structure and volatile compounds during nine-time steaming and sun-drying of black soybeans (BS) were studied. The proximate composition results showed that the content of protein, carbohydrate and fat of BS decreased after processing, whereas the relative content of amino acids remained basically unchanged. Protein structure was evaluated using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet absorption spectroscopy (UV) and Fluorescence spectroscopy. FT-IR result revealed that the relative contents of β-sheet and β-turn of the secondary structure of black soybean protein isolate (BSPI) decreased but the relative contents of α-helix and random coil increased after steaming and sun-drying. The results of UV and fluorescence spectroscopy confirmed changes in the protein conformation. In addition, SPME-GCMS analysis demonstrated that hydrocarbons, alcohols and aldehydes were the main volatile compounds. The relative contents of 1-octen-3-ol and hexanal, which are the main sources of beany flavor decreased significantly compared with raw BS. Principal component analysis (PCA) results showed that the volatile compounds of nine steamed and nine sun-dried BS could be well distinguished during the process. These findings may therefore provide a scientific basis for the application of nine-time steamed and sun-dried BS in food industry and contribute to the understanding of process-induced chemical transformations in this ancient processing technique.
Collapse
Affiliation(s)
- Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shanshan Wang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingqiu Li
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | - Xiaolin Zhai
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiana Qian
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Song Miao
- Teagasc Food Research Centre Moorepark, Co. Cork, Ireland.
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
38
|
Habinshuti I, Zhang M, Sun H, Mu T. Comparative study of antioxidant and flavour characteristics of Maillard reaction products from five types of protein hydrolysates. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Hong‐Nan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| |
Collapse
|
39
|
Liang Y, Wang K, Yang Q, Zhang L, Shi C, Tavakoli S, Tan Y, Luo Y, Hong H. The antioxidant activities and flavor properties of glycated bighead carp meat hydrolysates produced with galactose and galacto-oligosaccharides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Han I, Cha S, Park W, Park S, Bak S, Jeong EW, Jung S, Woo TK, Lee HG, Hyun TK, Jang K. Quality and functional characteristics of tofu prepared rapidly from soybeans dried after soaking in water. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- In‐Beom Han
- Department of Food Science and Biotechnology Chungbuk National University Cheongju South Korea
| | - Seung‐Hyeon Cha
- Department of Food Science and Biotechnology Chungbuk National University Cheongju South Korea
| | - Woo‐Hyeon Park
- Department of Food Science and Biotechnology Chungbuk National University Cheongju South Korea
| | - Sang‐Beom Park
- Department of Food Science and Biotechnology Chungbuk National University Cheongju South Korea
| | - Se‐Lim Bak
- Department of Food Science and Biotechnology Chungbuk National University Cheongju South Korea
| | - Eun Woo Jeong
- Department of Food and Nutrition Hanyang University Seoul South Korea
| | - Seyoung Jung
- Department of Food and Nutrition Hanyang University Seoul South Korea
| | - Tan Kyung Woo
- Department of Food and Nutrition Hanyang University Seoul South Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition Hanyang University Seoul South Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology Chungbuk National University Cheongju South Korea
| | - Keum‐Il Jang
- Department of Food Science and Biotechnology Chungbuk National University Cheongju South Korea
| |
Collapse
|
41
|
Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res Int 2022; 151:110823. [PMID: 34980374 DOI: 10.1016/j.foodres.2021.110823] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.
Collapse
|
42
|
Impact of Chilling Rate on the Evolution of Volatile and Non-Volatile Compounds in Raw Lamb Meat during Refrigeration. Foods 2021; 10:foods10112792. [PMID: 34829073 PMCID: PMC8620043 DOI: 10.3390/foods10112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the effect of chilling rate (1.44, 22.2, and 32.4 °C/h) on the evolution of volatile and non-volatile compounds in raw lamb meat during refrigeration (1, 24, 72, and 120 h). Through orthogonal projection to latent structure-discriminant analysis, the calculation of odor activity values (OAV > 1) and taste activity values (TAV > 1) analysis, 1-octen-3-ol, (E, E)-2,4-decadienal, nonanal, hexanal, nona-3,5-dien-2-one, 2,3-octanedione, hexanoic acid, 1-nonen-4-ol, aspartate (Asp), Glutamic Acid (Glu), 5′-GMP, 5′-IMP, and 5′-AMP were regarded as differential flavor or taste compounds for raw meat undergone different chilling rates. With a rapid chilling rate at 24 h after slaughter, the contribution of 1-octen-3-ol decreased, but (E, E)-2,4-decadienal increased. Moreover, at 24 h post-mortem, the equivalent umami concentration of Asp, Glu, 5′-GMP, 5′-IMP and 5′-AMP in raw meat were significantly lower at a chilling rate of 1.44 °C/h than 32.4 °C/h (p < 0.05). Conclusively, under the rapid chilling rate, more fatty odor and umami compounds accumulated in 24 h aged meat.
Collapse
|
43
|
Wang F, Shen H, Yang X, Liu T, Yang Y, Zhou X, Zhao P, Guo Y. Effect of free amino acids and peptide hydrolysates from sunflower seed protein on the formation of pyrazines under different heating conditions. RSC Adv 2021; 11:27772-27781. [PMID: 35480741 PMCID: PMC9037843 DOI: 10.1039/d1ra05140g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
Most research concerning pyrazine formation in the Maillard reaction is mainly focused on free amino acids (FAAs), but limited information is available on the effect of peptides and proteins. In this study, three Maillard model systems (i.e., glucose and native sunflower seed protein, hydrolyzed peptides or FAAs, respectively) were prepared, and their effect on the formation of volatiles were further compared at different heating conditions by using of headspace solid-phase microextraction equipped with gas chromatography/mass spectrometry (HS-SPME-GC/MS). It was found that pyrazines were the characteristic volatile compounds in tested Maillard models, and with increasing heating temperature and time, the varieties of pyrazine formation significantly increased. The optimum reaction condition for pyrazine formation was at 140 °C for 90 min, which was subsequently applied to all sets of Maillard models. Further analysis showed that the short chain peptides generated by hydrolyzing sunflower seed protein (SSP), especially the molecular weight ranging from 1.2 to 3.0 kDa, significantly promoted the formation of pyrazines, which highlights the important role of peptides in the Maillard reaction models and is expected to intensify aroma promotion in sunflower seed oil. Exploring the effect of heating temperature and time on the formation of pyrazines; revealing the potential roles of FAAs and hydrolyzed sunflower seed peptides in the Maillard reaction model.![]()
Collapse
Affiliation(s)
- Furong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| | - Hailiang Shen
- Citrus Research Institute, Southwest University Chongqing PR China.,Citrus Research Institute, Chinese Academy of Agricultural Science Chongqing PR China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| | - Ting Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| | - Yali Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| | - Xueru Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University Campus Chang'an, No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 PR China +86 029 85310471 +86 029 85310471.,National Research and Development Center of Apple Processing Technology PR China
| |
Collapse
|
44
|
Color and structural modifications of alkaline extracted sunflower protein concentrates and isolates using L-cysteine and glutathione. Food Res Int 2021; 147:110574. [PMID: 34399547 DOI: 10.1016/j.foodres.2021.110574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
Alkaline sunflower protein extraction can be performed along with de-phenolization of sunflower seed proteins if greening is unwanted. This greening is promoted at alkaline pH when chlorogenic acid (CGA) oxidizes and reacts with amino acids such as lysine. Thiol-containing dough conditioners: L-cysteine hydrochloride and glutathione (GSH) were investigated as an alternative de-greening strategy to acidification and de-phenolization. Greening and browning inhibition of thiols (GSH and Cysteine) were modeled by a combination of additive and interaction effects of extraction pH (7.0 to 11.0) and thiol concentration (0.00 to 5.60 mM) randomly assigned by Response Surface Methodology (RSM). The powders with the highest greening were the controls (pH 8.9-9.3 and no added thiols) and powders at pH 10.41 with 0.82 mM thiols. From RSM, the maximum greening inhibition was achieved at pH 8.71 and 4.23 mM cysteine, and pH 8.51 and 3.78 mM GSH. However, cysteine caused more browning at alkaline pH than GSH. Furthermore, fluorescence spectroscopy showed that cysteine had a protective effect against alkaline unfolding, whereas GSH quenched fluorescence in a concentration-dependent manner. Overall, de-greening of alkaline extracted sunflower protein was achieved by adding cysteine or glutathione, but the thiols differed in their contribution to the browning and unfolding effect.
Collapse
|
45
|
Shen Y, Hu LT, Xia B, Ni ZJ, Elam E, Thakur K, Zhang JG, Wei ZJ. Effects of different sulfur-containing substances on the structural and flavor properties of defatted sesame seed meal derived Maillard reaction products. Food Chem 2021; 365:130463. [PMID: 34224935 DOI: 10.1016/j.foodchem.2021.130463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Lately, plant derived proteins have been used extensively to produce Maillard reaction products (MRPs) for the preparation of various functional food products. We evaluated the effects of cysteine (Cys), methionine (Met), and thiamine (Thi) on the color and flavor development of MRPs derived from sesame seed meal. Compared with the MRPs of sesame seed hydrolysate (SSH), Cys-MRPs had the strongest antioxidant activity and fluorescence intensity, showing the stronger taste and overall acceptability. These MRPs contained the highest sulfur compounds which resulted into stronger meat flavor. Moreover, the content of free amino acids in Met-MRPs was the highest. Compared with MRPs of SSH alone, MRPs with different sulfur content had better flavor characteristics and physicochemical properties, which entail their usage in different food ingredients.
Collapse
Affiliation(s)
- Yi Shen
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Long-Teng Hu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Bing Xia
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
46
|
Vasilaki A, Panagiotopoulou E, Koupantsis T, Katsanidis E, Mourtzinos I. Recent insights in flavor-enhancers: Definition, mechanism of action, taste-enhancing ingredients, analytical techniques and the potential of utilization. Crit Rev Food Sci Nutr 2021; 62:9036-9052. [PMID: 34142890 DOI: 10.1080/10408398.2021.1939264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The consumers' demand for clean-label food products, lead to the replacement of conventional additives and redesign of the production methods in order to adopt green processes. Many researchers have focused on the identification and isolation of naturally occurring taste and flavor enhancers. The term "taste enhancer" and "flavor enhancer" refer to umami and kokumi components, respectively, and their utilization requires the study of their mechanism of action and the identification of their natural sources. Plants, fungi and dairy products can provide high amounts of naturally occurring taste and flavor enhancers. Thermal or enzymatic treatments of the raw materials intensify taste and flavor properties. Their utilization as taste and flavor enhancers relies on their identification and isolation. All the above-mentioned issues are discussed in this review, from the scope of listing the newest trends and up-to-date technological developments. Additionally, the appropriate sensory analysis protocols of the naturally occurring taste-active components are presented. Moreover, future trends in using such ingredients by the food industry can motivate researchers to study new means for clean-label food production and provide further knowledge to the food industry, in order to respond to consumers' demands.
Collapse
Affiliation(s)
| | | | - Thomas Koupantsis
- Research and Development Department, PROVIL S.A, Thessaloniki, Greece
| | - Eugenios Katsanidis
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
47
|
Wang B, Zhang Q, Zhang N, Bak KH, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Zhao G, Gao Q, Hadiatullah H, Zhang J, Zhang A, Yao Y. Effect of wheat bran steam explosion pretreatment on flavors of nonenzymatic browning products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Chen K, Yang Q, Hong H, Feng L, Liu J, Luo Y. Physicochemical and functional properties of Maillard reaction products derived from cod (Gadus morhua L.) skin collagen peptides and xylose. Food Chem 2020; 333:127489. [DOI: 10.1016/j.foodchem.2020.127489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
|
50
|
Chen Z, Zhang Q, Shan J, Lu Y, Liu Q. Detection of Bitter Taste Molecules Based on Odorant-Binding Protein-Modified Screen-Printed Electrodes. ACS OMEGA 2020; 5:27536-27545. [PMID: 33134717 PMCID: PMC7594143 DOI: 10.1021/acsomega.0c04089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/29/2020] [Indexed: 05/08/2023]
Abstract
Bitter taste substances commonly represent a signal of toxicity. Fast and reliable detection of bitter molecules improves the safety of foods and beverages. Here, we report a biosensor using an easily accessible and cost-effective odorant-binding protein (OBP) of Drosophila melanogaster as a biosensitive material for the detection of bitter molecules. Based on the theoretical evaluation of the protein-ligand interaction, binding energies between the OBP and bitter molecules were calculated via molecular docking for the prediction and verification of binding affinities. Through one-step reduction, gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) were deposited on the screen-printed electrodes for improving the electrochemical properties of electrodes. After the electrodes were immobilized with OBPs via layer-by-layer self-assembly, typical bitter molecules, such as denatonium, quinine, and berberine, were investigated through electrochemical impedance spectroscopy. The bitter molecules showed significant binding properties to the OBP with linear response concentrations ranging from 10-9 to 10-6 mg/mL. Therefore, the OBP-based biosensor offered powerful analytic techniques for the detection of bitter molecules and showed promising applications in the field of bitter taste evaluation.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qingqing Zhang
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianzhen Shan
- The
First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yanli Lu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
- . Tel/Fax: +86 571 87953796
| | - Qingjun Liu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
| |
Collapse
|