1
|
Feng Q, Ma J, Jiang X, Wei W, Xu D, Cao Y, Pei H. Therapeutic potential of fucoidan in atherosclerosis: a review. Food Funct 2025. [PMID: 40353291 DOI: 10.1039/d4fo05388e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Atherosclerosis (AS) is a slowly progressive disease that significantly increases the risk of cardiovascular diseases. The development of AS is closely associated with various factors, including disturbances in lipid metabolism, endothelial damage, inflammation, and the formation of unstable plaques. AS is strongly linked to diseases with high incidence and mortality, such as ischemic heart disease and stroke, which pose significant economic burdens. Recent studies have focused on identifying effective treatments for preventing and reversing AS. New evidence indicates that fucoidan, a polysaccharide derived from rockweed, possesses lipid-lowering, antioxidant, anti-inflammatory, endothelial-protective and prebiotic properties that align with the pathophysiology of AS, making it a promising therapeutic candidate. This review systematically presents recent progress in understanding the anti-atherosclerotic effects of fucoidan, particularly its underlying mechanisms. These mechanisms involve the regulation of lipid levels, reduction of vascular inflammation, enhancement of antioxidant defenses, and protection of the vascular endothelium. These insights are essential for improving cardiovascular and cerebrovascular health.
Collapse
Affiliation(s)
- Qiujian Feng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Ma
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongchen Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Li K, Li R, Liu Y, Li G, Liu S. Diversity, mechanism and structure-activity relationships of marine anticoagulant-active polysaccharides: A review. Int J Biol Macromol 2025; 306:141742. [PMID: 40049491 DOI: 10.1016/j.ijbiomac.2025.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Thrombosis is a major complication of cardiovascular disease that can lead to fatal myocardial infarction, acute ischemic stroke and venous thromboembolism, posing a significant threat to human health and even life. Recent research showed that polysaccharides from marine organisms, including marine plants and marine animals, exhibit excellent anticoagulant activity. However, different marine anticoagulant-active polysaccharides (MAPs) exhibit significant differences in both the structure and anticoagulant activity. This review systematically summarizes the diversity and structure of MAPs from the last 30 years. We compared the anticoagulant activity and drug development potential of MAPs from different organisms including red algae, green algae, brown algae, marine fish, sea urchins and sea cucumbers, etc., and analyzed the structure-activity relationships of some MAPs with specific structures. In addition, we also discuss the current challenges and future perspectives of MAPs for the development of novel anticoagulant drugs. This review not only offers a comprehensive understanding of the diversity of marine anticoagulant polysaccharides but also provides valuable reference and guidance for the development of novel anticoagulant drugs in the future.
Collapse
Affiliation(s)
- Kaiqiang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 26623, China.
| | - Yuanjie Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 26623, China
| |
Collapse
|
3
|
George AM, Chakraborty K, Paulose SK, Jalal S, Pai AA, Dhara S. Anticoagulant potential of sulfated galactofucan from Turbinaria ornata: Targeting coagulation pathways and thrombin signaling in human umbilical vein endothelial cells. Int J Biol Macromol 2025; 306:141499. [PMID: 40015391 DOI: 10.1016/j.ijbiomac.2025.141499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Dysregulation of blood coagulation can result in thrombosis, highlighting the importance of anticoagulants that target both the extrinsic and intrinsic pathways of fibrin clot formation. This study explores anticoagulant effects of TOSP-3, a sulfated polysaccharide characterized as [→3)-4-O-SO₃-α-Fucp-(1 → 3)-4-O-SO₃-β-Galp-(1→] from the brown seaweed Turbinaria ornata, composed of sulfated α-(1 → 3)-fucopyranose (Fucp) and β-(1 → 3)-galactopyranose (Galp) units. In vitro analysis revealed that TOSP-3 (25 μg/mL) markedly extended activated partial thromboplastin time (100.49 s) and prothrombin time (77.57 s), highlighting its regulation on both intrinsic and extrinsic coagulation cascades. TOSP-3 induced a substantial reduction in coagulation factor Xa (FXa) expression (89 %) in human umbilical vein endothelial cells. It further exhibited a substantial five-fold inhibition of thrombin-catalyzed fibrin polymerization and reduced platelet aggregation by approximately 87 %, compared to the negative control (10 μM ADP). TOSP-3 attenuated thrombin-induced intracellular Ca2+ mobilization (∼33 %), while concurrently diminishing total thrombin production (33 %), thereby highlighting its inhibitory effects on thrombin-mediated signaling pathways. The sulfate content, structural patterns, and linkage characteristics of TOSP-3 may enable it to inhibit FXa expression and suppress thrombin-catalyzed fibrin polymerization through electrostatic interactions, potentially offering more effective modulation of the coagulation cascade than heparin. These findings highlight the potential of TOSP-3 as a natural anticoagulant for attenuating thrombotic disorders.
Collapse
Affiliation(s)
- Ans Mariya George
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala State, India; Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Kajal Chakraborty
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala State, India.
| | - Silpa Kunnappilly Paulose
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala State, India
| | - Shifa Jalal
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala State, India
| | - Ashwin Ashok Pai
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| | - Shubhajit Dhara
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| |
Collapse
|
4
|
Yue Q, Liu Y, Li F, Hong T, Guo S, Cai M, Zhao L, Su L, Zhang S, Zhao C, Li K. Antioxidant and anticancer properties of fucoidan isolated from Saccharina Japonica brown algae. Sci Rep 2025; 15:8962. [PMID: 40089594 PMCID: PMC11910537 DOI: 10.1038/s41598-025-94312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Fucoidan is a fucose-rich sulfated polysaccharide that has gained attention owing to its various biological activities. In this study, fucoidan was isolated from Saccharina japonica using an enzyme-assisted method, and its antioxidant and anti-hepatocarcinoma effects were evaluated. The fucoidan was a 112.8 kDa polysaccharide comprising seven monosaccharides: fucose, xylose, glucuronic acid, rhamnose, glucose, mannose, and galactose. The main chain residues were (1 → 3)-α-L-Fucp and (1 → 4)-α-L-Fucp units with sulfate groups at the C-2/C-4 positions of the (1 → 3)-α-L-Fucp residues. S. japonica fucoidans showed excellent antioxidant potency with values of 1.02 mg TE/g and 5.39 mg TE/g for the ABTS and FRAP assays, respectively. Additionally, they exerted antitumor efficacy and low systemic toxicity in H22 tumor-bearing mice, with a tumor inhibition rate of 42.93%. Furthermore, it significantly inhibited tumor angiogenesis and reduced pro-inflammatory cytokines levels (IL-1β, IL-6, and TNF-α). Our results suggest that fucoidan isolated from S. japonica possesses potent antioxidant and anticancer properties and may be used as a potential agent for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Shandong Xiaoying Biotechnology Co., Ltd., Jinan, 250003, China.
| | - Yongxuan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fujia Li
- Shandong Xiaoying Biotechnology Co., Ltd., Jinan, 250003, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shousen Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mengrui Cai
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, 250000, China.
| |
Collapse
|
5
|
Chen G, Yu L, Shi F, Shen J, Zhang Y, Liu G, Mei X, Li X, Xu X, Xue C, Chang Y. A comprehensive review of sulfated fucan from sea cucumber: Antecedent and prospect. Carbohydr Polym 2024; 341:122345. [PMID: 38876715 DOI: 10.1016/j.carbpol.2024.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xinyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
6
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res 2024; 538:109071. [PMID: 38471432 DOI: 10.1016/j.carres.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The ocean is the common home of a large number of marine organisms, including plants, animals, and microorganisms. Researchers can extract thousands of important bioactive components from the oceans and use them extensively to treat and prevent diseases. In contrast, marine polysaccharide macromolecules such as alginate, carrageenan, Laminarin, fucoidan, chitosan, and hyaluronic acid have excellent physicochemical properties, good biocompatibility, and high bioactivity, which ensures their wide applications and strong therapeutic potentials in drug delivery. Drug delivery systems (DDS) based on marine polysaccharides and modified marine polysaccharide molecules have emerged as an innovative technology for controlling drug distribution on temporal, spatial, and dosage scales. They can detect and respond to external stimuli such as pH, temperature, and electric fields. These properties have led to their wide application in the design of novel drug delivery systems such as hydrogels, polymeric micelles, liposomes, microneedles, microspheres, etc. In addition, marine polysaccharide-based DDS not only have smart response properties but also can combine with the unique biological properties of the marine polysaccharide base to exert synergistic therapeutic effects. The biological activities of marine polysaccharides and the design of marine polysaccharide-based DDS are reviewed. Marine polysaccharide-based responsive DDS are expected to provide new strategies and solutions for disease treatment.
Collapse
Affiliation(s)
- Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Meijun Chen
- Yantai Muping District Hospital of Traditional Chinese Medicine, No.505, Government Street, Muping District, Yantai, 264110, PR China.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao, 266003, PR China.
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
8
|
Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. Int J Biol Macromol 2024; 265:131007. [PMID: 38508566 DOI: 10.1016/j.ijbiomac.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.
Collapse
Affiliation(s)
- Yi Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xueying Guo
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chunxiao Huang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| |
Collapse
|
9
|
Elhiss S, Hamdi A, Chahed L, Boisson-Vidal C, Majdoub H, Bouchemal N, Laschet J, Kraiem J, Le Cerf D, Maaroufi RM, Chaubet F, Ben Mansour M. Hyaluronic acid from bluefin tuna by-product: Structural analysis and pharmacological activities. Int J Biol Macromol 2024; 264:130424. [PMID: 38428772 DOI: 10.1016/j.ijbiomac.2024.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The fishing and aquaculture industries generate a huge amount of waste during processing and preservation operations, especially those of tuna. Recovering these by-products is a major economic and environmental challenge for manufacturers seeking to produce new active biomolecules of interest. A new hyaluronic acid was extracted from bluefin tuna's vitreous humour to assess its antioxidant and pharmacological activities. The characterization by infrared spectroscopy (FT-IR), nuclear magnetic resonance ((1D1H) and 2D (1H COSY, 1H/13C HSQC)) and size exclusion chromatography (SEC/MALS/DRI/VD) revealed that the extracted polysaccharide was a hyaluronic acid with high uronic acid content (55.8 %) and a weight average molecular weight of 888 kDa. This polymer possesses significant anti-radical activity and ferrous chelating capacity. In addition, pharmacological evaluation of its anti-inflammatory and analgesic potential, using preclinical models, in comparison with reference drugs (Dexamethasone, diclofenac, and acetylsalicylate of lysine), revealed promising anti-inflammatory activity as well as interesting peripheral and central antinociceptive activity. Therefore, our new hyaluronic acid compound may therefore serve as a potential drug candidate for the treatment of pain sensation and inflammation of various pathological origins.
Collapse
Affiliation(s)
- Sawsen Elhiss
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | - Assia Hamdi
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Latifa Chahed
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | | | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Nadia Bouchemal
- Université Sorbonne Paris Nord, CNRS, CSPBAT, F-93000 Bobigny, France
| | - Jamila Laschet
- Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Jamil Kraiem
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Didier Le Cerf
- Université Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000 Rouen, France
| | - Raoui Mounir Maaroufi
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia
| | - Frédéric Chaubet
- Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Université Sorbonne Paris Nord, INSERM, LVTS, Institut Galilée, F-93430 Villetaneuse, France
| | - Mohamed Ben Mansour
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41), University of Monastir, Tunisia.
| |
Collapse
|
10
|
Reis MBE, Maximo AI, Magno JM, de Lima Bellan D, Buzzo JLA, Simas FF, Rocha HAO, da Silva Trindade E, Camargo de Oliveira C. A Fucose-Containing Sulfated Polysaccharide from Spatoglossum schröederi Potentially Targets Tumor Growth Rather Than Cytotoxicity: Distinguishing Action on Human Melanoma Cell Lines. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:181-198. [PMID: 38273163 DOI: 10.1007/s10126-024-10287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Natural substances are strategic candidates for drug development in cancer research. Marine-derived molecules are of special interest due to their wide range of biological activities and sustainable large-scale production. Melanoma is a type of skin cancer that originates from genetic mutations in melanocytes. BRAF, RAS, and NF1 mutations are described as the major melanoma drivers, but approximately 20% of patients lack these mutations and are included in the triple wild-type (tripleWT) classification. Recent advances in targeted therapy directed at driver mutations along with immunotherapy have only partially improved patients' overall survival, and consequently, melanoma remains deadly when in advanced stages. Fucose-containing sulfated polysaccharides (FCSP) are potential candidates to treat melanoma; therefore, we investigated Fucan A, a FCSP from Spatoglossum schröederi brown seaweed, in vitro in human melanoma cell lines presenting different mutations. Up to 72 h Fucan A treatment was not cytotoxic either to normal melanocytes or melanoma cell lines. Interestingly, it was able to impair the tripleWT CHL-1 cell proliferation (57%), comparable to the chemotherapeutic cytotoxic drug cisplatin results, with the advantage of not causing cytotoxicity. Fucan A increased CHL-1 doubling time, an effect attributed to cell cycle arrest. Vascular mimicry, a close related angiogenesis process, was also impaired (73%). Fucan A mode of action could be related to gene expression modulation, in special β-catenin downregulation, a molecule with protagonist roles in important signaling pathways. Taken together, results indicate that Fucan A is a potential anticancer molecule and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Maíra Barbosa E Reis
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Jessica Maria Magno
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Daniel de Lima Bellan
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | | | - Hugo Alexandre Oliveira Rocha
- Biochemistry Department, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | | |
Collapse
|
11
|
Atanassova MR, Kolden Midtbo L, Mildenberger J, Friðjónsson ÓH. Novel biomaterials and biotechnological applications derived from North Atlantic sea cucumbers: A systematic review. THE WORLD OF SEA CUCUMBERS 2024:585-609. [DOI: 10.1016/b978-0-323-95377-1.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Hossain A, Dave D, Shahidi F. Sulfated polysaccharides in sea cucumbers and their biological properties: A review. Int J Biol Macromol 2023; 253:127329. [PMID: 37844809 DOI: 10.1016/j.ijbiomac.2023.127329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
13
|
Badura K, Frąk W, Hajdys J, Majchrowicz G, Młynarska E, Rysz J, Franczyk B. Hepatorenal Syndrome-Novel Insights into Diagnostics and Treatment. Int J Mol Sci 2023; 24:17469. [PMID: 38139297 PMCID: PMC10744165 DOI: 10.3390/ijms242417469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatorenal syndrome (HRS) is a disorder associated with cirrhosis and renal impairment, with portal hypertension as its major underlying cause. Moreover, HRS is the third most common cause of acute kidney injury, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of HRS. We discuss pathogenesis associated with HRS. Mechanisms such as dysfunction of the circulatory system, bacterial infection, inflammation, impaired renal autoregulation, circulatory, and others, which have been identified as critical pathways for development of HRS, have become easier to diagnose in recent years. Additionally, relatively recently, renal dysfunction biomarkers have been found indicating renal injury, which are involved in the pathophysiology of HRS. This review also summarizes the available information on the management of HRS, focusing on vasoconstrictive drugs, renal replacement therapy, and liver transplant together with currently being investigated novel therapies. Analyzing new discoveries for the underlying causes of this condition assists the general research to improve understanding of the mechanism of pathophysiology and thus prevention of HRS.
Collapse
Affiliation(s)
- Krzysztof Badura
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
14
|
Zhao X, Yang T, Zhou J, Chen Y, Shen Q, Zhang J, Qiu Q. Fucoidan alleviates the hepatorenal syndrome through inhibition organic solute transporter α/β to reduce bile acids reabsorption. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100159. [PMID: 37416532 PMCID: PMC10320405 DOI: 10.1016/j.crphar.2023.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/03/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
The high levels of bile acids are a critical factor in hepatorenal syndrome. Organic solute transporter α/β (Ostα/β) participate in bile acids reabsorption in the kidney. Fucoidan has the great potential in protecting against liver and kidney injury. However, whether Ostα/β increase bile acids reabsorption in bile duct ligature (BDL)-induced hepatorenal syndrome and the blockade of fucoidan are still not clear. Male mice that received BDL were given to fucoidan (at 12.5, 25 and 50 mg/kg) through intraperitoneal injection once daily for three weeks. The serum, liver and kidney samples of these experimental mice were collected to carry out biochemical, pathological and Western blot analysis. In this study, fucoidan significantly lowered serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), decreased serum levels of uric acid, creatinine and uric nitrogen, restored the deregulation of the renal urate transporter 1 (URAT1), organic anion transporter 1 (OAT1), and organic cation/carnitine transporter 1/2 (OCTN1/2), consistence with alleviation BDL-induced liver and kidney dysfunction, inflammation and fibrosis in mice. Furthermore, fucoidan significantly hampered Ostα/β and reduced bile acids reabsorption in BDL-induced mice, protected against AML12 and HK-2 cells injury in vitro. These results demonstrate that fucoidan alleviates BDL-induced hepatorenal syndrome through inhibition Ostα/β to reduce bile acids reabsorption in mice. Therefore, suppression of Ostα/β by fucoidan may be a novel strategy for attenuating hepatorenal syndrome.
Collapse
|
15
|
Xing M, Li G, Liu Y, Yang L, Zhang Y, Zhang Y, Ding J, Lu M, Yu G, Hu G. Fucoidan from Fucus vesiculosus prevents the loss of dopaminergic neurons by alleviating mitochondrial dysfunction through targeting ATP5F1a. Carbohydr Polym 2023; 303:120470. [PMID: 36657849 DOI: 10.1016/j.carbpol.2022.120470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease is a neurodegenerative disease that is characterized by the loss of dopaminergic neurons. Fucoidan, which has emerged as a neuroprotective agent, is a marine-origin sulfated polysaccharide enriched in brown algae and sea cucumbers. However, variations in structural characteristics exist among fucoidans derived from different sources, resulting in a wide spectrum of biological effects. It is urgent to find the fucoidan with the strongest neuroprotective effect, and the mechanism needs to be further explored. We isolated and purified four different fucoidan species with different chemical structures and found that Type II fucoidan from Fucus vesiculosus (FvF) significantly improved mitochondrial dysfunction, prevented neuronal apoptosis, reduced dopaminergic neuron loss, and improved motor deficits in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Further mechanistic investigation revealed that the ATP5F1a protein is a key target responsible for alleviating mitochondrial dysfunction of FvF to exert neuroprotective effects. This study highlights the favorable properties of FvF for neuroprotection, making FvF a promising candidate for the treatment of PD.
Collapse
Affiliation(s)
- Meimei Xing
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yang Liu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Luyao Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Youjiao Zhang
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuruo Zhang
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211116, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211116, China.
| |
Collapse
|
16
|
Immunopotentiating Activity of Fucoidans and Relevance to Cancer Immunotherapy. Mar Drugs 2023; 21:md21020128. [PMID: 36827169 PMCID: PMC9961398 DOI: 10.3390/md21020128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans were first recognized for their role in supporting the immune response and later, in the 1990s, their effects on immune potentiation began to emerge. In recent years, the understanding of the immunomodulatory effects of fucoidan has expanded significantly. The ability of fucoidan(s) to activate CTL-mediated cytotoxicity against cancer cells, strong antitumor property, and robust safety profile make fucoidans desirable for effective cancer immunotherapy. This review focusses on current progress and understanding of the immunopotentiation activity of various fucoidans, emphasizing their relevance to cancer immunotherapy. Here, we will discuss the action of fucoidans in different immune cells and review how fucoidans can be used as adjuvants in conjunction with immunotherapeutic products to improve cancer treatment and clinical outcome. Some key rationales for the possible combination of fucoidans with immunotherapy will be discussed. An update is provided on human clinical studies and available registered cancer clinical trials using fucoidans while highlighting future prospects and challenges.
Collapse
|
17
|
Park B, Yu SN, Kim SH, Lee J, Choi SJ, Chang JH, Yang EJ, Kim KY, Ahn SC. Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand. J Microbiol Biotechnol 2022; 32:1017-1025. [PMID: 35879294 PMCID: PMC9628933 DOI: 10.4014/jmb.2203.03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Bone homeostasis is regulated by constant remodeling through osteogenesis by osteoblasts and osteolysis by osteoclasts and osteoporosis can be provoked when this balance is broken. Present pharmaceutical treatments for osteoporosis have harmful side effects and thus, our goal was to develop therapeutics from intrisincally safe natural products. Fucoidan is a polysaccharide extracted from many species of brown seaweed, with valuable pharmaceutical activities. To intensify the effect of fucoidan on bone homeostasis, we hydrolyzed fucoidan using AMG, Pectinex and Viscozyme. Of these, fucoidan biotransformed by Pectinex (Fu/Pec) powerfully inhibited the induction of tartrate-resistant acid phosphatase (TRAP) activity in osteoclasts differentiated from bone marrow macrophages (BMMs) by the receptor for activation of nuclear factor-κB ligand (RANKL). To investigate potential of lower molecular weight fucoidan it was separated into >300 kDa, 50-300 kDa, and <50 kDa Fu/Pec fractions by ultrafiltration system. The effects of these fractions on TRAP and alkaline phosphatase (ALP) activities were then examined in differentiated osteoclasts and MC3T3-E1 osteoblasts, respectively. Interestingly, 50-300 kDa Fu/Pec suppressed RANKL-induced osteoclasts differentiation from BMMs but did not synergistically enhance osteoblasts differentiation induced by osteogenic agents. In addition, this fraction inhibited the expressions of NFATc1, TRAP, OSCAR, and RANK, which are all key transcriptional factors involved in osteoclast differentiation, and those of Src, c-Fos and Mitf, as determined by RT-PCR. In conclusion, enzymatically low-molecularized 50-300 kDa Fu/Pec suppressed TRAP by downregulating RANKL-related signaling, contributing to the inhibition of osteoclasts differentiation, and represented a potential means of inducing bone remodeling in the background of osteoporosis.
Collapse
Affiliation(s)
- Bobae Park
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea,Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Sun Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 065510, USA
| | - Junwon Lee
- Department of Biomedicinal Science and Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Sung Jong Choi
- Spine Center, Bone Barun Hospital, Yangsan 50612, Republic of Korea
| | - Jeong Hyun Chang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Kwang-Youn Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea,Corresponding author Phone: +82-51-510-8092 E-mail:
| |
Collapse
|
18
|
Sun Y, Xu M, Wang C, Guan S, Wang L, Cong B, Zhu W, Xu Y. Low-molecular-weight fucoidan bidirectionally regulates lipid uptake and cholesterol efflux through the p38 MAPK phosphorylation. Int J Biol Macromol 2022; 220:371-384. [PMID: 35970372 DOI: 10.1016/j.ijbiomac.2022.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis (AS) is the pathological basis of many cardiovascular and cerebrovascular diseases, in which macrophage-derived foam cells are the critical step and a typical pathological feature of early atherosclerosis. We previously confirmed that low-molecular-weight fucoidan (LMWF) had a good anti-AS effect, but the mechanism is still unclear. Here with aim to investigate the inhibitory effect of LMWF on foam cells and its molecular mechanism. Oil red O staining showed that LMWF effectively alleviated lipid accumulation and the formation of foam cells. Flow cytometry detection showed that LMWF promoted foam cells apoptosis. In addition, immunofluorescence showed that LMWF inhibited macrophage scavenger receptor A1 (SR-A1)-mediated lipid uptake and promoted ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol outflow. Western blot showed that LMWF downregulated SR-A1 protein expression and upregulated ABCA1 protein expression by inhibiting p38 mitogen activated protein kinase (p38MAPK) phosphorylation. Moreover, the mRNA transcriptions of Stat1, Elk-1, and Myc were downregulated when treated with LMWF. It concluded that, LMWF achieved bidirectional regulation of SR-A1 and ABCA1, then prevented the formation of foam cells, finally ameliorated the development of AS.
Collapse
Affiliation(s)
- Yu Sun
- Medical College, Qingdao University, Qingdao 266071, China
| | - Ming Xu
- Medical College, Qingdao University, Qingdao 266071, China
| | - Changxin Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shulong Guan
- Department of Surgery, Qingdao Shinan District People's Hospital, Qingdao 266520, China
| | - Lina Wang
- Department of Blood Transfusion, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shangdong University, Qingdao 266035, China
| | - Beibei Cong
- Central Laboratory, Qingdao Stomatological Hospital, Qingdao 266001, China.
| | - Wenlong Zhu
- Business School, Qingdao University of Technology, Qingdao 266520, China.
| | - Yingjie Xu
- Central Laboratory, Qingdao Stomatological Hospital, Qingdao 266001, China.
| |
Collapse
|
19
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
20
|
Evaluation of M xO y/fucoidan hybrid system and their application in lipase immobilization process. Sci Rep 2022; 12:7218. [PMID: 35508694 PMCID: PMC9068721 DOI: 10.1038/s41598-022-11319-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, new MxOy/fucoidan hybrid systems were fabricated and applied in lipase immobilization. Magnesium (MgO) and zirconium (ZrO2) oxides were used as MxOy inorganic matrices. In the first step, the proposed oxides were functionalized with fucoidan from Fucus vesiculosus (Fuc). The obtained MgO/Fuc and ZrO2/Fuc hybrids were characterized by means of spectroscopic analyses, including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance. Additionally, thermogravimetric analysis was performed to determine the thermal stability of the hybrids. Based on the results, the mechanism of interaction between the oxide supports and fucoidan was also determined. Furthermore, the fabricated MxOy/fucoidan hybrid materials were used as supports for the immobilization of lipase from Aspergillus niger, and a model reaction (transformation of p-nitrophenyl palmitate to p-nitrophenol) was performed to determine the catalytic activity of the proposed biocatalytic system. In that reaction, the immobilized lipase exhibited high apparent and specific activity (145.5 U/gcatalyst and 1.58 U/mgenzyme for lipase immobilized on MgO/Fuc; 144.0 U/gcatalyst and 2.03 U/mgenzyme for lipase immobilized on ZrO2/Fuc). The immobilization efficiency was also confirmed using spectroscopic analyses (FTIR and XPS) and confocal microscopy.
Collapse
|
21
|
Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022; 13:20406223221076891. [PMID: 35432845 PMCID: PMC9008857 DOI: 10.1177/20406223221076891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidan is a marine polysaccharide. In recent years, fucoidan has attracted wide-scale attention from the pharmaceutical industries due to its diverse biological activities such as lipid-lowering, anti-atherosclerosis, and anticoagulation. This review clarifies the pharmacological effects of fucoidan in the treatment of human cardiovascular and cerebrovascular diseases. Fucoidan exerts a hypolipidemic effect by increasing the reverse transport of cholesterol, inhibiting lipid synthesis, reducing lipid accumulation, and increasing lipid metabolism. Inflammation, anti-oxidation, and so on have a regulatory effect in the process of atherosclerosis endothelial cells, macrophages, smooth muscle cells, and so on; fucoidan can not only prevent thrombosis through anticoagulation and regulate platelet activation, but also promote the dissolution of formed thrombi. Fucoidan has a neuroprotective effect, and also has a positive effect on the prognosis of the cardiovascular and cerebrovascular. The prospects of applying fucoidan in cardio-cerebrovascular diseases are reviewed to provide some theoretical bases and inspirations for its full-scale development and utilization.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai,
ChinaHeping Hospital Affiliated to Changzhi Medical College, Changzhi,
China
| | - Xueli Xu
- Binzhou Inspection and Testing Center, Binzhou,
China
| | - Qiang Wei
- Marine College, Shandong University, Weihai,
China
| | - Qiong Yang
- Marine College, Shandong University, Weihai,
China
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai,
China
| | - Yuan Wang
- Marine College, Shandong University, Weihai,
China
| | - Xia Li
- Marine College, Shandong University, Weihai,
China
| | - Kai Ji
- Department of Plastic Surgery, China-Japan
Friendship Hospital, Beijing 100029, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai
264209, China
| |
Collapse
|
22
|
Wang J, Shi S, Li F, Du X, Kong B, Wang H, Xia X. Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113307] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Miri MR, Zare A, Saberzadeh J, Baghban N, Nabipour I, Tamadon A. Anti-lung Cancer Marine Compounds: A Review. Ther Innov Regul Sci 2022; 56:191-205. [PMID: 35025082 DOI: 10.1007/s43441-022-00375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most common and lethal cancers in human beings. Lung cancer has been divided into two major types: small cell lung cancer (SCLC) and non-small cell lung carcinoma (NSCLC). Current drugs suffer from various side effects, and the insufficient efficacy of present treatments creates a desire for better more efficient new drugs. This review compares the diversity of marine-derived bioactive compounds from different marine species. Some of the natural products from marine resources are in different stages of clinical trials. By the way, most of them have been studied in vitro and in vivo. Additionally, in this review, the mechanisms of action of marine-derived anti-lung cancer components on lung cancer cell lines have been reviewed. In addition, considering growing rate and the high costs of cancer research, attention must be paid to some aspects of targeting and developing anti-lung cancer drug. In better words, like the other therapeutic strategies that have their particular challenges and weak points, several challenges about marine-derived anti-lung cancer components which exist for scientists for doing research are explained. Moreover, as the attentions in the field of cancer therapy are focused on designing and developing new anticancer strategies for the treatment of cancer in the future, the application of marine-derived anti-lung cancer components in the field of future cancer therapy and their role in future anticancer strategies are briefly discussed.
Collapse
Affiliation(s)
- Mohammad Reza Miri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamileh Saberzadeh
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | |
Collapse
|
24
|
Rashed ZE, Grasselli E, Khalifeh H, Canesi L, Demori I. Brown-Algae Polysaccharides as Active Constituents against Nonalcoholic Fatty Liver Disease. PLANTA MEDICA 2022; 88:9-19. [PMID: 33142346 DOI: 10.1055/a-1273-3159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nonalcoholic fatty liver disease is a metabolic disorder characterized by lipid overloading in hepatocytes that can progress pathogenically and even end in hepatocellular carcinoma. Nonalcoholic fatty liver disease pharmacological treatment is still limited by unwanted side effects, whereas the use of food components with therapeutic potential is advisable. The culinary use of marine algae is traditional for some populations and reviving worldwide, with promising health outcomes due to the large number of bioactive compounds found in seaweeds. The present review focuses on brown-algae polysaccharides, particularly fucoidan, alginate, and laminarin, and summarizes the experimental evidence of their potential effects against nonalcoholic fatty liver disease onset and progression. In vitro and in vivo studies demonstrate that brown-algae polysaccharides exert beneficial actions on satiety feeling, caloric intake, fat absorption, and modulation of the gut microbiota, which could account for indirect effects on energy and lipid homeostasis, thus diminishing the fat overload in the liver. Specific effects against nonalcoholic fatty liver disease pathogenesis and worsening are also described and sustained by the antioxidant, anti-inflammatory, and antisteatotic properties of brown-algae polysaccharides. Further studies are required to clarify the mechanism of action of brown-algae polysaccharides on liver cells, to determine the composition and bioavailability of brown-algae polysaccharides present in different algal sources and to probe the clinical availability of these compounds in the form of algal foods, food supplements, and regulated therapeutics.
Collapse
Affiliation(s)
- Zeinab El Rashed
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
- Rammal Rammal Laboratory (ATAC group), Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Elena Grasselli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Hala Khalifeh
- Rammal Rammal Laboratory (ATAC group), Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Ilaria Demori
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, Zhao Q, Du B, Yang Y. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym 2021; 270:118347. [PMID: 34364596 PMCID: PMC10429693 DOI: 10.1016/j.carbpol.2021.118347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Fucoidan is a sulfated polysaccharide with various bioactivities. The application of fucoidan in cancer treatment, wound healing, and food industry has been extensively studied. However, the therapeutic value of fucoidan in cardiovascular diseases has been less explored. Increasing number of investigations in the past years have demonstrated the effects of fucoidan on cardiovascular system. In this review, we will focus on the bioactivities related to cardiovascular applications, for example, the modulation functions of fucoidan on coagulation system, inflammation, and vascular cells. Factors mediating those activities will be discussed in detail. Current therapeutic strategies and future opportunities and challenges will be provided to inspire and guide further research.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
27
|
Cavalcanti IDL, de Fátima Ramos Dos Santos Medeiros SM, Dos Santos Macêdo DC, Ferro Cavalcanti IM, de Britto Lira Nogueira MC. Nanocarriers in the Delivery of Hydroxychloroquine to the Respiratory System: An Alternative to COVID-19. Curr Drug Deliv 2021; 18:583-595. [PMID: 32860358 DOI: 10.2174/1567201817666200827110445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
In response to the global outbreak caused by SARS-CoV-2, this article aims to propose the development of nanosystems for the delivery of hydroxychloroquine in the respiratory system to the treatment of COVID-19. A descriptive literature review was conducted, using the descriptors "COVID-19", "Nanotechnology", "Respiratory Syndrome" and "Hydroxychloroquine", in the PubMed, ScienceDirect and SciElo databases. After analyzing the articles according to the inclusion and exclusion criteria, they were divided into 3 sessions: Coronavirus: definitions, classifications and epidemiology, pharmacological aspects of hydroxychloroquine and pharmaceutical nanotechnology in targeting of drugs. We used 131 articles published until July 18, 2020. Hydroxychloroquine seems to promote a reduction in viral load, in vivo studies, preventing the entry of SARS-CoV-2 into lung cells, and the safety of its administration is questioned due to the toxic effects that it can develop, such as retinopathy, hypoglycemia and even cardiotoxicity. Nanosystems for the delivery of drugs in the respiratory system may be a viable alternative for the administration of hydroxychloroquine, which may enhance the therapeutic effect of the drug with a consequent decrease in its toxicity, providing greater safety for implementation in the clinic in the treatment of COVID-19.
Collapse
|
28
|
Low molecular weight fucoidan prepared by fucoidanase degradation – A promising browning inhibitor. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Ma D, Wei J, Chen S, Wang H, Ning L, Luo SH, Liu CL, Song G, Yao Q. Fucoidan Inhibits the Progression of Hepatocellular Carcinoma via Causing lncRNA LINC00261 Overexpression. Front Oncol 2021; 11:653902. [PMID: 33928038 PMCID: PMC8078595 DOI: 10.3389/fonc.2021.653902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) as a main type of primary liver cancers has become one of the most deadly tumors because of its high morbidity and poor prognosis. Fucoidan is a family of natural, heparin-like sulfated polysaccharides extracted from brown algae. It is not only a widely used dietary supplement, but also participates in many biological activities, such as anti-oxidation, anti-inflammation and anti-tumor. However, the mechanism of fucoidan induced inhibition of HCC is elusive. In our study, we demonstrated that fucoidan contributes to inhibiting cell proliferation in vivo and in vitro, restraining cell motility and invasion and inducing cell cycle arrest and apoptosis. According to High-Throughput sequencing of long-non-coding RNA (lncRNA) in MHCC-97H cells treated with 0.5 mg/mL fucoidan, we found that 56 and 49 lncRNAs were correspondingly up- and down-regulated. LINC00261, which was related to the progression of tumor, was highly expressed in fucoidan treated MHCC-97H cells. Moreover, knocking down LINC00261 promoted cell proliferation by promoting the expression level of miR-522-3p, which further decreased the expression level of downstream SFRP2. Taken together, our results verified that fucoidan effectively inhibits the progression of HCC via causing lncRNA LINC00261 overexpression.
Collapse
Affiliation(s)
- Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Liuxin Ning
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shi-Hua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chieh-Lun Liu
- Department of Clinical Research and Development, Hi-Q Marine Biotech International Ltd., Taipei, Taiwan
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
30
|
Muruganantham S, Krishnaswami V, Alagarsamy S, Kandasamy R. Anti-platelet Drug-loaded Targeted Technologies for the Effective Treatment of Atherothrombosis. Curr Drug Targets 2021; 22:399-419. [PMID: 33109044 DOI: 10.2174/1389450121666201027125303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022]
Abstract
Atherothrombosis results from direct interaction between atherosclerotic plaque and arterial thrombosis and is the most common type of cardiovascular disease. As a long term progressive disease, atherosclerosis frequently results in an acute atherothrombotic event through plaque rupture and platelet-rich thrombus formation. The pathophysiology of atherothrombosis involves cholesterol accumulation endothelial dysfunction, dyslipidemia, immuno-inflammatory, and apoptotic aspects. Platelet activation and aggregation is the major cause for stroke because of its roles, including thrombus, contributing to atherosclerotic plaque, and sealing off the bleeding vessel. Platelet aggregates are associated with arterial blood pressure and cardiovascular ischemic events. Under normal physiological conditions, when a blood vessel is damaged, the task of platelets within the circulation is to arrest the blood loss. Antiplatelet inhibits platelet function, thereby decreasing thrombus formation with complementary modes of action to prevent atherothrombosis. In the present scientific scenario, researchers throughout the world are focusing on the development of novel drug delivery systems to enhance patient's compliance. Immediate responding pharmaceutical formulations become an emerging trend in the pharmaceutical industries with better patient compliance. The proposed review provides details related to the molecular pathogenesis of atherothrombosis and recent novel formulation approaches to treat atherothrombosis with particular emphasis on commercial formulation and upcoming technologies.
Collapse
Affiliation(s)
- Selvakumar Muruganantham
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
31
|
Doshi G, Nailwal N. A Review on Molecular Mechanisms and Patents of Marine-derived Anti-thrombotic Agents. Curr Drug Targets 2021; 22:318-335. [PMID: 33081673 DOI: 10.2174/1389450121666201020151927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Thrombosis is a condition of major concern worldwide as it is associated with life-threatening diseases related to the cardiovascular system. The condition affects 1 in 1000 adults annually, whereas 1 in 4 dies due to thrombosis, and this increases as the age group increases. The major outcomes are considered to be a recurrence, bleeding due to commercially available anti-coagulants, and deaths. The side effects associated with available anti-thrombotic drugs are a point of concern. Therefore, it is necessary to discover and develop an improvised benefit-risk profile drug, therefore, in search of alternative therapy for the treatment of thrombosis, marine sources have been used as promising treatment agents. They have shown the presence of sulfated fucans/galactans, fibrinolytic proteases, diterpenes, glycosaminoglycan, glycoside, peptides, amino acids, sterols, polysaccharides, polyphenols, vitamins, and minerals. Out of these marine sources, many chemicals were found to have anti-thrombotic activities. This review focuses on the recent discovery of anti-thrombotic agents obtained from marine algae, sponges, mussels, and sea cucumber, along with their mechanism of action and patents on its extraction process, preparation methods, and their applications. Further, the article concludes with the author's insight related to marine drugs, which have a promising future.
Collapse
Affiliation(s)
- Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Namrata Nailwal
- M. Pharm Research Scholar, Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| |
Collapse
|
32
|
Current developments in the oral drug delivery of fucoidan. Int J Pharm 2021; 598:120371. [PMID: 33581274 DOI: 10.1016/j.ijpharm.2021.120371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Fucoidan is well known to have various biological functions and is often investigated for pharmaceutical applications. Several studies have been conducted on clinical applications of fucoidan in recent years, especially regarding its oral drug delivery. Although fucoidan has shown promising results in various dosage forms, its potential applications as a dietary supplement have been demonstrated, and recent studies show that oral administration of fucoidan is preferred. However, the focus on the oral delivery of fucoidan in recent studies has caused its potency in therapy to be understudied. This review aims to provide results on the promising fucoidan activity by oral administration with in vivo studies. In addition to using it as an active ingredient, the utilization of fucoidan as an excipient in oral drug delivery systems will be discussed. An overview of fucoidan administration by oral delivery in recent promising studies will provide a direction for further investigations in clinical applications, particularly for fucoidan, which has a broad spectrum of bioactive properties.
Collapse
|
33
|
Bak J, Miyazaki Y, Nakano H, Matsui T. Profiling sulfate content of polysaccharides in seaweed species using a ligand-assisted <sup>1</sup>H-NMR assay. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Juneha Bak
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
| | - Yoshiyuki Miyazaki
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
- NPO Research Institute of Fucoidan
| | | | - Toshiro Matsui
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
| |
Collapse
|
34
|
Chantree P, Na-Bangchang K, Martviset P. Anticancer Activity of Fucoidan via Apoptosis and Cell Cycle Arrest on Cholangiocarcinoma Cell. Asian Pac J Cancer Prev 2021; 22:209-217. [PMID: 33507701 PMCID: PMC8184191 DOI: 10.31557/apjcp.2021.22.1.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Many previous studies reported that fucoidan has antitumor activities. The objective of the present study was to determine the cytotoxic effects and related mechanisms of cell death induced by fucoidan extracted from Fucus vesiculosus on CL-6 cholangiocarcinoma cell. METHODS CL-6 and OUMS cells were treated with 0, 100, 200, and 300 μg/mL of fucoidan. MTT assay was used to determine cytotoxicity. Flow cytometry-based assay was used to examine the distribution of apoptosis and cell cycle. The changes in nuclear morphology were determined using Hoechst 33,342 staining. Mitochondrial membrane potential (ΔΨm) was evaluated using the JC-1 kit. The apoptotic, anti-apoptotic, and cell cycle-related proteins study were examined by Western blot analysis. RESULTS The relative viable cell number of treated CL-6 cells was decreased but no effect was observed in OUMS normal cells. Furthermore, treated cells were arrested in the G0/G1 phase with down-regulation of cyclin D1 and CDK4. Annexin V/PI staining with flow cytometry analysis suggested that fucoidan could induce apoptosis in CL-6 cells. Western blot study revealed the up-regulation of apoptotic markers including Bax, cleaved PARP, cleaved caspase-3, but down-regulation of anti-apoptotic markers, cl-2. Moreover, fucoidan could induce nuclear fragmentation and chromatin condensation with alteration of ΔΨm. Conclusion: Fucoidan exerts antitumor properties against CL-6 cholangiocarcinoma cells illustrated by the induction of apoptosis and cell cycle arrest. .
Collapse
Affiliation(s)
- Pathanin Chantree
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Molecular Biology and Pharmacology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120, Thailand.
| | - Pongsakorn Martviset
- Center of Excellence in Molecular Biology and Pharmacology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120, Thailand.
- Division of Parasitology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
35
|
Potaś J, Szymańska E, Winnicka K. Challenges in developing of chitosan – Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Bak J, Miyazaki Y, Nakano H, Matsui T. Ligand-aided 1H Nuclear Magnetic Resonance Spectroscopy for Non-destructive Estimation of Sulfate Content in Sulfated Saccharides. ANAL SCI 2020; 36:1269-1274. [PMID: 32565527 DOI: 10.2116/analsci.20p163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sulfated saccharides exhibit diverse physiological activities, but a lack of any convenient assay hinders their evaluation. Herein, an assay for the analysis of sulfated saccharides is described using 1H nuclear magnetic resonance (NMR) spectroscopy by employing ligands that can form ionic complexes with the sulfate groups. Based on the change in the chemical shift (Δδ) of the ligands by sulfated mono- to tetrasaccharide, imidazole was found to be a good ligand, showing the maximum Δδ; neutral saccharides do not show any change in the δ value. A marked and constant downfield δ value observed was changed dramatically at a molar ratio of >1:1 (imidazole:sulfated saccharides), allowing a sulfate content estimation based on the concentration of imidazole at the Δδ inflection point. By the proposed ligand-aided 1H NMR assay, the sulfate content of natural sulfated polysaccharide, fucoidan, was non-destructively estimated to be 2.1 mmol/g-fucoidan.
Collapse
Affiliation(s)
- Juneha Bak
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
| | - Yoshiyuki Miyazaki
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University.,NPO Research Institute of Fucoidan
| | | | - Toshiro Matsui
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
| |
Collapse
|
37
|
Pradhan B, Patra S, Nayak R, Behera C, Dash SR, Nayak S, Sahu BB, Bhutia SK, Jena M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int J Biol Macromol 2020; 164:4263-4278. [PMID: 32916197 DOI: 10.1016/j.ijbiomac.2020.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Fucoidan is a complex polysaccharide (molecular weight 10,000-100,000 Da) derived from brown algae which comprises of L-fucose and sulfate groups have potential as therapeutic diligences against several human diseases. The fucoidan has expanded a widespread range of pharmacological properties as an anti-inflammatory, anticoagulant, antiangiogenic, immunomodulatory, anti-adhesive, anticancer, antidiabetic, antiviral and anti-neurodegenerative agents owing to their diverse chemical conformation and potent antioxidant activity. The antioxidant and immunomodulatory activities of the fucoidan contribute towards their disease preventive potency through dynamic modulation of key intracellular signalling pathways, regulation of ROS accumulation, and maintenance of principal cell survival and death pathways. Additionally, it also reduces cancer-associated cachexia. Despite the wide range of therapeutic potency, the fucoidan is heavily regarded as an unexplored plethora of druggable entities in the current situation. The isolation, screening, biological application, pre-clinical, and clinical assessment along with large scale cost-effective production remain a foremost task to be assessed. Moreover, the chemical synthesis of the present bioactive drug with confirmational rearrangement for enhanced availability and bioactivity also need tenacious investigation. Hence, in the present review, we give attention to the source of isolation of fucoidan, their principle strategic deployment in disease prevention, and the mechanistic investigation of how it works to combat different diseases that can be used for future therapeutic intervention.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Soumya Ranjan Dash
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Sneha Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India.
| |
Collapse
|
38
|
Dhahri M, Sioud S, Dridi R, Hassine M, Boughattas NA, Almulhim F, Al Talla Z, Jaremko M, Emwas AHM. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS OMEGA 2020; 5:14786-14795. [PMID: 32596616 PMCID: PMC7315596 DOI: 10.1021/acsomega.0c01724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department,
Faculty of Science Yanbu, Taibah University, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Salim Sioud
- Analytical Core Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Rihab Dridi
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Mohsen Hassine
- Hematology Department, Fattouma Bourguiba University Hospital, 5000 Monastir, Tunisia
| | - Naceur A. Boughattas
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Fatimah Almulhim
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Zeyad Al Talla
- ANPERC, King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Mariusz Jaremko
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdul-Hamid M. Emwas
- Core Labs, King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| |
Collapse
|
39
|
Besednova NN, Zaporozhets TS, Kuznetsova TA, Makarenkova ID, Kryzhanovsky SP, Fedyanina LN, Ermakova SP. Extracts and Marine Algae Polysaccharides in Therapy and Prevention of Inflammatory Diseases of the Intestine. Mar Drugs 2020; 18:E289. [PMID: 32486405 PMCID: PMC7345783 DOI: 10.3390/md18060289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious public health problem worldwide. Current therapeutic strategies that use anti-inflammatory drugs, immunosuppressants, and biological treatments are often ineffective and have adverse health effects. In this regard, the use of natural compounds aimed at key pathogenic therapeutic targets in IBD attracts universal attention. Seaweed is a valuable source of structurally diverse biologically active compounds. The materials presented in the review indicate that seaweed extracts and polysaccharides are effective candidates for the development of drugs, biological food additives, and functional nutrition products for the treatment and prevention of IBD. The structural features of algal polysaccharides provide the possibility of exposure to therapeutic targets of IBD, including proinflammatory cytokines, chemokines, adhesion molecules, nuclear factor NF-kB, intestinal epithelial cells, reactive oxygen and nitrogen. Further study of the relationship between the effect of polysaccharides from different types of algae, with different structure and molecular weights on immune and epithelial cells, intestinal microorganisms will contribute to a deeper understanding of their mechanisms and will help in the development of drugs, dietary supplements, functional foods for the treatment of patients with IBD.
Collapse
Affiliation(s)
- Natalya N. Besednova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Tatyana S. Zaporozhets
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Tatyana A. Kuznetsova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Ilona D. Makarenkova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Sergey P. Kryzhanovsky
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690087, Russia; (S.P.K.); (L.N.F.)
| | - Lydmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690087, Russia; (S.P.K.); (L.N.F.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok 690022, Russia;
| |
Collapse
|
40
|
Zhang M, Chen L, Liu Y, Chen M, Zhang S, Kong D. Sea cucumber Cucumaria frondosa fucoidan inhibits osteosarcoma adhesion and migration by regulating cytoskeleton remodeling. Oncol Rep 2020; 44:469-476. [PMID: 32467988 PMCID: PMC7336482 DOI: 10.3892/or.2020.7614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) has been demonstrated to be difficult to cure due to its potently malignant metastasis. Therefore, new therapeutic approaches blocking the metastatic potential of OS are urgently required to improve the outcomes for OS patients. In the present study, the anti-metastatic capacity of sea cucumber (Cucumaria frondosa) fucoidan (Cf-Fuc) was evaluated on osteosarcoma cells by cell adhesion assay, Transwell assay and U2OS cell migration assay. The underlying mechanism on the dynamic remodeling of the cytoskeleton was also explored. The present data indicated that Cf-Fuc could block the U2OS osteosarcoma cell adhesion to fibronectin and significantly inhibit U2OS cell migration. Cf-Fuc greatly impaired the migration capacity of U2OS cells, and the migrated distance and velocity of Cf-Fuc-treated cells were markedly reduced. Also, Cf-Fuc could impair the dynamic remodeling of the cytoskeleton possibly by suppressing the phosphorylation of focal adhesion kinase and paxillin, as well as the activation of the Rac1/PAK1/LIMK1/cofilin signaling axis. Collectively, the present findings provide a novel therapeutic potential of C. frondosa fucoidan for osteosarcoma metastasis.
Collapse
Affiliation(s)
- Minglei Zhang
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Li Chen
- Department of Oral Radiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Liu
- Department of Radiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Minghui Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuang Zhang
- Healthcare Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Daliang Kong
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
41
|
Li C, Niu Q, Li S, Zhang X, Liu C, Cai C, Li G, Yu G. Fucoidan from sea cucumber Holothuria polii: Structural elucidation and stimulation of hematopoietic activity. Int J Biol Macromol 2019; 154:1123-1131. [PMID: 31751735 DOI: 10.1016/j.ijbiomac.2019.11.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
The structural elucidation of polysaccharides is essential for understanding their structure-bioactivity relationship and related drug development. In this study, fucoidan (Fuchp) was extracted and purified from sea cucumber Holothuria polii. Its sulfate content was 39.5 ± 1.4%, and the "weight-average" molecular mass was 103.1 ± 2.8 kDa. The primary structure of Fuchp was clarified using a combination of acid degradation, tandem mass spectrometry, and nuclear magnetic resonance spectroscopy analysis. As a result, Fuchp was found to be composed of a tetrafucose repeating unit [→3-α-l-Fucp-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2,4(OSO3-)-1→]. The stimulating hematopoiesis was further evaluated in a mouse model induced by cyclophosphamide. Based on these findings, intraperitoneally administered Fuchp may accelerate the recovery of white blood cells and neutrophils, in which its activity exceeded that of recombinant human granulocyte colony-stimulating factor (rhG-CSF). Meanwhile, in the background of cyclophosphamide-induced immunosuppression, treatment with Fuchp reduces platelet aggregation caused by CTX, so it might have the effect of reducing the risk of thrombosis. Therefore, Fuchp can be exploited as potentially promising stimulator of hematopoiesis in the future.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Shijie Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
42
|
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar Drugs 2019; 17:md17090487. [PMID: 31438588 PMCID: PMC6780838 DOI: 10.3390/md17090487] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Fucoidan is a polysaccharide largely made up of l-fucose and sulfate groups. Fucoidan is favorable worldwide, especially amongst the food and pharmaceutical industry as a consequence of its promising therapeutic effects. Its applaudable biological functions are ascribed to its unique biological structure. Classical bioactivities associated with fucoidan include anti-oxidant, anti-tumor, anti-coagulant, anti-thrombotic, immunoregulatory, anti-viral and anti-inflammatory effects. More recently, a variety of in vitro and in vivo studies have been carried out to further highlight its therapeutic potentials. This review focuses on the progress towards understanding fucoidan and its biological activities, which may be beneficial as a future therapy. Hence, we have summarized in vitro and in vivo studies that were done within the current decade. We expect this review and a variety of others can contribute as a theoretical basis for understanding and inspire further product development of fucoidan.
Collapse
Affiliation(s)
- Sibusiso Luthuli
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoli Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
43
|
Citkowska A, Szekalska M, Winnicka K. Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar Drugs 2019; 17:E458. [PMID: 31387230 PMCID: PMC6722496 DOI: 10.3390/md17080458] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a polysaccharide built from L-fucose molecules. The main source of this polysaccharide is the extracellular matrix of brown seaweed (Phaeophyta), but it can be also isolated from invertebrates such as sea urchins (Echinoidea) and sea cucumbers (Holothuroidea). Interest in fucoidan is related to its broad biological activity, including possible antioxidant, anti-inflammatory, antifungal, antiviral or antithrombotic effects. The potential application of fucoidan in the pharmaceutical technology is also due to its ionic nature. The negative charge of the molecule results from the presence of sulfate residues in the C-2 and C-4 positions, occasionally in C-3, allowing the formation of complexes with other oppositely charged molecules. Fucoidan is non-toxic, biodegradable and biocompatible compound approved by Food and Drug Administration (FDA) as Generally Recognized As Safe (GRAS) category as food ingredient. Fucoidan plays an important role in the pharmaceutical technology, so in this work aspects concerning its pharmaceutical characteristics and designing of various dosage forms (nanoparticles, liposomes, microparticles, and semisolid formulations) with fucoidan itself and with its combinations with other polymers or components that give a positive charge were reviewed. Advantages and limitations of fucoidan utilization in the pharmaceutical technology were also discussed.
Collapse
Affiliation(s)
- Aleksandra Citkowska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland.
| |
Collapse
|
44
|
Wei LH, Chen TR, Fang HB, Jin Q, Zhang SJ, Hou J, Yu Y, Dou TY, Cao YF, Guo WZ, Ge GB. Natural constituents of St. John's Wort inhibit the proteolytic activity of human thrombin. Int J Biol Macromol 2019; 134:622-630. [DOI: 10.1016/j.ijbiomac.2019.04.181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
|
45
|
Yang Z, Liu G, Wang Y, Yin J, Wang J, Xia B, Li T, Yang X, Hou P, Hu S, Song W, Guo S. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5782-5791. [PMID: 31055921 DOI: 10.1021/acs.jafc.9b01321] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reverse cholesterol transport (RCT) is a physiological process, in which excess peripheral cholesterol is transported to the liver and further excreted into the bile and then feces. Recently, fucoidans are reported to have a lipid-lowering effect. This study was designed to investigate whether fucoidan from the brown seaweed Ascophyllum nodosum lowers lipid by modulating RCT in C57BL/6J mice fed a high-fat diet. Our results indicated that fucoidan intervention significantly reduced plasma triglyceride, total cholesterol, and fat pad index and markedly increased high-density lipoprotein cholesterol in a dose-dependent manner. In the liver, fucoidan significantly increased the expression of peroxisome proliferator-activated receptor (PPAR)α, PPARγ, liver X receptor (LXR)β, adenosine triphosphate (ATP) binding cassette (ABC)A1, ABCG8, low-density lipoprotein receptor (LDLR), scavenger receptor B type 1 (SR-B1), and cholesterol 7-α-hydroxylase A1 (CYP7A1) and decreased the triglyceride level and expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) and PPARβ but had no effect on LXRα, ABCG1, and ABCG5. In the small intestine, the fucoidan treatment significantly reduced the expression of Niemann-Pick C1-like 1 (NPC1L1) and improved ABCG5 and ABCG8. These results demonstrated that fucoidan can improve lipid transfer from plasma to the liver by activating SR-B1 and LDLR and inactivating PCSK9 and upregulate lipid metabolism by activating PPARα, LXRβ, ABC transporters, and CYP7A1. In the small intestine, this fucoidan can decrease cholesterol absorption and increase cholesterol excretion by activating NPC1L1 and ABCG5 and ABCG8, respectively. In conclusion, fucoidan from A. nodosum may lower lipids by modulating RCT-related protein expression and can be explored as a potential compound for prevention or treatment of hyperlipidemia-related diseases.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- Animals
- Ascophyllum/chemistry
- Biological Transport/drug effects
- Cholesterol/metabolism
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Diet, High-Fat/adverse effects
- Humans
- Hyperlipidemias/drug therapy
- Hyperlipidemias/etiology
- Hyperlipidemias/genetics
- Hyperlipidemias/metabolism
- Hypolipidemic Agents/administration & dosage
- Lipid Metabolism/drug effects
- Liver X Receptors/genetics
- Liver X Receptors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Plant Extracts/administration & dosage
- Polysaccharides/administration & dosage
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- Seaweed/chemistry
Collapse
Affiliation(s)
- Zixun Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Guanjun Liu
- Weihai Municipal Hospital , Weihai , Shandong 264200 , People's Republic of China
| | - Yufeng Wang
- Nanjing Well Pharmaceutical Company, Limited Nanjing , Jiangsu 210042 , People's Republic of China
| | - Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Jin Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Ting Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Xiaoqian Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Pengbo Hou
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Shumei Hu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Weiguo Song
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| | - Shoudong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy , Weifang Medical University , Weifang , Shandong 261053 , People's Republic of China
| |
Collapse
|
46
|
Shi D, Qi J, Zhang H, Yang H, Yang Y, Zhao X. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana. Int J Biol Macromol 2019; 132:738-747. [PMID: 30904529 DOI: 10.1016/j.ijbiomac.2019.03.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
To minimize undesired pharmacological activities and improve the bioavailability, the fucoidan and fucosylated chondroitin sulfate (FCS) from Holothuria floridana were depolymerized under hydrothermal conditions and the mechanism underlying hydrothermal depolymerization was proposed. Our results demonstrated that fucoidan and FCS from Holothuria floridana were able to be gradually depolymerized without desulfation at 100-121 °C by control of pH at 5-6 to obtain controlled molecular weight. It was the first time to find that pH also plays a key role on the hydrothermal depolymerization of fucoidan and FCS. The monosaccharide composition, FT-IR and NMR analysis showed that the structure of the optimized hydrothermal depolymerized fucoidan and FCS remained almost unchanged. By comparison, FCS was more difficult to be depolymerized than fucoidan under the same hydrothermal condition. The oligosaccharide profile in depolymerized fucoidan and FCS by HILIC-MS analysis further revealed that FCS was depolymerized with preferential cleavage of β-1 → 4 glycosidic linkage and decarboxylation on glucuronic acid during hydrothermal treatment, which was quite different with the random fracture type of fucoidan due to their different structure. These results indicated that hydrothermal depolymerization and action mechanism of fucoidan and FCS from sea cucumber were quite different for their different structure.
Collapse
Affiliation(s)
- Deling Shi
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Junhua Qi
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China.; The Technology Center of Qingdao Customs, No. 70, Qutangxia Road, Qingdao 266001, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, No. 10, Lincheng Street, Zhoushan 316021, China
| | - Yi Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China..
| |
Collapse
|