1
|
Qian L, Jia R, Zhao Q, Sun N, Yang J, Wen J, Li H, Yang J, Mo L, Gao W, Deng S, Qin Z. Tough, antibacterial, and antioxidant chitosan-based composite films enhanced with proanthocyanidin and carvacrol essential oil for fruit preservation. Food Res Int 2025; 208:116269. [PMID: 40263857 DOI: 10.1016/j.foodres.2025.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Post-harvest fruits are susceptible to microbial infections and spoilage, and the development of multifunctional green preservation films to extend the shelf-life of fruits is desirable. In this study, multifunctional antibacterial and antioxidant fruit preservation films were developed by incorporating natural plant actives of proanthocyanidins and carvacrol essential oils into chitosan-dialdehyde cellulose composite films. The composite film had good mechanical properties, with a tensile strength of 78.8 MPa, a free radical scavenging rate of over 90 %, and enhanced barrier properties against UV light and water vapor. The diameters of the inhibition zones of the composite film for S. aureus and E. coli were 23.65 mm and 22.37 mm, respectively. In addition, the composite film was biocompatible and the survival rate of cells treated with the composite film solution was more than 90 %. Using strawberries as model fruit, we showed that the composite film could effectively inhibit the growth of colonies on the surface of the fruit and reduce the weight loss rate. These results demonstrated that the composite film has great potential for fruit preservation.
Collapse
Affiliation(s)
- Lijun Qian
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Ruijing Jia
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Quanling Zhao
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Ningjing Sun
- College of resources and environment sciences, Baoshan University, Baoshan 678000, China
| | - Juan Yang
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Jisheng Yang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Liuting Mo
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Shuduan Deng
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming, 650224, China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Zhang C, Li S, Chen D, Lu W, Xiao C. Emulsion-coaxial electrospinning: The role of zein as a shell layer in multicore-shell structured nanofibers for bioactive delivery. Int J Biol Macromol 2025; 306:141432. [PMID: 40010469 DOI: 10.1016/j.ijbiomac.2025.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Multicore-shell nanofibers were fabricated by integrating emulsion electrospinning and coaxial electrospinning technologies, in which the multicore section of the nanofibers was prepared by electrospinning of gelatin-stabilized emulsions, and the shell layer was coaxially electrospun from zein solution. Coaxial electrospinning of zein helped form emulsion-based electrospun fibers with bead-in-string, spindle-like, and straight morphologies. The hydrogen bonding between gelatin and zein contributed to the enhanced thermal properties of coaxially electrospun nanofibers. The coating of zein as shell greatly improved fiber surface wettability and mechanical strength. The release behavior of curcumin from the nanofibers was dominated by Fickian diffusion, and the zein shell as a physical barrier favored the prolonged release of curcumin and then the long-lasting antibacterial activity towards Escherichia coli. This work thus gives an insight into the development of the nanofibers by emulsion-coaxial electrospinning as encapsulation matrices for the application in food products.
Collapse
Affiliation(s)
- Cen Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sicheng Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chaogeng Xiao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Gao Z, Cao T, Hu B, Chen L, Li H, Wang C, Guo CY. Gas sensing by long-wavelength and long-afterglow pectin/melamine-formaldehyde aerogel via resonance energy transfer. J Colloid Interface Sci 2025; 685:876-888. [PMID: 39870005 DOI: 10.1016/j.jcis.2025.01.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed. It exhibits a stable and persistent afterglow, with a phosphorescence lifetime reaching up to 1.99 s. Simultaneously, this aerogel possesses excellent mechanical properties, having a compressive modulus of 4.14 MPa, which is 490.8 times that of the PC aerogel. Its friction coefficient is also much lower than that of the single MF aerogel, enabling the material to achieve a better balance between rigidity and service life in practical applications. Moreover, through resonance energy transfer, the afterglow wavelength was redshifted from 504 nm to 576 nm and 620 nm, and aerogels with ultra-long yellow and red afterglows were successfully obtained. PCMF@PA aerogels display specific chemical stability in different organic solvents. Notably, PCMF@PA has a characteristic recognition for formic acid gas. The change in the luminous intensity and lifetime of the aerogel after gas absorption distinguishes it from gases such as ammonia and acetic acid. These phosphorescent polymer aerogels with self-monitoring and tracing capabilities not only foster the advancement of ordered phosphorescent materials but also broaden the application scope of RTP materials in environmental monitoring.
Collapse
Affiliation(s)
- Zeyu Gao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Tengyang Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Bingxuan Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Lei Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Helang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Caiqi Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China.
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China.
| |
Collapse
|
4
|
Liu Y, Ge X, Wu X, Guan L. Enhanced Corneal Repair with Hyaluronic Acid/Proanthocyanidins Nanoparticles. ACS OMEGA 2025; 10:2222-2230. [PMID: 39866601 PMCID: PMC11755175 DOI: 10.1021/acsomega.4c09159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
This study investigates the therapeutic potential of hyaluronic acid/proanthocyanidin (HA/PAC) nanoparticles in treating alkali-induced corneal burns. Alkali burns are common ocular emergencies that can lead to severe vision impairment if not promptly and properly treated. The low water solubility of proanthocyanidins (PACs), which are potent antioxidant and anti-inflammatory agents, limits their bioavailability and therapeutic efficacy. To overcome this, hyaluronic acid (HA) was utilized as a carrier to form HA/PAC nanoparticles, enhancing PAC's solubility and bioavailability. The HA/PAC nanoparticles were characterized for morphology, granulometric distribution, hemolysis, and cytotoxicity, demonstrating high blood compatibility and noncytotoxicity. The in vitro antioxidant and anti-inflammatory capacities of HA/PAC were evaluated, showing enhanced activity compared to PAC alone. In vivo studies on C57 mice confirmed the accelerated healing of corneal injuries and reduced corneal opacity with HA/PAC treatment. Histopathological analysis and cytokine quantification further supported the anti-inflammatory and proregenerative effects of HA/PAC, suggesting its potential as an effective treatment for corneal alkali burns.
Collapse
Affiliation(s)
- Yalu Liu
- The
Affiliated Xuzhou Municipal
Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Department
of Ophthalmology, Xuzhou First People’s
Hospital, Xuzhou 221002, China
- Eye
Disease Prevention and Treatment Institute of Xuzhou, Xuzhou 221002, China
| | - Xing Ge
- The
Affiliated Xuzhou Municipal
Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Department
of Ophthalmology, Xuzhou First People’s
Hospital, Xuzhou 221002, China
- Eye
Disease Prevention and Treatment Institute of Xuzhou, Xuzhou 221002, China
| | - Xiaochen Wu
- Department
of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lina Guan
- The
Affiliated Xuzhou Municipal
Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Department
of Ophthalmology, Xuzhou First People’s
Hospital, Xuzhou 221002, China
- Eye
Disease Prevention and Treatment Institute of Xuzhou, Xuzhou 221002, China
| |
Collapse
|
5
|
Wang J, Li X, McClements DJ, Ji H, Jin Z, Qiu C. Preparation of protein-based aerogels and regulation and application of their absorption properties: a review. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39644487 DOI: 10.1080/10408398.2024.2434964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Challenges still persist in the preparation of healthy foods through the structuring of liquid oils, and the encapsulation and delivery of functional components. However, protein-based aerogels (PAs) with unique nutritional and health properties as well as various kinds of tunable absorption properties hold promise for solving these problems. In this review, the methods and characteristics of aerogels prepared from various animal and plant proteins were reviewed. In addition, considering the satisfactory structure of amyloid and its outstanding gelation and absorption properties, we proposed accelerating the development of amyloid aerogels in the future. Then, the relationship between their microstructure (specific surface area, pore characteristics, and stability) and absorption properties was discussed. The methods of regulating the absorption properties of PA by hydrogel preparation process, drying technology and surface coating were also emphasized. Finally, we summarized the research advances in PAs for liquid oil structuring and functional ingredient delivery, and provided an outlook for PAs development. The selection of suitable proteins and effective regulation of absorption properties are crucial considerations for improving the applicability of PAs. This review serves as a theoretical reference for the development of healthy, multifunctional and practicable PAs and their products.
Collapse
Affiliation(s)
- Jilong Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | | | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Costa JB, Nascimento LGL, Martins E, Carvalho AFD. Immobilization of the β-galactosidase enzyme by encapsulation in polymeric matrices for application in the dairy industry. J Dairy Sci 2024; 107:9100-9109. [PMID: 39033918 DOI: 10.3168/jds.2024-24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Lactose intolerance affects ∼65% of the global adult population, leading to the demand for lactose-free products. The enzyme β-galactosidase (βG) is commonly used in the industry to produce such products, but its recovery after lactose hydrolysis is challenging. In this scenario, the study aims to encapsulate βG within capsules, varying in dimensions and wall materials, to ensure their suitability for efficient industrial recovery. The enzyme βG was encapsulated through ionic gelation using alginate and its blends with pectin, maltodextrin, starch, or whey protein as wall materials. The capsules produced underwent evaluation for encapsulation efficiency, release profiles, activity of the βG enzyme, and the decline in enzyme activity when reused over multiple cycles. Alginate at 5% wt/vol concentrations, alone or combined with polymers such as maltodextrin, starch, or whey protein, achieved encapsulation efficiencies of ∼98%, 98%, 80%, and 88%, respectively. The corresponding enzyme recovery rates were 34%, 19%, 31%, and 48%. Capsules made with an alginate-pectin blend exhibited no significant hydrolysis and maintained an encapsulation efficiency of 79%. Encapsulation with alginate alone demonstrated on poor retention of enzyme activity, showing a loss of 74% after just 4 cycles of reuse. Conversely, when alginate was mixed with starch or whey protein concentrate, the loss of enzyme activity was less than 40% after 4 reuses. These results highlight the benefits of combining encapsulation materials to improve enzyme recovery and reuse, offering potential economic advantages for the dairy industry.
Collapse
Affiliation(s)
- Jessiele Barbosa Costa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antônio Fernandes De Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Sarioz N, Isik B, Cakar F, Cankurtaran O. Valorization of the performance of novel and natural sodium alginate/pectin/Portulaca oleracea L. ternary composites in the adsorption of toxic methylene blue dye from the aquatic environment. Int J Biol Macromol 2024; 282:136867. [PMID: 39490849 DOI: 10.1016/j.ijbiomac.2024.136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
This research introduces the development of a novel, sustainable, cost-effective, and eco-friendly sodium alginate (SA)-pectin (P) ternary composite, enhanced with Portulaca oleracea L. (PO) additive, which has been thoroughly investigated for its efficacy in removing hazardous methylene blue (MB) dye from wastewater. The selectivity studies using various cationic and anionic dyes were conducted. The composite microbeads that were generated underwent characterization using FTIR-ATR, SEM, XRD, zeta potential, and pHpzc analysis. Subsequently, the most favorable parameters for adsorption, including initial pH (2-12), contact time (0-180 min), adsorbent dosage (0.01-0.20 g), and temperature (298-318 K), were identified. The effect of monovalent and divalent salt concentrations on adsorption process was evaluated. The adsorption data were utilized in several isotherm (Langmuir, Freundlich, D-R, and Temkin) and kinetic (pseudo-first-order and pseudo-second-order) models. According to the Langmuir isotherm model was calculated the adsorption capacity at 298 K is 709.22 mg/g for SA/P/PO30 composite microbeads. The process of adsorption was seen to conform to a pseudo-second-order kinetic model. The results revealed that the process was both exothermic (∆Ho=-10.42kJ/mol) and spontaneous (∆Go=-26.04kJ/molat298K). Moreover, reusability analyses demonstrated that the composite microbeads that were created may be utilized several times, even after the 5th cycle. The results indicate that the developed composite microbeads have the potential to serve as an effective and inexpensive adsorbent for eliminating cationic contaminants from a wastewater.
Collapse
Affiliation(s)
- Neslihan Sarioz
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Fatih Cakar
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Ozlem Cankurtaran
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
8
|
Gopalakrishnan K, Ahmed S, Mishra P. Effect of aminolysis treatment on self-healing properties and printing potentialities of banana peel and edible wax based biodegradable film. Int J Biol Macromol 2024; 282:136805. [PMID: 39461637 DOI: 10.1016/j.ijbiomac.2024.136805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Cellulose-based materials are a viable alternative to petroleum-based sources; however, the practical applicability of cellulose films is severely limited by their poor hydrophobicity. This study explores the development of hydrophobic films with self-healing properties through the incorporation of natural wax into a cellulose matrix. Different formulations of films were developed varying the concentration of glycerol (0 % to 3.5 % v/v) and aminolysis treatment. Printability property, rubbing, acid, and water resistance property of the film were also evaluated. The self-healing efficiency of the films varied from around 30 % to 80 % based on variations in glycerol and aminolysis treatment provided. Aminolysis-treated films showed enhanced self-healing properties (Self-healing efficiency ∼77 %) compared to the control films. The films were characterized for their physical, mechanical, barrier, and thermal properties and it was found that 1.5 % had superior properties compared to other compositions. Printability properties showed that aminolysis-treated films had better wetting properties (WCA ∼ 74.46°) with a peak tact force of 8.1 N. This signifies aminolysis-treated films had better ink absorption and adhesion properties, which confirms the printability nature of the films. This study highlights the potential applications of biodegradable self-healing based film, applications with a scope of resolving environmental problems by replacing petrochemical plastics.
Collapse
Affiliation(s)
- Krishna Gopalakrishnan
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, India
| | - Shayaan Ahmed
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, India.
| |
Collapse
|
9
|
Li J, Sun Y, Shi W, Li Y, Zou Y, Zhang H. Fabrication, characterization, and in vitro digestion of gelatin/gluten oleogels from thermally crosslinked electrospun short fiber aerogel templates. Food Chem 2024; 454:139804. [PMID: 38815325 DOI: 10.1016/j.foodchem.2024.139804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
In this work, the electrospun short fiber-based oleogels (ESFO) were formed by thermal crosslinking. Gelatin and gluten nanofibers were obtained via electrospinning, then homogenized and transformed into short fiber dispersions. Through freeze-drying, electrospun short fiber-based aerogel (ESF-A) templates were obtained for oil adsorption. All ESF-A exhibited the micromorphology of loose fibrous pore structure and prominent changes of characteristic peaks in the thermal and infrared analyses. Moreover, the highly crosslinked templates owned excellent hydrophobicity and mechanical performances (elastic modulus: 0.25 kPa, yield strength: 14.56 kPa, compressive strength: 52.54 kPa, and the final compression recovery: 91.27%). Meanwhile, the oil adsorption/oil holding capacity could reach 76.56 g/g and 80.04%, respectively. Through thermal crosslinking, ESF-O presented good and controllable rheological/in vitro digestion properties, which were further confirmed by PCA analysis. According to different application conditions, ESF-O properties could be adjusted by different degrees of fiber addition or thermal crosslinking.
Collapse
Affiliation(s)
- Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yifeng Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Wangjue Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Ma Y, Bi J, Feng S, Wu Z, Yi J. Higher molecular weight pectin inhibits ice crystal growth and its effect on the microstructural and physical properties of pectin cryogels. Carbohydr Polym 2024; 340:122312. [PMID: 38858011 DOI: 10.1016/j.carbpol.2024.122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Understanding the formation of ice crystals is essential for tailoring the microstructure and physical properties of cryogels. This study investigated the effects and mechanisms of pectin molecular weight (Mw) on impacting ice crystal formation. Pectin fractions various Mw (10.13-212.20 kDa) were prepared by hydrothermal method. The solution of high Mw pectin fractions exhibited higher contact angle, lower water freedom, and stronger adsorption of water molecules. The splat experiment and molecular dynamic (MD) results confirmed that higher Mw pectin have stronger ice crystal growth inhibition activity than lower Mw pectin. Furthermore, the pore size distribution of the cryogel increased from 98-203 μm to 105-267 μm as the molecular weight decreased from 212.2 kDa to 121.0 kDa. Additionally, in the higher Mw pectin cryogel, stronger mechanical strength was observed. These findings suggested that changing the molecular weight of pectin has the potential to regulate the ice crystal growth, microstructure and physical properties of frozen products.
Collapse
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhonghua Wu
- College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
11
|
Tian D, Liu S, Lu Y, Zhang T, Wang X, Zhang C, Hu CY, Chen P, Deng H, Meng Y. Low-methoxy-pectin and chlorogenic acid synergistically promote lipolysis and β-oxidation by regulating AMPK signaling pathway in obese mice. Int J Biol Macromol 2024; 280:135552. [PMID: 39288856 DOI: 10.1016/j.ijbiomac.2024.135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Chlorogenic acid (CGA) displays various biological activities in preventing high-calorie diet-induced metabolic complications. The absorption efficiency of CGA in the stomach and small intestine is relatively low, with approximately 70 % of CGA being metabolized by colonic microorganisms before it enters the bloodstream. In this study, we successfully developed CGA-LMP (Low-methoxy-pectin) conjugates to improve the absorption rate of CGA. C57BL/6J mice were fed high-fat diets (HFD) supplemented with CGA, LMP, or CGA-LMP conjugates for a duration of eight weeks. The results demonstrated that the CGA, LMP, or CGA-LMP conjugates prevented HFD-induced hyperlipidemia, inflammation, liver steatosis, and adipocyte hypertrophy in obese mice. Notably, the CGA-LMP conjugates demonstrated superior efficacy in alleviating obesity compared to CGA or LMP alone. Further studies revealed that the primary mechanism of weight loss was the activation of the AMPK signaling pathway, which facilitates lipolysis and lipid β-oxidation. These findings highlight that the enhanced the anti-obesity effectiveness of CGA-LMP conjugates, expanding their potential applications in the field of functional nutrition and foods.
Collapse
Affiliation(s)
- Dan Tian
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Yalong Lu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Tingting Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Xue Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Chaoqun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA
| | - Ping Chen
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, PR China
| | - Hong Deng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| |
Collapse
|
12
|
Tan C. Hydrogel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:301-345. [PMID: 39218505 DOI: 10.1016/bs.afnr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydrogel delivery systems based on polysaccharides and proteins have the ability to protect functional substances from chemical degradation, control/target release, and increase bioavailability. This chapter summarizes the recent progress in the utilization of hydrogel delivery systems for nutritional interventions. Various hydrogel delivery systems as well as their preparation, structure, and properties are given. The applications for the encapsulation, protection, and controlled delivery of functional substances are described. We also discuss their potential and challenges in managing chronic diseases such as inflammatory bowel disease, obesity, liver disease, and cancer, aiming at providing theoretical references for exploring novel hydrogel delivery systems and their practical prospects in precise nutritional interventions.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. School of Food and Health, Beijing Technology & Business University, Beijing, P.R. China.
| |
Collapse
|
13
|
Pan T, Wang X, Zhu J, Wang H. Preparation of bright yellow color sodium alginate solution. Carbohydr Polym 2024; 337:122169. [PMID: 38710560 DOI: 10.1016/j.carbpol.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
Sodium alginate (SA) is a marine polysaccharide biomass material that is environmentally friendly and exhibits color-changing properties under certain conditions. In this study, we have discovered sodium alginate solution to be chromogenic under four conditions, namely alkali-chromogenic, thermo-chromogenic, force-chromogenic and photo-chromogenic. Under simple strong alkaline conditions, sodium alginate forms clusters of blue light-absorbing chromogenic aggregates, which exhibit a bright yellow color at a certain size. Under different temperature conditions, SA shows varying shades of yellow, and the color tends to stabilize after 48 h of resting. The aggregates can be dispersed by stirring, which changes SA from yellow to colorless. The yellow color can then be recovered after resting. Additionally, exposure to sunlight can cause the yellow SA to fade, but the color can be restored by reheating. Therefore, the force-chromogenic and photo-chromogenic properties are reversible. This makes it a promising material for use in color-developing and indicating materials. It is expected to become a sodium alginate cluster pigment with broad application prospects in the future.
Collapse
Affiliation(s)
- Tongtong Pan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiaxin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haizeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Yang C, Li A, Guo T, Cheng J, Liu Z, Hu H, Wang J. Novel organic-inorganic composite pea protein silica food-grade aerogel materials: Fabrication, mechanisms, high oil-holding property and curcumin delivery capacity. Int J Biol Macromol 2024; 273:132832. [PMID: 38834123 DOI: 10.1016/j.ijbiomac.2024.132832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The fragility of the skeleton and poor bioaccessibility limit Silica aerogel's application in the food industry. In this study, composite gels were obtained by cross-linking pea proteins isolate (PPI) with Tetraethoxysilane (TEOS)to improve the bioavailability of silica-derived aerogels. It indicated that TEOS first condensed with H+ to form secondary particles and then complexed with PPI via hydroxyl groups to form a composite aerogel. Meanwhile, the PPI-Si composite aerogel formed a dense mesoporous structure with a specific surface area of 312.5 g/cm3. This resulted in a higher oil holding percentage of 89.67 % for the PPI (10 %)-Si aerogel, which was 34.1 % higher than other studies, leading to a more stable oleogel. Finally, as a delivery system, the composite oleogel not only could significantly increase the bioaccessibility rate by 27.4 % compared with silica aerogel, but also could efficiently inhibit the premature release of curcumin in the simulated gastric fluids, while allowed sustainably release in the simulated intestinal fluids. These results provided a theoretical basis for the application of silica-derived aerogels in food and non-food applications.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Aitong Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - TianLai Guo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jie Cheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ziyun Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haiyue Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
15
|
Cheng X, Wu C, Fan G, Li X, Li T, Zhou D, Cong K, Suo A, Yang T, Shi J, Wang L. Fabrication of blueberry anthocyanins-rich gels based on the apricot polysaccharides with different esterification degrees. Int J Biol Macromol 2024; 273:133154. [PMID: 38878922 DOI: 10.1016/j.ijbiomac.2024.133154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
To enhance the stability of anthocyanins under conditions such as light, temperature, and pH, an apricot polysaccharide hydrogel for anthocyanins encapsulation was prepared in this study. Apricot polysaccharides with different DEs were prepared by an alkaline de-esterification method. A gel was prepared by mixing the apricot polysaccharides with CaCl2 to encapsulate the anthocyanins; the encapsulation efficiency reached 69.52 ± 0.31 %. Additionally, the gel exhibited favorable hardness (144.17 ± 2.33 g) and chewiness (64.13 ± 1.53 g). Fourier transform infrared (FTIR) and X-ray diffractometer (XRD) spectra confirmed that the formation of the hydrogel primarily relied on electrostatic interactions and hydrogen bonding. Compared with free anthocyanins, it was also found that the gel-encapsulated anthocyanins had a higher retention rate (RR) under different temperatures and light.
Collapse
Affiliation(s)
- Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiping Cong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tian Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jieying Shi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
16
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
17
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Günter E, Popeyko O, Vityazev F, Popov S. Effect of Callus Cell Immobilization on the Textural and Rheological Properties, Loading, and Releasing of Grape Seed Extract from Pectin Hydrogels. Gels 2024; 10:273. [PMID: 38667692 PMCID: PMC11048760 DOI: 10.3390/gels10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of the present study was to prepare pectin hydrogels with immobilized Lemna minor callus cells and to identify the effect of cell immobilization on the textural, rheological, and swelling properties; loading; and releasing of grape seed extract (GSE) from the hydrogels. Hardness, adhesiveness, elasticity, the strength of linkage, and complex viscosity decreased with increasing cell content in the hydrogels based on pectin with a degree of methyl esterification (DM) of 5.7% (TVC) and during incubation in gastrointestinal fluids. An increase in the rheological properties and fragility of pectin/callus hydrogels based on pectin with a DM of 33.0% (CP) was observed at a cell content of 0.4 g/mL. TVC-based pectin/callus beads increased their swelling in gastrointestinal fluids as cell content increased. TVC-based beads released GSE very slowly into simulated gastric and intestinal fluids, indicating controlled release. The GSE release rate in colonic fluid decreased with increasing cell content, which was associated with the accumulation of GSE in cells. CP-based beads released GSE completely in the intestinal fluid due to weak textural characteristics and rapid degradation within 10 min. Pectin/callus hydrogels have the ability to preserve GSE for a long time and may have great potential for the development of proanthocyanidin delivery systems due to their novel beneficial physicochemical and textural properties.
Collapse
Affiliation(s)
- Elena Günter
- Institute of Physiology of Federal Research Centre, Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (O.P.); (F.V.)
| | | | | | - Sergey Popov
- Institute of Physiology of Federal Research Centre, Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (O.P.); (F.V.)
| |
Collapse
|
19
|
Ma Y, Bi J, Wu Z, Feng S, Yi J. Tailoring microstructure and mechanical properties of pectin cryogels by modulate intensity of ionic interconnection. Int J Biol Macromol 2024; 262:130028. [PMID: 38340927 DOI: 10.1016/j.ijbiomac.2024.130028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Porous morphology and mechanical properties determine the applications of cryogels. To understand the influence of the ionic network on the microstructure and mechanical properties of pectin cryogels, we prepared low-methoxyl pectin (LMP) cryogels with different Ca2+ concentrations (measured as R-value, ranging from 0 to 2) through freeze-drying (FD). Results showed that the R-values appeared to be crucial parameters that impact the pore morphology and mechanical characteristics of cryogels. It is achieved by altering the network stability and water state properties of the cryogel precursor. Cryogel precursors with a saturated R-value (R = 1) produced a low pore diameter (0.12 mm) microstructure, obtaining the highest crispness (15.00 ± 1.85) and hardness (maximum positive force and area measuring 2.36 ± 0.31 N and 12.30 ± 1.57 N·s respectively). Hardness showed a negative correlation with Ca2+ concentration when R ≤ 1 (-0.89), and a similar correlation with the porosity of the gel network when R ≥ 1 (-0.80). Given the impacts of crosslinking on the pore structure, it is confirmed that the pore diameter can be designed between 56.24 and 153.58 μm by controlling R-value in the range of 0-2.
Collapse
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Zhonghua Wu
- College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
20
|
Xue Y, Shen Y, Chen X, Dong L, Li J, Guan Y, Li Y. Sodium Alginate Aerogel as a Carrier of Organogelators for Effective Oil Spill Solidification and Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1515-1523. [PMID: 38176104 DOI: 10.1021/acs.langmuir.3c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Marine oil spills pose a serious threat to the marine ecological environment. Phase-selective organogelators (PSOGs) are ideal candidates for oil spill gelation when used in combination with a mechanical recovery method. However, the toxicity of an organic solvent carrier has become a key problem when it is applied in the remediation of marine oil pollution. In this study, through an inexpensive and nontoxic ionic cross-linking and freeze-drying method, we successfully developed composite oil gelling agents that used a biomass sodium alginate aerogel as the carrier of 12-hydroxystearic acid (12-HSA). Simultaneously, carboxylated cellulose nanofibers (CNF-C) with large specific surface area and graphene oxide (GO) with excellent mechanical properties as reinforcing fillers were combined with an alginate matrix. 12-HSA, as a green and inexpensive organic gelator, was uniformly loaded on the aerogels by vacuum impregnation. The sodium alginate aerogel was capable of absorbing and storing oil due to its three-dimensional network skeleton and high porosity. Rheological studies have demonstrated that the organic gelator 12-HSA can be released from the aerogel substrate and self-assemble to form an oleogel with the absorbed oil quickly. The synergistic effect between absorption and congelation endows the composite oil gelling agent with efficient oil spill recovery capability. Based on eco-friendly, biodegradable, and simple synthesis methods, this composite oil gelling agent shows great potential for application in marine oil spill recovery.
Collapse
Affiliation(s)
- Ying Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Limei Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Junfeng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
21
|
Li W, Linli F, Yang W, Chen X. Enhancing the stability of natural anthocyanins against environmental stressors through encapsulation with synthetic peptide-based gels. Int J Biol Macromol 2023; 253:127133. [PMID: 37802437 DOI: 10.1016/j.ijbiomac.2023.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
The instability of anthocyanin to environmental stressors severely limits its applications as a natural bioactive pigment. To overcome these limitations, this proof-of-concept study utilizes the high biocompatibility of peptide molecules and the unique gel microstructure to develop innovative peptide-based gels. Characterization of the gels was conducted through AFM, SEM, rheological analysis, and CD spectrum. These analyses confirmed the fibrous mesh structure and impressive mechanical strength of the peptide-based gels. The cytotoxicity evaluation using MTT and hemolysis analysis showed high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins in all four peptide-based gels, with uniform distribution. Moreover, systematic investigations were conducted to assess the impact of peptide-based gels on the stability of natural anthocyanins under environmental stressors such as temperature, pH variations, and exposure to metal ions. Notably, the results revealed a significant enhancement in stability, including improved long-term storage and antioxidant activity. In conclusion, this study successfully developed four novel peptide-based gels that effectively protect natural anthocyanins from environmental stressors, highlighting their potential in various fields such as food and biology.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Fangzhou Linli
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| |
Collapse
|
22
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Borges-Vilches J, Unalan I, Aguayo CR, Fernández K, Boccaccini AR. Multifunctional Chitosan Scaffold Platforms Loaded with Natural Polyphenolic Extracts for Wound Dressing Applications. Biomacromolecules 2023; 24:5183-5193. [PMID: 37906697 DOI: 10.1021/acs.biomac.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chitosan (CS)-based scaffolds loaded with Pinus radiata extract bark (PE) and grape seed extract (GSE) were successfully developed for wound dressing applications. The effects of incorporating GSE and PE in CS scaffolds were investigated in relation to their physicochemical and biological properties. All scaffolds exhibited porous structures with the ability to absorb more than 70 times their weight when contacted with blood and phosphate buffer solution. The incorporation of GSE and PE into the CS scaffolds increased their blood absorption ability and degradation rates over time. All scaffolds showed a clotting ability above 95%, with their surfaces being favorable for red blood cell attachment. Both GSE and PE were released from the CS scaffolds in a sustained manner. Scaffolds loaded with GSE and PE inhibited the bacterial activity of S. aureus and E. coli by 40% and 44% after 24 h testing. In vitro cell viability studies demonstrated that all scaffolds were nontoxic to HaCaT cells. Importantly, the addition of GSE and PE further increased cell viability compared to that of the CS scaffold. This study provides a new synthesis method to immobilize GSE and PE on CS scaffolds, enabling the formation of novel material platforms with a high potential for wound dressing applications.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Claudio R Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| |
Collapse
|
24
|
Ahmadzadeh-Hashemi S, Varidi M, Nooshkam M. Hydro- and aerogels from quince seed gum and gelatin solutions. Food Chem X 2023; 19:100813. [PMID: 37780320 PMCID: PMC10534173 DOI: 10.1016/j.fochx.2023.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The composite hydro/aerogels were designed using gelatin and quince seed gum (QSG) at total polymer concentration (TPC) of 1, 1.5 and 2% and gelatin/QSG ratio of 1:0, 1:0.5 and 1:1. The gel syneresis decreased significantly with increase in TPC and QSG. Although, hydrogels with 2% TPC had remarkably higher gel strength and elasticity than 1% TPC ones, the addition of high levels of QSG to the gelatin (i.e., gelatin/QSG 1:1) led to a decrease in its gel strength (∼0.97-fold) and elasticity (∼3,463-fold). The temperature-sweep test showed higher melting points in gelatin/QSG hydrogels (>60 °C) compared to the gelatin ones (∼58 °C). Additionally, QSG addition to the gelatin led to more porous networks with higher gel strength, thermal stability, and crystallinity, as observed by scanning electron microscopy, differential scanning calorimetry, and X-ray diffractometer. Therefore, QSG could be used as a natural hydrocolloid to modify gelatin functionality.
Collapse
Affiliation(s)
- Saba Ahmadzadeh-Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
25
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
26
|
Lu H, Li X, Tian T, Yang H, Quan G, Zhang Y, Huang H. The pH-responsiveness carrier of sanxan gel beads crosslinked with CaCl 2 to control drug release. Int J Biol Macromol 2023; 250:126298. [PMID: 37573917 DOI: 10.1016/j.ijbiomac.2023.126298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Natural polysaccharide-based gel carriers have been widely studied for their potential to provide slow and controlled release. Sanxan is an edible polysaccharide produced by Sphingomonas sanxanigenens. In this study, gel beads were prepared using the extrusion dripping method with sanxan as the carrier material and HCl and CaCl2 as the fixing solution. The molecular structure, texture profile, and microstructure of the bead were analyzed. And the swelling characterization and in vitro release of beads were evaluated. The results of Fourier-transform infrared analysis indicate that Ca2+ was used to create an ionically crosslinked structure of sanxan. Texture analyzer and scanning electron microscope studies showed that the acid‑calcium gel exhibited physical resistance and resilience, as well as a distinct gel pore structure. The swelling, dissolution, and drug release of the beads decreased as the amount of CaCl2 increased. Compared to the control (without CaCl2), the release of sanxan beads when 0.5 CaCl2 was added (sanxan carboxyl/Ca2+, by the number of moles M/M) in the stomach and small intestine release decreased by 40.9 % and 49.5 %, respectively. This study indicates that the fabrication of sanxan-Ca2+ crosslinked gel had sustained release characteristics, indicating that sanxan carriers have great potential for gradual and regulated medication delivery.
Collapse
Affiliation(s)
- Hegang Lu
- Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Li
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Tian Tian
- Tianjin Agricultural University, Tianjin 300392, China
| | - Hongpeng Yang
- Tianjin Agricultural University, Tianjin 300392, China
| | - Guizhi Quan
- Tianjin Agricultural University, Tianjin 300392, China
| | - Yi Zhang
- Tianjin Agricultural University, Tianjin 300392, China
| | - Haidong Huang
- Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
27
|
Said NS, Olawuyi IF, Lee WY. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023; 9:732. [PMID: 37754413 PMCID: PMC10530747 DOI: 10.3390/gels9090732] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Pectin hydrogels have garnered significant attention in the food industry due to their remarkable versatility and promising properties. As a naturally occurring polysaccharide, pectin forms three-dimensional (3D) hydrophilic polymer networks, endowing these hydrogels with softness, flexibility, and biocompatibility. Their exceptional attributes surpass those of other biopolymer gels, exhibiting rapid gelation, higher melting points, and efficient carrier capabilities for flavoring and fat barriers. This review provides an overview of the current state of pectin gelling mechanisms and the classification of hydrogels, as well as their crosslinking types, as investigated through diverse research endeavors worldwide. The preparation of pectin hydrogels is categorized into specific gel types, including hydrogels, cryogels, aerogels, xerogels, and oleogels. Each preparation process is thoroughly discussed, shedding light on how it impacts the properties of pectin gels. Furthermore, the review delves into the various crosslinking methods used to form hydrogels, with a focus on physical, chemical, and interpenetrating polymer network (IPN) approaches. Understanding these crosslinking mechanisms is crucial to harnessing the full potential of pectin hydrogels for food-related applications. The review aims to provide valuable insights into the diverse applications of pectin hydrogels in the food industry, motivating further exploration to cater to consumer demands and advance food technology. By exploiting the unique properties of pectin hydrogels, food formulations can be enhanced with encapsulated bioactive substances, improved stability, and controlled release. Additionally, the exploration of different crosslinking methods expands the horizons of potential applications.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
28
|
Zhu Y, Li H, Peng C, Ma J, Huang S, Wang R, Wu B, Xiong Q, Peng D, Huang S, Chen J. Application of protein/polysaccharide aerogels in drug delivery system: A review. Int J Biol Macromol 2023; 247:125727. [PMID: 37429347 DOI: 10.1016/j.ijbiomac.2023.125727] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Drug delivery systems have emerged as a prominent research focus in the field of drug development, offering enhanced stability and improved bioavailability. Among them, protein (silk, gelatin and whey) or polysaccharide (alginate, chitosan, cellulose, starch, pectin and carrageenan) aerogels derived from natural sources have gained increasing popularity due to their unique advantages, such as cost-effectiveness, flexible preparation, bioactivity, biocompatibility, and biodegradability. However, despite their growing significance, there remains a lack of comprehensive information and ongoing confusion regarding the application of protein/polysaccharide aerogels in drug delivery system. Hence, the objective of this review was to provide a comprehensive review of the research progress in protein/polysaccharide aerogels for drug delivery systems from the perspective of aerogels category, synthesis strategy, drug-loading method, performance characteristic and release mechanism. Furthermore, by consolidating the existing information, we aimed to present our own perspectives and insights on the future development of protein/polysaccharide aerogels in drug delivery system. In conclusion, this comprehensive review served as a valuable resource for researchers and scholars, addressing the current gaps in knowledge and clarifying the complex landscape of protein/polysaccharide aerogels in drug delivery system.
Collapse
Affiliation(s)
- Yong Zhu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Hailun Li
- Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, PR China
| | - Can Peng
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jingrui Ma
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Shaojun Huang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Ruijie Wang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Bingmin Wu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Daiyin Peng
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China.
| | - Song Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| |
Collapse
|
29
|
Karamikamkar S, Yalcintas EP, Haghniaz R, de Barros NR, Mecwan M, Nasiri R, Davoodi E, Nasrollahi F, Erdem A, Kang H, Lee J, Zhu Y, Ahadian S, Jucaud V, Maleki H, Dokmeci MR, Kim H, Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204681. [PMID: 37217831 PMCID: PMC10427407 DOI: 10.1002/advs.202204681] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/24/2023]
Abstract
Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.
Collapse
Affiliation(s)
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los Angeles (UCLA)Los AngelesCA90095USA
| | - Ahmet Erdem
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41001Turkey
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Junmin Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
30
|
Sellitto MR, Amante C, Aquino RP, Russo P, Rodríguez-Dorado R, Neagu M, García-González CA, Adami R, Del Gaudio P. Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds. Gels 2023; 9:492. [PMID: 37367162 DOI: 10.3390/gels9060492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
The production of aerogels for different applications has been widely known, but the use of polysaccharide-based aerogels for pharmaceutical applications, specifically as drug carriers for wound healing, is being recently explored. The main focus of this work is the production and characterization of drug-loaded aerogel capsules through prilling in tandem with supercritical extraction. In particular, drug-loaded particles were produced by a recently developed inverse gelation method through prilling in a coaxial configuration. Particles were loaded with ketoprofen lysinate, which was used as a model drug. The core-shell particles manufactured by prilling were subjected to a supercritical drying process with CO2 that led to capsules formed by a wide hollow cavity and a tunable thin aerogel layer (40 μm) made of alginate, which presented good textural properties in terms of porosity (89.9% and 95.3%) and a surface area up to 417.0 m2/g. Such properties allowed the hollow aerogel particles to absorb a high amount of wound fluid moving very quickly (less than 30 s) into a conformable hydrogel in the wound cavity, prolonging drug release (till 72 h) due to the in situ formed hydrogel that acted as a barrier to drug diffusion.
Collapse
Affiliation(s)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | | | - Paola Russo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | | | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+D Pharma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Renata Adami
- Department of Physics "E. R. Caianiello", University of Salerno, 84084 Fisciano, SA, Italy
- NanoMates Center, University of Salerno, 84084 Fisciano, SA, Italy
| | | |
Collapse
|
31
|
Dhua S, Mishra P. Development of highly reusable, mechanically stablecorn starch-based aerogel using glycerol for potential application in the storage of fresh spinach leaves. Int J Biol Macromol 2023:125102. [PMID: 37245761 DOI: 10.1016/j.ijbiomac.2023.125102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Impact of glycerol on the physico-functional, morphological, mechanical, and rehydration properties ofcorn starch-based aerogel has been investigated. The aerogel was prepared from hydrogel (sol-gel method) using solvent exchange and supercritical CO2 drying. Glycerol-infused aerogel had a more connected, denser structure (0.38-0.45 g/cm3), enhanced hygroscopic behavior, and was reusable up to eight times in terms of its capacity to absorb water after being drawn from the soaked sample. However, the inclusion of glycerol reduced the aerogel's porosity (75.89-69.91 %) and water absorption rate (WAR; 118.53-84.64 %) but enhanced its percentage shrinkage (75.03-77.99 %) and compressive strength (26.01-295.06 N). The most effective models for describing the rehydration behavior of aerogel were determined to be the Page, Weibull, and Modified Peleg models. Glycerol addition improved the internal strength of the aerogel so could be recycled without significant change in the physical characteristics of the aerogel. By effectively eliminating the condensed moisture that was developed inside the packing owing to the transpiration of fresh spinach leaves, the aerogel extended the storage life of the leaves by up to eight days. The glycerol-based aerogel has the potential to be employed as a carrier matrix for various chemicals and a moisture scavenger.
Collapse
Affiliation(s)
- Subhamoy Dhua
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
32
|
Xu D, Zhao X, Mahsa GC, Ma K, Zhang C, Rui X, Dong M, Li W. Controlled release of Lactiplantibacillus plantarum by colon-targeted adhesive pectin microspheres: Effects of pectin methyl esterification degrees. Carbohydr Polym 2023; 313:120874. [PMID: 37182964 DOI: 10.1016/j.carbpol.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
The aim of this study is to report the preparation of pectin microspheres by varying degrees of methyl esterification (DM) cross-linked with divalent cationic calcium to encapsulate Lactiplantibacillus plantarum STB1 and L. plantarum LJ1, respectively. Scanning electron microscopy revealed the compact and smooth surface of pectin of DM 28 %, and the stochastic distribution of L. plantarum throughout the gel reticulation. And the pectin of DM 28 % considerably increased probiotics tolerance after continuous exposure to stimulated gastrointestinal tract conditions, with viable counts exceeding 109 CFU/mL. This data indicated that low methoxy-esterification pectin was more efficient to improve the targeted delivery of probiotics in GIT. Additionally, the controlled release of microspheres was dependent on various pH levels. At pH 7.4, the release rates of L. plantarum STB1 and L. plantarum LJ1 reached up to 97.63 % and 95.33 %, respectively. Finally, the Caco-2 cell adhesion model was used to evaluate the cell adhesion rate after encapsulation, which exhibited better adhesion at DM of 60 %.
Collapse
|
33
|
Günter E, Popeyko O, Popov S. Ca-Alginate Hydrogel with Immobilized Callus Cells as a New Delivery System of Grape Seed Extract. Gels 2023; 9:gels9030256. [PMID: 36975705 PMCID: PMC10048767 DOI: 10.3390/gels9030256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The development of new delivery systems for polyphenols is necessary to maintain their antioxidant activity and targeted delivery. The purpose of this investigation was to obtain alginate hydrogels with immobilized callus cells, in order to study the interaction between the physicochemical properties of hydrogels, texture, swelling behaviour, and grape seed extract (GSE) release in vitro. The inclusion of duckweed (LMC) and campion (SVC) callus cells in hydrogels led to a decrease in their porosity, gel strength, adhesiveness, and thermal stability, and an increase in the encapsulation efficiency compared with alginate hydrogel. The incorporation of LMC cells (0.17 g/mL), which were smaller, resulted in the formation of a stronger gel. The Fourier transform infrared analyses indicated the entrapment of GSE in the alginate hydrogel. Alginate/callus hydrogels had reduced swelling and GSE release in the simulated intestinal (SIF) and colonic (SCF) fluids due to their less porous structure and the retention of GSE in cells. Alginate/callus hydrogels gradually released GSE in SIF and SCF. The faster GSE release in SIF and SCF was associated with reduced gel strength and increased swelling of the hydrogels. LMC-1.0Alginate hydrogels with lower swelling, higher initial gel strength, and thermal stability released GSE more slowly in SIF and SCF. The GSE release was dependent on the content of SVC cells in 1.0% alginate hydrogels. The data obtained show that the addition of callus cells to the hydrogel provides them with physicochemical and textural properties that are useful for the development of drug delivery systems in the colon.
Collapse
Affiliation(s)
- Elena Günter
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Oxana Popeyko
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia
| |
Collapse
|
34
|
Bakhori NM, Ismail Z, Hassan MZ, Dolah R. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1063. [PMID: 36985957 PMCID: PMC10058649 DOI: 10.3390/nano13061063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
Collapse
Affiliation(s)
- Noremylia Mohd Bakhori
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| | - Rozzeta Dolah
- Department of Chemical Engineering, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| |
Collapse
|
35
|
Licorice extract/whey protein isolate/sodium alginate ternary complex-based bioactive food foams as a novel strategy to substitute fat and sugar in ice cream. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Wei J, Zhao C, Hou Z, Li Y, Li H, Xiang D, Wu Y, Que Y. Preparation, Properties, and Mechanism of Flame-Retardant Poly(vinyl alcohol) Aerogels Based on the Multi-Directional Freezing Method. Int J Mol Sci 2022; 23:ijms232415919. [PMID: 36555563 PMCID: PMC9784135 DOI: 10.3390/ijms232415919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, exfoliated α-zirconium phosphate (α-ZrP) and phosphated cellulose (PCF) were employed to synthesize poly(vinyl alcohol) composite aerogels (PVA/PCF/α-ZrP) with excellent flame retardancy through the multi-directional freezing method. The peak heat release rate (PHRR), total smoke release (TSR), and CO production (COP) of the (PVA/PCF10/α-ZrP10-3) composite aerogel were considerably decreased by 42.3%, 41.4%, and 34.7%, as compared to the pure PVA aerogel, respectively. Simultaneously, the limiting oxygen index (LOI) value was improved from 18.1% to 28.4%. The mechanistic study of flame retardancy showed evidence that PCF and α-ZrP promoted the crosslinking and carbonization of PVA chains to form a barrier, which not only served as insulation between the material and the air, but also significantly reduced the emissions of combustible toxic gases (CO2, CO). In addition, the multi-directional freezing method further improved the catalytic carbonization process. This mutually advantageous strategy offers a new strategy for the preparation of composite aerogels with enhanced fire resistance.
Collapse
Affiliation(s)
- Jixuan Wei
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Chunxia Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- Correspondence: (C.Z.); (Y.L.)
| | - Zhaorun Hou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuntao Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- State Key Laboratory Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China
- Correspondence: (C.Z.); (Y.L.)
| | - Hui Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yusheng Que
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
37
|
Rysenaer VBJ, Ahmadzadeh S, Van Bockstaele F, Ubeyitogullari A. An extrusion-based 3D food printing approach for generating alginate-pectin particles. Curr Res Food Sci 2022; 6:100404. [PMID: 36506111 PMCID: PMC9732126 DOI: 10.1016/j.crfs.2022.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In the present study, alginate-pectin (Al-P) hydrogel particles containing varied total gum concentrations (TGC) at a constant Al:P ratio of 80:20 were formed utilizing an innovative extrusion-based 3D food printing (3DFOODP) approach. The 3DFOODP conditions, namely, TGC (1.8, 2.0, and 2.2 wt%) and nozzle size (0.108, 0.159, and 0.210 mm) were investigated. The 3DFOODP approach was compared with the conventional bead formation method via a peristaltic pump. All Al-P printing inks exhibited a shear-thinning behavior. The increased apparent viscosity, loss and storage moduli were associated with the increase in the TGC. The size of the wet 3D-printed Al-P hydrogel particles ranged between 1.27 and 1.59 mm, which was smaller than that produced using the conventional method (1.44-1.79 mm). Freeze-dried Al-P particles showed a porous structure with reduced crystallinity. No chemical interaction was observed between alginate and pectin. This is the first report on generating Al-P-based beads using a 3DFOODP technique that can create delivery systems with high precision and flexibility.
Collapse
Affiliation(s)
- Valentine Barbara J. Rysenaer
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA,Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Filip Van Bockstaele
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA,Corresponding author. N205, 2650 N. Young Ave., Fayetteville, AR, 72704.
| |
Collapse
|
38
|
Interfacial Characterization of an Oxidative Pickering Emulsion Stabilized by Polysaccharides/Polyphenol Complex Nanogels via a Multiscale Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
40
|
Selvasekaran P, Chidambaram R. Bioaerogels as food materials: A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Influence of starch with different degrees and order of gelatinization on the microstructural and mechanical properties of pectin cryogels: A potential pore morphology regulator. Int J Biol Macromol 2022; 222:533-545. [PMID: 36174855 DOI: 10.1016/j.ijbiomac.2022.09.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022]
Abstract
The applications of cryogels are defined by their porous morphology as well as mechanical properties. To achieve efficient regulation of porous properties for pectin cryogels, we selected starch as a potential polysaccharide regulator. Pectin/starch composite cryogels with different degrees of gelatinization were formulated, and two ways of starch gelatinization were considered: starch gelatinization occurred before or after pectin crosslinking during forming the hydrogel network. The results showed that high gelatinized starch (73.8 %-100.0 %) rendered pectin cryogels with denser pore morphology and higher mechanical strength. The pore diameter transferred from 160-200 μm to 40-60 μm with the degree of gelatinization, while the total porosity decreased by about 15 % and the specific surface area increased by about 100 m2/g. When starch gelatinization occurred before pectin crosslinking, the hydrogen bond interactions between gelatinized starch and pectin were formed to accelerate the gelation rate of the pectin Ca2+-dependent network. When gelatinization occurred after pectin crosslinking, the pre-formed pectin network delayed the breakdown of the starch crystalline structure during gelatinization. The qualitative regulation of the pore morphology in pectin cryogels by incorporating starches with varying degrees of gelatinization was confirmed.
Collapse
|
42
|
Modulation of ice crystal formation behavior in pectin cryogel by xyloglucan: Effect on microstructural and mechanical properties. Food Res Int 2022; 159:111555. [DOI: 10.1016/j.foodres.2022.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
|
43
|
Yu Z, Jiang Q, Yu D, Dong J, Xu Y, Xia W. Physical, antioxidant, and preservation properties of chitosan film doped with proanthocyanidins-loaded nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Hackenhaar CR, Rosa CF, Flores EEE, Santagapita PR, Klein MP, Hertz PF. Development of a biocomposite based on alginate/gelatin crosslinked with genipin for β-galactosidase immobilization: Performance and characteristics. Carbohydr Polym 2022; 291:119483. [DOI: 10.1016/j.carbpol.2022.119483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
|
45
|
Borges-Vilches J, Aguayo C, Fernández K. The Effect on Hemostasis of Gelatin-Graphene Oxide Aerogels Loaded with Grape Skin Proanthocyanidins: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14091772. [PMID: 36145521 PMCID: PMC9501273 DOI: 10.3390/pharmaceutics14091772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Using in vitro and in vivo models, this study investigated the hemostatic potential to control bleeding of both unloaded gelatin-graphene oxide aerogels and the same loaded with proanthocyanidins (PAs) from Vitis vinifera grape skin extract. Our results showed that the physicochemical and mechanical properties of the aerogels were not affected by PA inclusion. In vitro studies showed that PA-loaded aerogels increased the surface charge, blood absorption capacity and cell viability compared to unloaded ones. These results are relevant for hemostasis, since a greater accumulation of blood cells on the aerogel surface favors aerogel–blood cell interactions. Although PAs alone were not able to promote hemostasis through extrinsic and intrinsic pathways, their incorporation into aerogels did not affect the in vitro hemostatic activity of these composites. In vivo studies demonstrated that both aerogels had significantly increased hemostatic performance compared to SpongostanTM and gauze sponge, and no noticeable effects of PA alone on the in vivo hemostatic performance of aerogels were observed; this may have been related to its poor diffusion from the aerogel matrix. Thus, PAs have a positive effect on hemostasis when incorporated into aerogels, although further studies should be conducted to elucidate the role of this extract in the different stages of hemostasis.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence:
| |
Collapse
|
46
|
Günter EA, Popeyko OV. Delivery system for grape seed extract based on biodegradable pectin-Zn-alginate gel particles. Int J Biol Macromol 2022; 219:1021-1033. [PMID: 35963355 DOI: 10.1016/j.ijbiomac.2022.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 01/02/2023]
Abstract
Pectin-Zn-alginate gel particles from callus culture pectin with increased linearity and decreased rhamnogalacturonan I branching and degree of methylesterification had a higher gel strength and encapsulation capacity. An increase of the alginate concentration led to an increase in the particle gel strength. The grape seed extract (GSE) loaded and empty particles swelled slightly in the simulated gastric fluid (SGF) and gradually in the intestinal (SIF) fluid. The swelling degrees of the GSE-loaded and empty particles in the simulated colonic fluids (SCF) were decreased in the range SCF-7.0 (pH 7.0 + pectinase) > SCF-5.3 (pH 5.3 + pectinase) > SCF-2.3 (pH 2.3 + pectinase). The FTIR spectra indicated that GSE was embedded in the composite particles. Negligible leakage of GSE in SGF was shown. The increase in GSE release in SIF was due to the decrease in particle gel strength and increased swelling degree. The GSE release in fluids simulating the colon inflammation (SCF-2.3 and SCF-5.3) was similar, and it was lower than that in the SCF-7.0 simulating a healthy colon due to the increased gel strength. The percentage release of GSE increased slightly after exposure to different pH. Pectin-Zn-alginate hydrogel systems may be promising candidates for colon-targeted GSE delivery systems.
Collapse
Affiliation(s)
- Elena A Günter
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya str., Syktyvkar 167982, Russia.
| | - Oxana V Popeyko
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya str., Syktyvkar 167982, Russia
| |
Collapse
|
47
|
Improving the catalytic and mechanical performance of alginate catalyst through functionalization by aminopolycarboxylic acids. J Colloid Interface Sci 2022; 628:1058-1066. [DOI: 10.1016/j.jcis.2022.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
|
48
|
Horvat G, Pantić M, Knez Ž, Novak Z. A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels 2022; 8:gels8070438. [PMID: 35877523 PMCID: PMC9316429 DOI: 10.3390/gels8070438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
This review discusses the most commonly employed methods for determining pore size and pore size distribution in bioaerogels. Aerogels are materials with high porosity and large surface areas. Most of their pores are in the range of mesopores, between 2 and 50 nm. They often have smaller or larger pores, which presents a significant challenge in determining the exact mean pore size and pore size distribution in such materials. The precision and actual value of the pore size are of considerable importance since pore size and pore size distribution are among the main properties of aerogels and are often directly connected with the final application of those materials. However, many recently published papers discuss or present pore size as one of the essential achievements despite the misinterpretation or the wrong assignments of pore size determination. This review will help future research and publications evaluate the pore size of aerogels more precisely and discuss it correctly. The study covers methods such as gas adsorption, from which BJH and DFT models are often used, SEM, mercury porosimetry, and thermoporometry. The methods are described, and the results obtained are discussed. The following paper shows that there is still no precise method for determining pore size distribution or mean pore size in aerogels until now. Knowing that, it is expected that this field will evolve in the future.
Collapse
Affiliation(s)
- Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Milica Pantić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (G.H.); (M.P.); (Ž.K.)
- Correspondence:
| |
Collapse
|
49
|
Photocross-linked silk fibroin/hyaluronic acid hydrogel loaded with hDPSC for pulp regeneration. Int J Biol Macromol 2022; 215:155-168. [PMID: 35716796 DOI: 10.1016/j.ijbiomac.2022.06.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 01/07/2023]
Abstract
The construction of suitable biomaterials for pulp regeneration has always been a major challenge in the field of stomatology. Considering the complex and irregular anatomy of the root canal system, injectable hydrogels have received extensive attention as cell carriers in dental pulp regeneration. Here, we developed an injectable photocrosslinked methacrylylated silk fibroin (RSFMA)/methacrylylated hyaluronic acid (MeHA) composite hydrogel and characterized its physicochemical properties. The biocompatibility of encapsulated human dental pulp stem cells (hDPSCs) was subsequently investigated. With the addition of RSFMA, the pore size of the scaffolds became more regular with negligible change in porosity and exhibited excellent mechanical properties. Furthermore, the low concentration of RSFMA hydrogel in the composite hydrogel had higher cross-linking efficiency. In contrast to MeHA hydrogels, hDPSCs were encapsulated in hydrogels either in the absence or presence of high concentrations of RSFMA. The results indicated that cells in low-concentration RSFMA composite gel presented better growth ability, proliferation ability and osteogenic differentiation ability. This injectable photocrosslinked silk fibroin/hyaluronic acid hydrogel shows great potential in the field of dental pulp tissue engineering.
Collapse
|
50
|
Aerogel: Functional Emerging Material for Potential Application in Food: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|