1
|
Wang M, Jiang S, Deng Y, Tian T, Zafar S, Xie Q, Yuan H, Jian Y, Wang W. Nine new nor-3,4-seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus and their hypoglycemic activity. Bioorg Chem 2024; 152:107763. [PMID: 39216195 DOI: 10.1016/j.bioorg.2024.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
This manuscript describes the isolation of nine new nor-3,4-seco-dammarane triterpenoids, norqingqianliusus A-I (1-9) and one known nortriterpenoid (10) from Cyclocarya paliurus leaves. Norqingqianliusus A and B (1 and 2) possess a unique 3,4-seco-dammarane-type C26 tetranortriterpenoid skeleton. The compounds were structurally characterized through modern spectroscopic techniques. Moreover, the potential mechanism of hypoglycemic activity was further explored by studying the effects on glucosamine-induced insulin resistant HepG2 cells. In vitro hypoglycemic effects of all of the isolates were investigated using insulin resistant HepG2 cells. The glucose consumption was significantly promoted by compound 10, in a dose-dependent manner, thus alleviating damage in IR-HepG2 cells. Besides, it reduced the PEPCK and GSK3β gene expression, involved in glucose metabolism. The anti-diabetic effects of the plant, utilized traditionally, can hence be attributed to the presence of nor-3,4-seco-dammarane triterpenoids in the leaves.
Collapse
Affiliation(s)
- Mengyun Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Ying Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Zhang Y, Zeng L, Ouyang K, Wang W. Cholesterol-Lowering Effect of Polysaccharides from Cyclocarya paliurus In Vitro and in Hypercholesterolemia Mice. Foods 2024; 13:2343. [PMID: 39123535 PMCID: PMC11312258 DOI: 10.3390/foods13152343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, a new component of Cyclocarya paliurus polysaccharides (CPP20) was precipitated by the gradient ethanol method, and the protective effect of CPP20 on hypercholesterolemia mice was investigated. In vitro, CPP20 had the ability to bind bile salts and inhibit cholesterol micelle solubility, and it could effectively clear free radicals (DPPH•, •OH, and ABTS+). In vivo, CPP20 effectively alleviated hypercholesterolemia and liver damage in mice. After CPP20 intervention, the activity of antioxidant enzymes (SOD, CAT, and GSH-Px) and the level of HDL-C in liver and serum were increased, and the activity of aminotransferase (ALT and AST) and the level of MDA, TC, TG, LDL-C, and TBA were decreased. Molecular experiments showed that CPP20 reduced cholesterol by regulating the mRNA expression of antioxidation-related genes (SOD, GSH-Px, and CAT) and genes related to the cholesterol metabolism (CYP7A1, CYP27A1, SREBP-2, HMGCR, and FXR) in liver. In addition, CPP20 alleviated intestinal microbiota disturbances in mice with hypercholesterolemia and increased levels of SCFAs. Therefore, CPP20 alleviates hypercholesterolemia by alleviating oxidative damage, maintaining cholesterol homeostasis, and regulating gut microbiota.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Lei Zeng
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenjun Wang
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
3
|
Zeng X, Jiang W, Li H, Li Q, Kokini JL, Du Z, Xi Y, Li J. Interactions of Mesona chinensis Benth polysaccharides with different polysaccharides to fabricate food hydrogels: A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Xu Q, Ding S, Qi W, Zhang X, Zhang M, Xing J, Ju A, Zhou L, Ye L. JAK3/STAT5b/PPARγ Pathway Mediates the Association between Di(2-ethylhexyl) Phthalate Exposure and Lipid Metabolic Disorder in Chinese Adolescent Students. Chem Res Toxicol 2023; 36:725-733. [PMID: 37093692 DOI: 10.1021/acs.chemrestox.2c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Our previous studies found that di (2-ethylhexyl) phthalate (DEHP) could disorder lipid metabolism in adolescents but the mechanisms underlying this association remained unclear. This study was undertaken to clarify the mediating effect of JAK3/STAT5/PPARγ on disorder lipid levels induced by DEHP in adolescents. We recruited 478 adolescent students (median age 18.1 years). The mRNA expression and DNA methylation levels of JAK3/STAT5/PPARγ were detected by real-time PCR and the MethylTarget, respectively. We used multiple linear regression to analyze the association between DEHP metabolites (MEHP, MEOHP, MEHHP, MECPP, MCMHP, and ΣDEHP) levels, mRNA expression, and DNA methylation levels. The mediating effect of JAK3/STAT5/PPARγ mRNA expression levels was examined by mediation analysis. We found that all DEHP metabolite levels were positively correlated with TC/HDL-C and LDL-C/HDL-C (P < 0.05). The MEOHP level was negatively associated with DNA methylation levels and positively associated with mRNA levels of PPARγ and STAT5b (P < 0.05). The MEHP level was negatively associated with the DNA methylation level and positively associated with the mRNA level of JAK3 (P < 0.05). Higher MEOHP was associated with a higher level of TC/HDL-C, the mediation analysis showed the mediation effect was 17.18% for the JAK3 level, 10.76% for the STAT5b level, and 11% for the PPARγ level. Higher MEHP was associated with a higher level of LDL-C/HDL-C, the mediation effect was 14.49% for the JAK3 level. In conclusion, DEHP metabolites decreased the DNA methylation levels, inducing the increase of the mRNA levels of JAK3/STAT5/PPARγ. In addition, the mRNA levels mediated the association between DEHP exposure and disorder lipid levels.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Shuang Ding
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Jilin University, Changchun 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Meng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Jiqiang Xing
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Aipeng Ju
- Department of Anatomy, College of Basic Medicine Sciences, Jilin University, Changchun 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Shen Y, Peng Y, Zhu X, Li H, Zhang L, Kong F, Wang J, Yu D. The phytochemicals and health benefits of Cyclocarya paliurus (Batalin) Iljinskaja. Front Nutr 2023; 10:1158158. [PMID: 37090775 PMCID: PMC10115952 DOI: 10.3389/fnut.2023.1158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Cyclocarya paliurus (C. paliurus), a nutritional and nutraceutical resource for human and animal diets, has been constantly explored. The available biological components of C. paliurus were triterpenoids, polysaccharides, and flavonoids. Recent studies in phytochemical-phytochemistry; pharmacological-pharmacology has shown that C. paliurus performed medicinal value, such as antihypertensive, antioxidant, anticancer, antimicrobial, anti-inflammatory and immunological activities. Furthermore, C. paliurus and its extracts added to drinks would help to prevent and mitigate chronic diseases. This review provides an overview of the nutritional composition and functional applications of C. paliurus, summarizing the research progress on the extraction methods, structural characteristics, and biological activities. Therefore, it may be a promising candidate for developing functional ingredients in traditional Chinese medicine. However, a more profound understanding of its active compounds and active mechanisms through which they perform biological activities is required. As a result, the plant needs further investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liwen Zhang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fanlei Kong
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jia Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Jia Wang,
| | - Di Yu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Di Yu,
| |
Collapse
|
6
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
7
|
He H, Chen C, Zhao W. Soybean soluble polysaccharide prevents obesity in high-fat diet-induced rats via lipid metabolism regulation. Int J Biol Macromol 2022; 222:3057-3065. [DOI: 10.1016/j.ijbiomac.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
8
|
Dong X, Zhou M, Li Y, Li Y, Ji H, Hu Q. Cardiovascular Protective Effects of Plant Polysaccharides: A Review. Front Pharmacol 2021; 12:783641. [PMID: 34867415 PMCID: PMC8639026 DOI: 10.3389/fphar.2021.783641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular disease is a kind of heart, brain, and blood vessel injury disease by the interaction of various pathological factors. The pathogenesis of cardiovascular disease is complex with various risk factors, including abnormally elevated blood pressure, glucose, and lipid metabolism disorders, atherosclerosis, thrombosis, etc. Plant polysaccharides are a special class of natural products derived from plant resources, which have the characteristics of wide sources, diverse biological activities, and low toxicity or side effects. Many studies have shown that plant polysaccharides improve cardiovascular diseases through various mechanisms such as anti-oxidative stress, restoring the metabolism of biological macromolecules, regulating the apoptosis cascade to reduce cell apoptosis, and inhibiting inflammatory signal pathways to alleviate inflammation. This article reviews the pharmacological effects and protective mechanisms of some plant polysaccharides in modulating the cardiovascular system, which is beneficial for developing more effective drugs with low side effects for management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xinli Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengze Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yehong Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Guo T, Akan OD, Luo F, Lin Q. Dietary polysaccharides exert biological functions via epigenetic regulations: Advance and prospectives. Crit Rev Food Sci Nutr 2021; 63:114-124. [PMID: 34227906 DOI: 10.1080/10408398.2021.1944974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive substances derived from natural products are valued for effective health-related activities. As extremely important component of plants, animal cell membrane and microbes cytoderm, polysaccharides have been applied as medications, foods and cosmetics stemming from their prominent biological functions and minor side-effects. Recent studies indicate that polysaccharides exert biological effects also through epigenetic mechanism. Through the intervention of DNA methylation, histone modification, and non-coding RNA, polysaccharides participatate in regulation of immunity/inflammation, glucose and lipid metabolism, antioxidant damage and anti-tumor, which presents novel mechanism of polysaccharide exerting various functions. In this review, the latest advances in the biological functions of dietary polysaccharides via epigenetic regulations were comprehensively summarized and discussed. From the view point of epigenetic regulation, investigating the relationship between polysaccharides and biological effects will enhance our understandings of polysaccharides and also means huge breakthrough of molecular mechanism in the polysaccharide research fields. The paper will provide important reference to these investigators of polysaccharide research and expand the applications of dietary polysaccharides in the functional food developments.
Collapse
Affiliation(s)
- Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
10
|
Yang Z, Zhao J, Li J, Wang J, Wang W. Genome-wide DNA methylation profiling of high-fat emulsion-induced hyperlipidemia mice intervened by a polysaccharide from Cyclocarya paliurus (Batal) Iljinskaja. Food Chem Toxicol 2021. [DOI: https://doi.org/10.1016/j.fct.2021.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Yang Z, Zhao J, Li J, Wang J, Wang W. Genome-wide DNA methylation profiling of high-fat emulsion-induced hyperlipidemia mice intervened by a polysaccharide from Cyclocarya paliurus (Batal) Iljinskaja. Food Chem Toxicol 2021; 152:112230. [PMID: 33878369 DOI: 10.1016/j.fct.2021.112230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Genome-wide DNA methylation was used to study the lipid-lowering effect of Cyclocarya paliurus (Batal) Iljinskaja polysaccharide (CPP). The objective of this study was to investigate the hypolipidemic effects and the potential underlying mechanisms of action of CPP-2 in high-fat emulsion (HFE)-induced mice. The results showed that CPP-2 reduced the level of genome-wide DNA methylation in the liver of HFE-induced mice, which had a lipid-lowering effect by regulating the AMP-activated protein kinase (AMPK) signaling-, fatty acid metabolism-, fatty acid biosynthesis- and adipocytokine signaling pathways. A series of lipid metabolism genes were screened out by conjoint analysis of the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Hereafter, fatty acid synthase (FAS) and peroxisome proliferators-activated receptor α (PPARα) as target genes were selected to validate the accuracy of the results. The findings demonstrated that CPP-2 might be effective in lowering the lipid content, thereby protecting against HFE-induced hyperlipidemia.
Collapse
Affiliation(s)
- Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jing Zhao
- Guang' an Vocation &Technical College, Guang' an 638000, China
| | - Jing'en Li
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Wang
- The State Centre of Quality Supervision and Inspection for Camellia Products (Jiangxi), Ganzhou 341000, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Iqbal S, Shah MA, Rasul A, Saadullah M, Tabassum S, Ali S, Zafar M, Muhammad H, Uddin MS, Batiha GES, Vargas-De-La-Cruz C. Radioprotective Potential of Nutraceuticals and their Underlying Mechanism of Action. Anticancer Agents Med Chem 2021; 22:40-52. [PMID: 33622231 DOI: 10.2174/1871520621666210223101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations of synthetic radioprotectors have shown less effectiveness, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies are involved modulation of signaling transduction of pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory genes expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and mechanism of action of their radioprotective activities on a molecular level, DNA repair pathway, anti-inflammation, immunomodulatory effects, the effect on cellular signaling pathways, and regeneration of hematopoietic cells.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad. Pakistan
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013. China
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad. Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira. Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria (CLEIBA), Universidad Nacional Mayor de San Marcos, Lima15001. Peru
| |
Collapse
|
13
|
Wang H, Tang C, Gao Z, Huang Y, Zhang B, Wei J, Zhao L, Tong X. Potential Role of Natural Plant Medicine Cyclocarya paliurus in the Treatment of Type 2 Diabetes Mellitus. J Diabetes Res 2021; 2021:1655336. [PMID: 34988228 PMCID: PMC8723876 DOI: 10.1155/2021/1655336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease that has become increasingly prevalent worldwide. It poses a serious threat to human health and places a considerable burden on global social medical work. To meet the increasing demand for T2DM treatment, research on hypoglycemic drugs is rapidly developing. Cyclocarya paliurus (Batal.) Iljinskaja is a medicinal plant that grows in China. The leaves of C. paliurus contain polysaccharides, triterpenoids, and other chemical components, which have numerous health benefits. Therefore, the use of this plant has attracted extensive attention in the medical community. Over the past few decades, contemporary pharmacological studies on C. paliurus extracts have revealed that it has abundant biological activities. Multiple in vitro and in vivo experiments have shown that C. paliurus extracts are safe and can play a therapeutic role in T2DM through anti-inflammatory and antioxidation activities, and intestinal flora regulation. Its efficacy is closely related to many factors, such as extraction, separation, purification, and modification. Based on summarizing the existing extraction methods, this article further reviews the potential mechanism of C. paliurus extracts in T2DM treatment, and we aimed to provide a reference for future research on natural plant medicine for the prevention and treatment of T2DM and its related complications.
Collapse
Affiliation(s)
- Han Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, China
| | - Zezheng Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Yishan Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Boxun Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Jiahua Wei
- Changchun University of Chinese Medicine, China
| | - Linhua Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
14
|
Xie L, Shen M, Wen P, Hong Y, Liu X, Xie J. Preparation, characterization, antioxidant activity and protective effect against cellular oxidative stress of phosphorylated polysaccharide from Cyclocarya paliurus. Food Chem Toxicol 2020; 145:111754. [DOI: 10.1016/j.fct.2020.111754] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
|
15
|
Xiong L, Ouyang KH, Chen H, Yang ZW, Hu WB, Wang N, Liu X, Wang WJ. Immunomodulatory effect of Cyclocarya paliurus polysaccharide in cyclophosphamide induced immunocompromised mice. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2020; 24:100224. [DOI: 10.1016/j.bcdf.2020.100224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Kakar MU, Naveed M, Saeed M, Zhao S, Rasheed M, Firdoos S, Manzoor R, Deng Y, Dai R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. Int J Biol Macromol 2020; 156:420-429. [PMID: 32289423 DOI: 10.1016/j.ijbiomac.2020.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Cyclocarya paliurus is essential and only living specie of the genus Cyclocarya Iljinskaja. The leaves of this plant have been extensively used as food in the form of tea and green vegetable. Many compounds have been isolated from this plant, and their useful aspects explored, including the polysaccharides. Studies conducted on leaves show that different methods of extraction have been used, as well as a combination of different techniques that have been applied to isolate polysaccharides from the leaves. Their structure has been elucidated because the activity of polysaccharides mainly depends upon their composition. It has been reported that different activities exhibited by the isolated crude, purified as well as modified polysaccharides include, anticancer, anti-inflammatory, antioxidant, antimicrobial, anti-hyperlipidemic and anti-diabetic activities. In some studies, a comparison of crude extract, as well as purified polysaccharide, has been performed. In this review, we have summarized all the available literature available on the methods of extraction, structure, and biological activities of polysaccharides from the leaves of C. paliurus and indicated the potential research areas that should be focused on future studies. We believe that this review will provide an up to date knowledge regarding polysaccharides of C. paliurus for the researchers.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China; Faculty of Marine Sciences, the Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, PR China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Shicong Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China; Faculty of Marine Sciences, the Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology, (BIT), Beijing 100081, PR China.
| |
Collapse
|
17
|
Cyclocarya paliurus Polysaccharide Inhibits Glioma Cell U251 Proliferation, Migration, and Invasion and Promotes Apoptosis via the GSK3β/β-Catenin Signaling Pathway. INT J POLYM SCI 2020. [DOI: 10.1155/2020/2391439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective. To investigate the effects of Cyclocarya paliurus polysaccharide (CPP) on the proliferation, migration, invasion, and apoptosis of human glioma U251 cells and further explore the underlying mechanism. Methods. U251 cells were cultured in vitro and treated with various concentrations (25, 50, 75, 100, 125, and 150 μmol/L) of CPP for 24, 48, and 72 h. Cell counting kit-8 was used to detect the activity of cell proliferation. Wound-healing assay, Transwell assay, and flow cytometry were used to measure the effects of CPP on the migration, invasion, and apoptosis of U251 cells, respectively. Western blotting was used to determine the protein expression involved in the GSK3β/β-catenin signaling pathway and its downstream genes related to proliferation, migration, invasion, and apoptosis including Cyr61, CCND1, Vimentin, and Slug. Meanwhile, qRT-PCR was used to detect the mRNA levels of Cyr61, CCND1, Vimentin, and Slug. Results. We found that CPP not only could inhibit the proliferation, migration, and invasion of U251 cells but also promote its apoptosis in vitro. Besides, CPP could significantly inhibit the phosphorylation and decrease the protein levels of GSK3 β at ser9 site (p<0.05), and thus increasing the phosphorylation of β-Catenin at ser33/37 site (p<0.05), resulting in β-Catenin degradation. In addition, we also found that CPP could downregulate the mRNA (p<0.05) and protein expression (p<0.05) of downstream genes of GSK3 β/β-catenin signaling pathway including Cyr61, CCND1, Vimentin, and Slug, which are related to proliferation, migration, invasion, and apoptosis. Conclusion. CPP could inhibit the expression of GSK3β, promote the degradation of β-catenin, and downregulate the levels of GSK3β/β-catenin downstream genes including Cyr61, CCND1, Vimentin, and Slug, which regulate the proliferation, migration, invasion, and apoptosis of glioma cells.
Collapse
|
18
|
Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol 2020; 153:373-384. [PMID: 32087223 DOI: 10.1016/j.ijbiomac.2020.02.203] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is increasingly used to successfully diagnose many human health problems, but ionizing radiation may cause damage to organs/tissues in the living organisms such as the spleen, liver, skin, and brain. Many radiation protective agents have been discovered, with the deepening of radiation research. Unfortunately, these protective agents have many side effects, which cause drug resistance, nausea, vomiting, osteoporosis, etc. The polysaccharides extracted from natural sources are widely available and low in toxicity. In vivo and in vitro experiments have demonstrated that polysaccharides have anti-radiation activity through anti-oxidation, immune regulation, protection of hematopoietic system and protection against DNA damage. Recently, some studies have shown that polysaccharides were resistant to radiation. In the review, the anti-radiation activities of polysaccharides from different sources are summarized, and the anti-radiation mechanisms are discussed as well. It can be used to develop more effective anti-radiation management drugs.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
19
|
Chen X, Mao X, Huang P, Fang S. Morphological Characterization of Flower Buds Development and Related Gene Expression Profiling at Bud Break Stage in Heterodichogamous Cyclocarya paliurus (Batal.) lljinskaja. Genes (Basel) 2019; 10:genes10100818. [PMID: 31627470 PMCID: PMC6827045 DOI: 10.3390/genes10100818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja, a unique species growing in southern China, is a multi-function tree species with medicinal, healthcare, material, and ornamental values. So far, sexual reproduction is the main method for extensive cultivation of C. paliurus plantations, but this is limited by low seed plumpness resulted from the character of heterodichogamy. Phenological observations have revealed the asynchronism of flower development in this species. However, its molecular mechanism remains largely unknown. To reveal molecular mechanism of heterodichogamy in C. paliurus, transcriptome of female (F) and male (M) buds from two mating types (protandry, PA; protogyny, PG) at bud break stage were sequenced using Illumina Hiseq 4000 platform. The expression patterns of both 32 genes related to flowering and 58 differentially expressed transcription factors (DETFs) selected from 6 families were divided four groups (PG-F, PG-M, PA-F, and PA-M) into two categories: first flowers (PG-F and PA-M) and later flowers (PA-F and PG-M). The results indicated that genes related to plant hormones (IAA, ABA, and GA) synthesis and response, glucose metabolism, and transcription factors (especially in MIKC family) played significant roles in regulating asynchronism of male and female flowers in the same mating type. The expression of DETFs showed two patterns. One contained DETFs up-regulated in first flowers in comparison to later flowers, and the other was the reverse. Nine genes related to flowering were selected for qRT-PCR to confirm the accuracy of RNA-seq, and generally, the RPKM values of these genes were consistent with the result of qRT-PCR. The results of this work could improve our understanding in asynchronism of floral development within one mating type in C. paliurus at transcriptional level, as well as lay a foundation for further study in heterodichogamous plants.
Collapse
Affiliation(s)
- Xiaoling Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xia Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shengzuo Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Yuan Y, Liu Q, Zhao F, Cao J, Shen X, Li C. Holothuria Leucospilota Polysaccharides Ameliorate Hyperlipidemia in High-Fat Diet-Induced Rats via Short-Chain Fatty Acids Production and Lipid Metabolism Regulation. Int J Mol Sci 2019; 20:ijms20194738. [PMID: 31554265 PMCID: PMC6801986 DOI: 10.3390/ijms20194738] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Holothuria leucospilota polysaccharides (HLP) are expected to become potential resources for the treatment of hyperlipidemia because of their various bioactivities. In the study, the treatment of HLP on improving hyperlipidemia in rats was explored. Oral administration of HLP at 100 or 200 mg/kg body weight effectively alleviated serum lipid levels and liver histological abnormalities in high-fat-diet rats. HLP regulated abnormal mRNA, lipogenesis-related hormones and inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-12) levels. HLP improved the ability of gut microbiota to produce short-chain fatty acids (SCFAs). SCFAs have been found to ameliorate liver lesions. Therefore, HLP alleviated hyperlipidemia by improving the levels of SCFAs to regulate lipid metabolism. These results indicated that HLP could be used as beneficial polysaccharides to alleviate hyperlipidemia.
Collapse
Affiliation(s)
- Yiqiong Yuan
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Key Laboratory of Marine Food Processing of Haikou, College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Qibing Liu
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China.
| | - Fuqiang Zhao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Key Laboratory of Marine Food Processing of Haikou, College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Key Laboratory of Marine Food Processing of Haikou, College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Key Laboratory of Marine Food Processing of Haikou, College of Food Science and Engineering, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Key Laboratory of Marine Food Processing of Haikou, College of Food Science and Engineering, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction. Int J Biol Macromol 2019; 126:30-36. [DOI: 10.1016/j.ijbiomac.2018.12.211] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022]
|