1
|
Li X, Meng F, Sun T, Hao Z, Wang Y, Jiang Y, Wang Y, Li Y, Ding Y. Peptides from Dalian Stichopus japonicus: Antioxidant Activity and Melanogenesis Inhibition In Vitro Cell Models and In Vivo Zebrafish Models Guided by Molecular Docking Screening. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:60. [PMID: 40042716 DOI: 10.1007/s10126-025-10433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 04/25/2025]
Abstract
This article aims to reveal the optimal peptide segment with antioxidant activity from Dalian Stichopus japonicus, investigate its anti-melanogenesis effect, and elucidate its mechanisms of action both in vitro and in vivo. The best antioxidant alcalase hydrolysates, identified by the previous screening of proteases, was isolated by ultrafiltration; it was found that the components with a molecular weight of ≤ 3 kDa exhibited the best activity. The chemical components were characterized using LC-MS/MS. Through molecular docking, GPIGF was identified as the peptide segment with the best antioxidant and melanogenesis-inhibitory activity. A search in the NCBI database revealed that GPIGF is a newly obtained natural oligopeptide. Further experiments with synthesized GPIGF in vitro showed that it effectively reduces cell apoptosis and damage, and inhibits the expression of melanin-related genes, including tyrosinase (TYR), and associated proteins TRP-1, TRP-2, and MITF. In vivo experiments with the zebrafish model demonstrated that GPIGF significantly inhibits AAPH-induced apoptosis in zebrafish larvae, reduces the production of ROS, and suppresses melanin generation on the skin surface without exhibiting embryotoxicity. This study provides a research foundation for the development of antioxidants from Dalian Stichopus japonicus, which could serve as natural whitening and anti-aging agents, supporting its integrated utilization and development.
Collapse
Affiliation(s)
- Xue Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fanying Meng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Tong Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yihua Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yunfei Jiang
- College of Food Science and Nutritional Engineering, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
2
|
Niu B, An X, Chen Y, He T, Zhan X, Zhu X, Ping F, Zhang W, Zhou J. Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes. Chin J Nat Med 2025; 23:203-213. [PMID: 39986696 DOI: 10.1016/s1875-5364(25)60824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 02/24/2025]
Abstract
Nigella sativa L. seeds have been traditionally utilized in Chinese folk medicine for centuries to treat vitiligo. This study revealed that the ethanolic extract of Nigella sativa L. (HZC) enhances melanogenesis and mitigates oxidative stress-induced cellular senescence and dysfunction in melanocytes. In accordance with established protocols, the ethanol fraction from Nigella sativa L. seeds was extracted, concentrated, and lyophilized to evaluate its herbal effects via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, tyrosinase activity evaluation, measurement of cellular melanin contents, scratch assays, senescence-associated β-galactosidase (SA-β-gal) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis for expression profiling of experimentally relevant proteins. The results indicated that HZC significantly enhanced tyrosinase activity and melanin content while notably increasing the protein expression levels of Tyr, Mitf, and gp100 in B16F10 cells. Furthermore, HZC effectively mitigated oxidative stress-induced cellular senescence, improved melanocyte condition, and rectified various functional impairments associated with melanocyte dysfunction. These findings suggest that HZC increases melanin synthesis in melanocytes through the activation of the MAPK, PKA, and Wnt signaling pathways. In addition, HZC attenuates oxidative damage induced by H2O2 therapy by activating the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and enhancing the activity of downstream antioxidant enzymes, thus preventing premature senescence and dysfunction in melanocytes.
Collapse
Affiliation(s)
- Ben Niu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Yongmei Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting He
- Drug Discovery and Development Laboratories, Ningxia Hui Medicine Research Institute, Yinchuan, 750021, China
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuqi Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fengfeng Ping
- Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Wei Zhang
- Hospital for Skin Diseases Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Lee HW, Lee YR, Park KM, Lee NK, Paik HD. Antimelanogenic and Antioxidant Effects of Postbioics of Lactobacillus Strains in α-MSH-Induced B16F10 Melanoma Cells via CREB/MITF and MAPKs Signaling Pathway. J Microbiol Biotechnol 2024; 34:2279-2289. [PMID: 39468979 PMCID: PMC11637832 DOI: 10.4014/jmb.2408.08015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Abnormal melanin synthesis can lead to severe skin problems. This study investigated the anti-melanogenic effects on α-melanocyte stimulating hormone (α-MSH)-induced B16F10 cells using cell-free supernatants of Lactiplantibacillus plantarum WB326 and Levilactobacillus brevis WB2810. Samples were prepared using 1 mg/ml freeze-dried culture supernatant. Cell viability was assessed using B16F10 cells and MTT assay. Tyrosinase inhibition and melanin content decreased in the samples compared to those treated with α-MSH. This effect was also observed when L-DOPA staining was used under a microscope. Moreover, the mRNA expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 decreased in the sample-treated group. Protein expression of the CREB/MITF/MAPK signaling pathway was also reduced. Using HPLC analysis, lactic and acetic acids were detected in the culture supernatants. Finally, the antioxidant effects of the samples were confirmed by comparison with those of Trolox and arbutin. According to the experimental results, their utilization is possible in the fields of functional materials and cosmetic ingredients.
Collapse
Affiliation(s)
- Hye-Won Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yu-Rim Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Chen B, Chen H, Qiao K, Xu M, Wu J, Su Y, Shi Y, Ke L, Liu Z, Wang Q. Anti-Melanogenic Activities of Sargassum fusiforme Polyphenol-Rich Extract on α-MSH-Stimulated B16F10 Cells via PI3K/Akt and MAPK/ERK Pathways. Foods 2024; 13:3556. [PMID: 39593972 PMCID: PMC11593180 DOI: 10.3390/foods13223556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. METHODS Polyphenols from S. fusiforme were extracted using macroporous resin (SFRP) and ethyl acetate (SFEP). Their antioxidant and anti-aging properties, tyrosinase inhibitory activities, and mechanisms were assessed. The melanogenesis inhibition effect and mechanism by SFRP was examined in B16F10 melanoma cells. RESULTS Both SFRP and SFEP demonstrated scavenging activities against DPPH, superoxide anion, and hydroxyl radicals. SFRP showed stronger anti-collagenase and anti-elastase effects. They dose-dependently inhibited mushroom tyrosinase, with IC50 values of 9.89 μg/mL for SFRP and 0.99 μg/mL for SFEP. SFRP reversibly inhibited tyrosinase, while SFEP showed irreversible inhibition. SFRP also suppressed melanin content and intracellular tyrosinase activity in B16F10 cells, downregulating the expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 and 2 expression through the PI3K/Akt and MAPK/ERK signal pathways. CONCLUSIONS S. fusiforme polyphenols, especially SFRP, exhibit promising antioxidant, anti-aging, and melanogenesis inhibitory properties, highlighting their potential application as novel anti-melanogenic agents in cosmetics and the food industry.
Collapse
Affiliation(s)
- Bei Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China; (B.C.); (H.C.); (Y.S.); (L.K.)
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (K.Q.); (M.X.); (Y.S.)
| | - Honghong Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China; (B.C.); (H.C.); (Y.S.); (L.K.)
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (K.Q.); (M.X.); (Y.S.)
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (K.Q.); (M.X.); (Y.S.)
| | - Jingna Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (K.Q.); (M.X.); (Y.S.)
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen 361102, China; (B.C.); (H.C.); (Y.S.); (L.K.)
| | - Lina Ke
- School of Life Sciences, Xiamen University, Xiamen 361102, China; (B.C.); (H.C.); (Y.S.); (L.K.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (K.Q.); (M.X.); (Y.S.)
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China; (B.C.); (H.C.); (Y.S.); (L.K.)
| |
Collapse
|
5
|
Jiang K, Yu H, Kong L, Liu S, Li Q. Molecular characterization of transcription factor CREB3L2 and CREB3L3 and their role in melanogenesis in Pacific oysters (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110970. [PMID: 38604561 DOI: 10.1016/j.cbpb.2024.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Colorful shells in mollusks are commonly attributable to the presence of biological pigments. In Pacific oysters, the inheritance patterns of several shell colors have been investigated, but little is known about the molecular mechanisms of melanogenesis and pigmentation. cAMP-response element binding proteins (CREB) are important transcription factors in the cAMP-mediated melanogenesis pathway. In this study, we characterized two CREB genes (CREB3L2 and CREB3L3) from Pacific oysters. Both of them contained a conserved DNA-binding and dimerization domain (a basic-leucine zipper domain). CREB3L2 and CREB3L3 were expressed highly in the mantle tissues and exhibited higher expression levels in the black-shell oyster than in the white. Masson-Fontana melanin staining and immunofluorescence analysis showed that the location of CREB3L2 protein was generally consistent with the distribution of melanin in oyster edge mantle. Dual-luciferase reporter assays revealed that CREB3L2 and CREB3L3 could activate the microphthalmia-associated transcription factor (MITF) promoter and this process was regulated by the level of cAMP. Additionally, we found that cAMP regulated melanogenic gene expression through the CREB-MITF-TYR axis. These results implied that CREB3L2 and CREB3L3 play important roles in melanin synthesis and pigmentation in Pacific oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhao Q, Gu N, Li Y, Wu X, Ouyang Q, Deng L, Ma H, Zhu Y, Fang F, Ye H, Wu K. Self-assembled gel microneedle formed by MS deep eutectic solvent as a transdermal delivery system for hyperpigmentation treatment. Mater Today Bio 2024; 26:101090. [PMID: 38800564 PMCID: PMC11127278 DOI: 10.1016/j.mtbio.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.
Collapse
Affiliation(s)
- Qi Zhao
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Na Gu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Yier Li
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Xia Wu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Qianqian Ouyang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Luming Deng
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Hui Ma
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Yuzhen Zhu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Fang Fang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
| | - Hua Ye
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Kefeng Wu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| |
Collapse
|
7
|
Jiang K, Yu H, Kong L, Liu S, Li Q. cAMP-Mediated CREM-MITF-TYR Axis Regulates Melanin Synthesis in Pacific Oysters. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:460-474. [PMID: 38613620 DOI: 10.1007/s10126-024-10309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Colorful shells in bivalves are mostly caused by the presence of biological pigments, among which melanin is a key component in the formation of shell colours. Cyclic adenosine monophosphate (cAMP) is an important messenger in the regulation of pigmentation in some species. However, the role of cAMP in bivalve melanogenesis has not yet been reported. In this study, we performed in vitro and in vivo experiments to determine the role of cAMP in regulating melanogenesis in Pacific oysters. Besides, the function of cAMP-responsive element modulator (CREM) and the interactions between CREM and melanogenic genes were investigated. Our results showed that a high level of cAMP promotes the expression of melanogenic genes in Pacific oysters. CREM controls the expression of the MITF gene under cAMP regulation. In addition, CREM can regulate melanogenic gene expression, tyrosine metabolism, and melanin synthesis. These results indicate that cAMP plays an important role in the regulation of melanogenesis in Pacific oysters. CREM is a key transcription factor in the oyster melanin synthesis pathway, which plays a crucial role in oyster melanin synthesis through a cAMP-mediated CREM-MITF-TYR axis.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Mermer A, Demirci S. Recent advances in triazoles as tyrosinase inhibitors. Eur J Med Chem 2023; 259:115655. [PMID: 37482020 DOI: 10.1016/j.ejmech.2023.115655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, İstanbul, Turkiye; Department of Biotechnology, University of Health Sciences, İstanbul, Turkiye.
| | - Serpil Demirci
- Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkiye
| |
Collapse
|
9
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
10
|
Luo L, Yu X, Zeng H, Hu Y, Jiang L, Huang J, Fu C, Chen J, Zeng Q. Fraxin inhibits melanogenesis by suppressing the ERK/MAPK pathway and antagonizes oxidative stress by activating the NRF2 pathway. Heliyon 2023; 9:e18929. [PMID: 37600361 PMCID: PMC10432208 DOI: 10.1016/j.heliyon.2023.e18929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Hyperpigmentation disorders, such as melasma and freckles, are highly prevalent and draw increasing attention. Patients thus tend to seek effective and safe cosmetic whitening agents. Fraxin, a bioactive substance extracted from Cortex Fraxini, possesses anti-inflammation and antioxidant properties. In this study, we further explored the anti-melanogenic activities of fraxin were explored in vitro and in vivo. We found that pretreatment with fraxin decreased the melanin content of MNT1 cells and zebrafishes. In MNT1 cells, melanogenesis-related proteins, such as MITF, TYR, TYRP1, and DCT were down-regulated and tyrosinase activity was reduced under fraxin treatment. Further exploration of the mechanism revealed that fraxin could inhibit the phosphorylation of ERK, which is closely related to melanogenesis. Besides, fraxin also protected MNT1 cells from H2O2-induced apoptosis via scavenging reactive oxygen species (ROS) in cells. Further experimentation revealed that fraxin could activate NRF2 and upregulate antioxidase CAT and HO-1. In conclusion, fraxin could be an effective agent with anti-melanogenesis and antioxidant properties for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xing Yu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410031, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Clinical Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
11
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
12
|
Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol 2023; 107:2111-2130. [PMID: 36912905 DOI: 10.1007/s00253-023-12451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use.
Collapse
Affiliation(s)
- Shifali Chib
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Lakshmi Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit G Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Yang J, Lee SY, Jang SK, Kim KJ, Park MJ. Inhibition of Melanogenesis by Essential Oils from the Citrus Cultivars Peels. Int J Mol Sci 2023; 24:ijms24044207. [PMID: 36835634 PMCID: PMC9962211 DOI: 10.3390/ijms24044207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Citrus is one of the most popular and widely grown fruit crops in the world. However, the bioactivity of only certain species of citrus cultivars is studied. In this study, the effects of essential oils from 21 citrus cultivars on melanogenesis were investigated in an effort to identify active anti-melanogenesis constituents. The essential oils from the peels of 21 citrus cultivars obtained by hydro-distillation were analyzed using gas chromatography-mass spectrometry. Mouse melanoma B16BL6 cells were used in all assays conducted in this study. The tyrosinase activity and melanin content were determined using the lysate of α-Melanocyte-stimulated B16BL6 cells. In addition, the melanogenic gene expression was determined by quantitative reverse transcription-polymerase chain reaction. Overall, the essential oils of (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulata provided the best bioactivity and comprised five distinct constituents compared to other essential oils such as limonene, farnesene, β-elemene, terpinen-4-ol, and sabinene. The anti-melanogenesis activities of the five individual compounds were evaluated. Among the five essential oils, β-elemene, farnesene, and limonene showed dominating properties. The experimental results indicated that (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulara are potential candidates with anti-melanogenesis activity for use as cosmetics and pharmaceutical agents against skin hyperpigmentation.
Collapse
Affiliation(s)
- Jiyoon Yang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Su-Yeon Lee
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Soo-Kyeong Jang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Jin Park
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
- Correspondence: ; Tel.: +82-2-961-2751; Fax: +82-2-961-2769
| |
Collapse
|
14
|
Lu L, Zhang X, Kang Y, Xiong Z, Zhang K, Xu XT, Bai LP, Li HG. Novel coumarin derivatives as potential tyrosinase inhibitors: Synthesis, binding analysis and biological evaluation. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
15
|
Brassinin Abundant in Brassicaceae Suppresses Melanogenesis through Dual Mechanisms of Tyrosinase Inhibition. Foods 2022; 12:foods12010121. [PMID: 36613338 PMCID: PMC9818315 DOI: 10.3390/foods12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Brassinin is a phytoalexin abundant in plants, especially in cabbage, and has been reported to act as an anti-cancer and anti-inflammatory agent. However, limited studies are available to elucidate the functionalities of brassinin. Here, we tested the effects of brassinin on melanogenesis using cell-free and cell-based biochemical analysis and docking simulation. Cell-free experiments exhibited that brassinin has antioxidant and anti-tyrosinase activities. When applied to B16F10 cells stimulated with a melanogenesis inducer α-MSH, brassinin pretreatment significantly reduced melanin accumulation and cellular tyrosinase activity. Docking simulation indicates that the docking score of brassinin to the binding pocket of tyrosinase is better than that of kojic acid or arbutin, anti-melanogenic positive controls, indicating that brassinin inhibits melanogenesis at least partially by binding to and inactivating tyrosinase. In addition, qPCR results showed that brassinin reduced tyrosinase mRNA levels. Together, these results suggest that brassinin exerts anti-melanogenesis effects by inhibiting both the activity and mRNA expression levels of tyrosinase. Therefore, our study showed that brassinin has the potential to be used in pharmaceutical or cosmetic products for depigmentation.
Collapse
|
16
|
Liu F, Qu L, Li H, He J, Wang L, Fang Y, Yan X, Yang Q, Peng B, Wu W, Jin L, Sun D. Advances in Biomedical Functions of Natural Whitening Substances in the Treatment of Skin Pigmentation Diseases. Pharmaceutics 2022; 14:2308. [PMID: 36365128 PMCID: PMC9697978 DOI: 10.3390/pharmaceutics14112308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Pigmentation diseases can lead to significant color differences between the affected part and the normal part, resulting in severe psychological and emotional distress among patients. The treatment of pigmentation diseases with good patient compliance is mainly in the form of topical drugs. However, conventional hydroquinone therapy contributes to several pathological conditions, such as erythema, dryness, and skin desquamation, and requires a longer treatment time to show significant results. To address these shortcomings, natural whitening substances represented by kojic acid and arbutin have gradually become the candidate ingredients of traditional local preparations due to their excellent biological safety. This review focuses on several natural whitening substances with potential therapeutic effects in pigmentation disease and their mechanisms, and a thorough discussion has been conducted into the solution methods for the challenges involved in the practical application of natural whitening substances.
Collapse
Affiliation(s)
- Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- Chinese–American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| |
Collapse
|
17
|
Li Y, Xiang H, Xue X, Chen Y, He Z, Yu Z, Zhang L, Miao X. Dual Antimelanogenic Effect of Nicotinamide-Stabilized Phloretin Nanocrystals in Larval Zebrafish. Pharmaceutics 2022; 14:1825. [PMID: 36145574 PMCID: PMC9502130 DOI: 10.3390/pharmaceutics14091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.
Collapse
Affiliation(s)
- Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yilan Chen
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhiyuan He
- Marine College, Shandong University, Weihai 264209, China
| | - Zhongrui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Li Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
18
|
Zilles JC, Dos Santos FL, Kulkamp-Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives - a review. Exp Dermatol 2022; 31:1500-1521. [PMID: 35960194 DOI: 10.1111/exd.14662] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Kojic acid presents a variety of applications for human use, especially as a depigmenting agent. Its derivatives are also proposed in order to prevent chemical degradation, prevent adverse effects and improve efficacy. The aim of this study was to peer review the current scientific literature concerning the biological activities and safety data of kojic acid or its derivatives, aiming at human use, and trying to elucidate the action mechanisms. Three different databases were assessed and the word "kojic" was crossed with "toxicity", "adverse effect", "efficacy", "effect", "activity" and "safety". Articles were selected according to pre-defined criteria. Besides the depigmenting activity, kojic acid and derivatives can act as antioxidant, antimicrobial, anti-inflammatory, radioprotector, anticonvulsant and obesity management agents, and present potential as antitumor substances. Depigmenting activity is due to the molecules, after penetrating the cell, binding to tyrosinase active site, regulating melanogenesis factors, leucocytes modulation and free radical scavenging activity. Hence, polarity, size and ligands are also important factors for activity. Kojic acid and derivatives present cytotoxicity to some cancerous cell lines, including melanoma, hepatocellular carcinoma, ovarian cancer, breast cancer and colon cancer. Regarding safety, kojic acid or its derivatives are safe molecules for human use in the concentrations tested. Kojic acid and its derivatives have great potential for cosmetic, pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | | | - Irene Clemes Kulkamp-Guerreiro
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Renata Vidor Contri
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Xia W, Chen K, Zhu YZ, Zhang CJ, Chen YL, Wang F, Xie YY, Hider RC, Zhou T. Antioxidant and anti-tyrosinase activity of a novel stilbene analogue as an anti-browning agent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3817-3825. [PMID: 34923627 DOI: 10.1002/jsfa.11731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tyrosinase inhibitors find potential application in food, cosmetic and medicinal products, but most of the identified tyrosinase inhibitors are not suitable for practical use because of safety regulations or other problems. For the purpose of development of novel tyrosinase inhibitors that meet the requirement for practical application, a novel stilbene analogue (SA) was designed. RESULTS SA was found to possess a potent inhibitory effect against both mono- and diphenolase activities of mushroom tyrosinase, with IC50 values of 1.56 and 7.15 μmol L-1 , respectively. Compared with a natural tyrosinase inhibitor - kojic acid - the anti-tyrosinase effect of SA was significantly improved. Analysis of inhibition kinetics indicated that SA was a reversible and competitive-noncompetitive mixed-type inhibitor. SA was also found to possess more potent antioxidant activities (DPPH, superoxide anion radical and hydroxyl radical scavenging ability) than those of kojic acid. Cell viability studies revealed that SA was non-toxic to two cell lines. Furthermore, an anti-browning test demonstrated that SA effectively delayed the blackening of shrimp. CONCLUSION SA has potential as an anti-browning agent in foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Chang-Jun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| |
Collapse
|
20
|
Statistical Analysis and Machine Learning Used in the Case of Two Behavioral Tests Applied in Zebrafish Exposed to Mycotoxins. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Machine learning is a branch of artificial intelligence that allows computer systems to learn directly from examples, data, and experience. Statistical modeling is more about finding connections between variables and consequently the impact of these relationships, while also catering for prediction. It should be clear that these two methodologies are different in terms of their purpose, despite the fact that they use similar means to get there. The evaluation of the machine learning algorithm uses a set of tests to validate its accuracy. Although, for a statistical model, the analysis of regression parameters by confidence intervals, significance tests and other tests can be used to assess the legitimacy of the model. To demonstrate the applications and usefulness of this theory, an experimental study was conducted on zebrafish exposed to mycotoxin. Methods: Patulin (70 µg/L) and kojic acid (100 mg/L, 204 mg/L, and 284 mg/L) were administered by immersion to zebrafish once daily for a period of 7 days before the behavior testing. The following behavioral tests were performed: a novel tank test (NTT) (to assess the explorative behavior and anxiety); and a Y-maze test (which measures the spontaneous explorative behavior). Behavioral tests were performed on separate days. For the behavior tests, the statistical analysis was performed using ANOVA variation analysis (two-way ANOVA). All results are expressed as the mean ± standard error of the mean. The values of the general index F for which p < 0.05 were considered statistically significant. Results: Y-maze—patulin exposure led to an intensification of the locomotor activity and an increased traveled distance and number of arm entries. By increasing the spontaneous alternation between the aquarium’s arms, patulin has shown a stimulating effect on spatial memory. In the case of zebrafish exposed to 100 mg/L kojic acid, the traveled distance was shorter by 27% than the distance attained by those in the control group. The higher doses of kojic acid (204 mg/L and 284 mg/L) led to an increased locomotor activity, distance traveled, number of arm entries, and the spontaneous alternation. The increase in spontaneous alternation demonstrates that 204 mg/L and 284 mg/L kojic acid doses had a stimulating effect on spatial memory. Novel tank test—compared to the control group, the traveled distance of the patulin-exposed fish is slightly reduced. Compared to the control group, the traveled distance of the kojic acid-exposed fish is reduced, due to a shorter mobile time (by 25–27% in the case of fish exposed to 204 mg/L and 284 mg/L kojic acid). Patulin and kojic acid exhibit toxic effects on zebrafish liver, kidney, and myocardium and leads to severe alteration. We continued the analysis by trying some machine learning algorithms on the classification problems in the case of the two behavioral tests MAZE and NTT, after which we concluded that the results were better in the case of the NTT test relative to the MAZE test and that the use of decision tree algorithms leads to amazing results, knowing that their hierarchical structure allows them to learn signals from both classes. Conclusions: The groups exposed to patulin and kojic acid show histological changes in the liver, kidneys, and myocardial muscle tissue. The novel tank test, which assesses exploratory behavior, has been shown to be conclusive in the behavioral analysis of fish that have been given toxins, demonstrating that the intoxicated fish had a decreased explorative behavior and increased anxiety. We were able to detect a machine learning algorithm in the category of decision trees, which can be trained to classify the behavior of fish that were given a toxin in the category of those used in the experiment, only by analyzing the characteristic features of the NTT Behavior Test.
Collapse
|
21
|
Zhou W, Tang J, Zhou X, Liu J. Tyrosinase inhibition by novel benzimidazole-thione Schiff base derivatives. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220210100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Tyrosinase is the enzyme responsible for the conversion of tyrosine to dopaquinone, which is related to melanoma, neurodegenerative disorders, freckles, pigmented acne and age spots. Controlling the tyrosinase activity could be an important way for treating overproduction of melanin.
Objective:
The development of safe and specific tyrosinase inhibitors could be used to treat hypermelanosis.
Methods:
5-nitro-1H-benzo[d]imidazole-2(3H)-thione was synthesized from 4-nitro-o-phenylenediamine and carbon disulfide. The nitro group of 5-nitro-1H- S-1 ESI-HRMS
benzo[d]imidazole-2(3H)-thione was reduced with iron powder. The 5-amino-1H-benzo[d]imidazole- 2(3H)-thione Schiff base derivatives were obtained by the reaction of 5-amino-1H-benzo[d]imidazole-2(3H)-thione with substituted benzaldehyde. The tyrosinase inhibitory activities were investigated. The studies of kinetic analysis, metal-chelating properties, docking and cytotoxicity were also performed.
Results:
All of the compounds showed strong tyrosinase inhibitory activities with 5-((4-nitrobenzylidene) amino)-1H-benzo [d]imidazole-2(3H)-thione (S-4) as the best tyrosinase inhibitor with an IC50 value of 4.8 ± 1.4 nM. Compound S-4 exhibited mixed type inhibition of mushroom tyrosinase, with Ki 15 nM and Kis 42 nM. Copper binding to S-4 was detected spectrophotometrically and 1-100 ìÌ S-4 displayed negligible cytotoxicity to murine B16 melanoma cells.
Conclusion:
Our results demonstrated that these benzimidazolethione Schiff base derivatives might be promising candidates as tyrosinase inhibitors.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang 422100, China
| | - Junyuan Tang
- School of Pharmaceutical Sciences & State Key Laboratory of Respiratory Disease Guangzhou Medical University, Guangzhou,Guangdong 511436, China
| | - Xinchong Zhou
- Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang 422100, China
| | - Jinbing Liu
- Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang 422100, China
| |
Collapse
|
22
|
Je JG, Jiang Y, Heo JH, Li X, Jeon YJ, Ryu BM. Mitigative Effects of PFF-A Isolated from Ecklonia cava on Pigmentation in a Zebrafish Model and Melanogenesis in B16F10 Cells. Mar Drugs 2022; 20:123. [PMID: 35200653 PMCID: PMC8877154 DOI: 10.3390/md20020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Melanin synthesis is a defense mechanism that prevents skin damage, but excessive accumulation of melanin occurs in the skin in various reactions such as pigmentation, lentigines, and freckles. Although anti-melanogenic effects have been demonstrated for various naturally occurring marine products that inhibit and control tyrosinase activity, most studies have not been extended to in vivo applications. Phlorofucofuroeckol-A (PFF-A, 12.5-100 µM) isolated from Ecklonia cava has previously been shown to have tyrosinase-mitigative effects in B16F10 cells, but it has not been evaluated in an in vivo model, and its underlying mechanism for anti-melanogenic effects has not been studied. In the present study, we evaluated the safety and efficacy of PFF-A for anti-melanogenic effects in an in vivo model. We selected low doses of PFF-A (1.5-15 nM) and investigated their mitigative effects on pigmentation stimulated by α-MSH in vivo and their related-mechanism in an in vitro model. The findings suggest that low-dose PFF-A derived from E. cava suppresses pigmentation in vivo and melanogenesis in vitro. Therefore, this study presents the possibility that PFF-A could be utilized as a new anti-melanogenic agent in the cosmeceutical industries.
Collapse
Affiliation(s)
- Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| | - Yunfei Jiang
- School of Food Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Jun-Ho Heo
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| | - Xining Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China;
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bo-Mi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| |
Collapse
|
23
|
He JR, Zhu JJ, Yin SW, Yang XQ. Bioaccessibility and intracellular antioxidant activity of phloretin embodied by gliadin/sodium carboxymethyl cellulose nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Lee IS, Kim JH. Antimelanogenic activity of patuletin from Inula japonica flowers in B16F10 melanoma cells and zebrafish embryos. Nat Prod Res 2021; 36:4457-4460. [PMID: 34933629 DOI: 10.1080/14786419.2021.1983812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During the search for natural melanogenesis inhibitors, patuletin, a flavonoid, was isolated from Inula japonica flowers. We investigated the antimelanogenic effects of patuletin on B16F10 melanoma cells and zebrafish embryos. Patuletin dose-dependently reduced melanocyte-stimulating hormone-induced melanogenesis and L-DOPA oxidation in B16F10 cells. Western blot analysis showed that patuletin reduced cellular tyrosinase expression in a dose-dependent manner. Patuletin treatment significantly decreased melanin pigmentation in the embryo compared to the untreated controls.
Collapse
Affiliation(s)
- Ik Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| |
Collapse
|
25
|
Hu Y, Zhou Y, Hu X, Chen Q, Shi Y, Zhuang J, Wang Q. Cefotaxime sodium inhibited melanogenesis in B16F10 cells by cAMP/PKA/CREB pathways. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
27
|
Inhibitory effect of CADI on melanin transfer in the B16F10-HaCAT cells co-culture system and anti-melanogenesis of CNCE in zebrafish. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Ding Y, Jiang Y, Im ST, Myung S, Kim HS, Lee SH. Diphlorethohydroxycarmalol inhibits melanogenesis via protein kinase A/cAMP response element-binding protein and extracellular signal-regulated kinase-mediated microphthalmia-associated transcription factor downregulation in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells and zebrafish. Cell Biochem Funct 2021; 39:546-554. [PMID: 33474761 DOI: 10.1002/cbf.3620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022]
Abstract
Diphlorethohydroxycarmalol (DPHC) is a marine polyphenolic compound derived from brown alga Ishige okamurae. A previously study has suggested that DPHC possesses strong mushroom tyrosinase inhibitory activity. However, the anti-melanogenesis effect of DPHC has not been reported at cellular level. The objective of the present study was to clarify the melanogenesis inhibitory effect of DPHC and its molecular mechanisms in murine melanoma cells (B16F10) and zebrafish model. DPHC significantly inhibited tyrosinase activity and melanin content dose-dependently in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. This polyphenolic compound also suppressed the expression of phosphorylation of cAMP response element-binding protein (CREB) by attenuating phosphorylation of cAMP-dependent protein kinase A, resulting in decreased MITF expression levels. Furthermore, DPHC downregulated MITF protein expression levels by promoting the phosphorylation of extracellular signal-regulated kinase. It also inhibited tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2 in α-MSH stimulated B16F10 cells. In in vivo studies using zebrafish, DPHC also markedly inhibited melanin synthesis in a dose-dependent manner. These results demonstrate that DPHC can effectively inhibit melanogenesis in melanoma cells in vitro and in zebrafish in vivo, suggesting that DPHC could be applied in fields of pharmaceutical and cosmeceuticals as a skin-whitening agent. Significance of study: The present study showed for the first time that DPHC could inhibit a-MSH-stimulated melanogenesis via PKA/CREB and ERK pathway in melanoma cells. It also could inhibit pigmentation in vivo in a zebrafish model. This evidence suggests that DPHC has potential as a skin whitening agent. Taken together, DPHC could be considered as a novel anti-melanogenic agent to be applied in cosmetic, food, and medical industry.
Collapse
Affiliation(s)
- Yuling Ding
- Department of Biopharmaceuticals, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Chanchun, China
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Seung Tae Im
- Department of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| | - Seungwon Myung
- Department of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| | - Hyun-Soo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seochun, Republic of Korea
| | - Seung-Hong Lee
- Department of Medical Science, Soonchunhyang University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
29
|
Koli P, Reena, Mehra R, Sharma DK. Structure‐Activity Relationship of Indolylkojylmethane Based on Antiproliferative Activity against Breast Cancer. ChemistrySelect 2020. [DOI: 10.1002/slct.202003032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Papita Koli
- Department of Pharmaceutical Engineering and Technology Indian Institute of Technology-Banaras Hindu University Varanasi 221005 India
| | - Reena
- Overseas Healthcare Pvt. Ltd Phillaur Punjab India
| | - Rukmankesh Mehra
- Department of Chemistry Indian Institute of Technology-Bhilai Raipur Chhattisgarh 492015 India
| | - Deepak K. Sharma
- Department of Pharmaceutical Engineering and Technology Indian Institute of Technology-Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
30
|
Thia E, Chou PH, Chen PJ. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity. WATER RESEARCH 2020; 185:116208. [PMID: 32726716 DOI: 10.1016/j.watres.2020.116208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Benzophenones (BPs) are a group of chemically similar organic compounds commonly used in formulations of sunscreen and other personal care products as UV filters to protect our skin against sunlight overexposure. Studies have shown that the occurrence of certain BPs (e.g., BP-3 and its metabolite BP-1) in multiple environmental matrices may increase the incidence of coral planulae bleaching and estrogenic effects on aquatic life. Currently, most BPs are not yet comprehensively screened in vitro and in vivo for their ecotoxicity under environmentally relevant concentrations. This study systematically assessed the in vitro and in vivo toxicity and activity of the 7 most commonly used BPs (BP-1, BP-2, BP-3, BP-4, BP-6, BP-7 and BP-8) to select BP alternatives with lower ecotoxicity and extra beneficial functions. BP-2 (LC50 = 18.43 µM) was least toxic and BP-3 (LC50 = 4.10 µM) and BP-8 (LC50 =1.62 µM) were less and most toxic, respectively, in terms of 96-hr acute mortality of medaka larvae. BP-2 at environmentally relevant concentrations (5-50 nM) did not significantly alter locomotion and oxidative stress responses of medaka larvae from 24-hr to 7-day exposure, whereas BP-3 and BP-8 at 5 nM induced hypoactivity or changed fish swimming angles. Only BP-2 was able to inhibit in vitro mushroom tyrosinase activity, with EC50 value 19.7 µM. Also, BP-2 could effectively suppress melanin formation and tyrosinase activity in zebrafish embryos. Among the 7 tested BPs, BP-2 was the least toxic and the most environmentally friendly UV filter with extra benefit for tyrosinase inhibition and could be a promising alternative to the use of toxic BPs.
Collapse
Affiliation(s)
- Eveline Thia
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
31
|
Song YR, Lim WC, Han A, Lee MH, Shin EJ, Lee KM, Nam TG, Lim TG. Rose Petal Extract ( Rosa gallica) Exerts Skin Whitening and Anti-Skin Wrinkle Effects. J Med Food 2020; 23:870-878. [PMID: 32609563 DOI: 10.1089/jmf.2020.4705] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We sought to investigate the effect of extracts from Rosa gallica petals (RPE) on skin whitening and anti-wrinkle activity. Tyrosinase activity was attenuated by RPE treatment, concomitant with the reduction of melanin accumulation in human B16F10 melanoma. Treatment of the facial skin of volunteers in a clinical trial with an RPE-containing formulation enhanced skin brightness (L* value) significantly. The underlying mechanism responsible was determined to be associated with mitogen-activated protein kinase (MAPK) activation. In addition, RPE exhibited anti-wrinkle formation activity of human dermal fibroblasts by suppressing matrix metalloproteinase (MMP)-1 level. In vivo study, RPE also inhibited solar ultraviolet-stimulated MMP-1 level by c-Jun regulation. Overall, our findings indicate that RPE evokes skin whitening and anti-wrinkle formation activity by regulating intracellular signaling, supporting its utility as an ingredient for skin whitening and anti-wrinkle cosmetic products.
Collapse
Affiliation(s)
| | | | - Ahram Han
- Korea Food Research Institute, Wanju-gun, Korea
| | | | - Eun Ju Shin
- Korea Food Research Institute, Wanju-gun, Korea
| | - Kwang-Min Lee
- Korea Food Research Institute, Wanju-gun, Korea.,Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Korea
| | - Tae-Gyu Nam
- Korea Food Research Institute, Wanju-gun, Korea
| | - Tae-Gyu Lim
- Korea Food Research Institute, Wanju-gun, Korea.,Department of Food Science and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
32
|
Zhou W, He Y, Lei X, Liao L, Fu T, Yuan Y, Huang X, Zou L, Liu Y, Ruan R, Li J. Chemical composition and evaluation of antioxidant activities, antimicrobial, and anti-melanogenesis effect of the essential oils extracted from Dalbergia pinnata (Lour.) Prain. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112731. [PMID: 32135240 DOI: 10.1016/j.jep.2020.112731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalbergia pinnata (Lour.) Prain (D. pinnata) is a plant widely distributed in tropical and subtropical regions of Asia, Africa, and the Americas. In humans, it is used in the prevention and treatment of diseases such as respiratory system, digestive system, cardiovascular and cerebrovascular diseases. AIM OF THE STUDY This study was aim to evaluate chemical composition, antioxidant activities, antimicrobial, and anti-melanogenesis properties of Essential oils (EO) from D. pinnata. MATERIALS AND METHODS In this paper, the EO of D. pinnata were extracted using the supercritical CO2 extraction method and purified by molecular distillation. The volatile compounds of EO were characterized using Gas Chromatography-Mass Spectrometer (GC-MS). The antioxidant activities were evaluated by the methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. And two Gram-positive bacteria, three Gram-negative bacteria and a fungus were employed to evaluate the antimicrobial activity. The zebrafish was used as experimental model to evaluate the anti-melanogenesis effect of the EO from D. pinnata. RESULTS The EO of D. pinnata were obtained in a yield of 4.75% (v/w) calculated on dry weight basis. 14 volatile compounds could be detected and the predominant components include elemicin (91.06%), methyl eugenol (3.69%), 4-allyl-2,6-dimethoxyphenol (1.16%), and whiskey lactone (0.55%). The antioxidant assay showed that the EO could scavenge DPPH (IC50 values of 0.038 mg/mL) and ABTS (IC50 value of 0.032 mg/mL) free radical, indicating that the EO had strong antioxidant activity. The results of antimicrobial test showed that Staphylococcus aureus was most sensitive to EO with minimal inhibitory concentration (MIC) of 0.78 μL/mL, followed by Streptococcus pyogenes (6.25 μL/mL) and Candida albicans (12.5 μL/mL). Gram-negative strains, including Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium, were slightly affected by the EO. Additionally, EO from D. pinnata could reduce tyrosinase activity and melanin synthesis of zebrafish embryos in dose-dependent manner. And EO exhibited the more obvious anti-melanogenic effect compared with the positive control arbutin at the same dose (30 mg/L). CONCLUSIONS Our results validated the main activities attributed to D. pinnata for its antimicrobial and antioxidant. In addition, the potent inhibitory impacts of EO on the pigmentation provides a theoretical basis for the in-depth study of the EO from D. pinnata and their application in pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China; Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Xianlu Lei
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Tiaokun Fu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Xiaobing Huang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China; Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
33
|
Lectin from Laetiporus sulphureus effectively inhibits angiogenesis and tumor development in the zebrafish xenograft models of colorectal carcinoma and melanoma. Int J Biol Macromol 2020; 148:129-139. [PMID: 31935408 DOI: 10.1016/j.ijbiomac.2020.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/31/2022]
Abstract
In spite of extensive usage of Laetiporus sulphureus (sulphur polypore) in traditional European and Asian ethno-medicine for centuries, its anticancer therapeutic potential and toxicity profile remained explored in animal models. Herein, using zebrafish (Danio rerio), as a preclinical animal model, we demonstrated that L. sulphureus lectin (LSL) and ethanol extract (LSE) are non-toxic at high doses up to 400-500 μg/mL, while they effectively inhibited angiogenesis and cancer development at much lower doses. Lectin showed 74-fold higher anti-angiogenic potency than the extract, and even 378-fold higher therapeutic potential than sunitinib-malate, cardiotoxic and myelosupressive anti-angiogenic drug of clinical relevance. Using wound healing and MTT assays, we proved LSL's strong antimigratory effect and selective endothelial cytotoxicity in relation to lung fibroblasts. In addition, employing the zebrafish xenograft models, we demonstrated that LSL almost completely reduced growth, neovascularization and metastasis of human colorectal carcinoma and mouse melanoma. Even more, LSL exerted 8-fold higher potency towards colorectal carcinoma than melanoma, showing markedly higher activity than cisplatin, while LSE failed to express any anticancer activity. Accompanied with non-toxic response, including neutropenia and inflammation, the results of this study strongly imply that LSL could be used as safe adjuvant in chemotherapy against colorectal carcinoma and melanoma.
Collapse
|
34
|
Chen YM, Li C, Zhang WJ, Shi Y, Wen ZJ, Chen QX, Wang Q. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents. J Enzyme Inhib Med Chem 2019; 34:990-998. [PMID: 31072148 PMCID: PMC6522964 DOI: 10.1080/14756366.2019.1609467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The novel kojic acid derivatives KAD1 and KAD2 have been demonstrated that they exhibited potent anti-melanogenesis activity in our previous report. In this study, we further study the inhibitory mechanism on mushroom tyrosinase. The inhibitory types of both KADs on diphenolase were classified as mixed type based on the results of the kinetic model. The interaction between KADs and tyrosinase was illustrated by fluorescence quenching, molecular docking and copper chelate activity. The KADs were also evaluated with respect to their antioxidant activities by DPPH and ABTS+ assays. The results showed that KADs have more potent antioxidant activities than kojic acid. Our study could provide new ideas for the development of new anti-tyrosinase and antioxidant agents.
Collapse
Affiliation(s)
- Yan-Mei Chen
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Chen Li
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Wen-Jing Zhang
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Yan Shi
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Zi-Jie Wen
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Qing-Xi Chen
- a School of Life Sciences , Xiamen University , Xiamen , China
| | - Qin Wang
- a School of Life Sciences , Xiamen University , Xiamen , China
| |
Collapse
|
35
|
Kim YM, Lee EC, Lim HM, Seo YK. Rice Bran Ash Mineral Extract Increases Pigmentation through the p-ERK Pathway in Zebrafish ( Danio rerio). Int J Mol Sci 2019; 20:ijms20092172. [PMID: 31052497 PMCID: PMC6539449 DOI: 10.3390/ijms20092172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present study is to evaluate the effect of rice bran ash mineral extract (RBM) on pigmentation in zebrafish (Danio rerio). Melanin has the ability to block ultraviolet (UV) radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer. The present study investigates the effect of RBM on pigmentation in zebrafish and the underlying mechanism. RBM was found to significantly increase the expression of microphthalmia-associated transcription factor (MITF), a key transcription factor involved in melanin production. RBM also suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), which negatively regulates zebrafish pigmentation. Together, these results suggest that RBM promotes melanin biosynthesis in zebrafish.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Eun-Cheol Lee
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Han-Moi Lim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.
| |
Collapse
|
36
|
Karakaya G, Türe A, Ercan A, Öncül S, Aytemir MD. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg Chem 2019; 88:102950. [PMID: 31075740 DOI: 10.1016/j.bioorg.2019.102950] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
Tyrosinase inhibitors have become increasingly important as whitening agents and for the treatment of pigmentary disorders. In this study, the synthesis of kojic acid derivatives having 2-substituted-3-hydroxy-6-hyroxymethyl/chloromethyl/methyl/morpholinomethylpiperidinyl- methyl/pyrrolidinylmethyl-4H-pyran-4-one structure (compounds 1-30) with inhibitory effects on tyrosinase enzyme were described. One-pot Mannich reaction was carried out by using kojic acid/chlorokojic acid/allomaltol and substituted benzylpiperazine derivatives in presence of formaline. Subsequently, cyclic amine (morpholine, piperidine and pyrrolidine) derivatives of the 6th-position of chlorokojic acid were obtained with nucleophilic substitutions in basic medium. The structures of new compounds were identified by FT-IR, 1H- and 13C NMR, ESI-MS and elemental analysis data. The potential mushroom tyrosinase inhibitory activity of the compounds were evaluated by the spectrophotometric method using l-DOPA as a substrate and kojic acid as the control agent. The potential inhibitory activity was also investigated in silico using molecular docking simulation method. Tyrosinase inhibitory action was significantly more efficacious for several compounds (IC50: 86.2-362.1 µM) than kojic acid (IC50: 418.2). Compound 3 bearing 3,4-dichlorobenzyl piperazine moiety was proven to have the highest inhibitory activity. The results of docking studies showed that according to the predicted conformation of compound 3 in the enzyme binding site, hydroxymethyl group provides a metal complex with copper ions and enzyme. Thus, this interaction explain the high inhibitory activities of the compounds 1, 3 and 4 possessing hydroxymethyl substituent supporting the mushroom assay results with docking studies. In accordance with the results, it is suggested that Mannich bases of kojic acid bearing substituted benzyl piperazine groups (compounds 1, 3, 4, 11, 13, 14, 23, 24, 28, and 29) could be promising antityrosinase agents. Additionally, considering the relationship between tyrosinase inhibitory activity results and molecular docking, a new tyrosinase inhibition mechanism can be proposed.
Collapse
Affiliation(s)
- Gülşah Karakaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Aslı Türe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Ayşe Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Öncül
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mutlu Dilsiz Aytemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|