1
|
Zhu H, Feng R, Li D, Shi M, Wang N, Wang Y, Guo Y, Li X, Gong T, Guo R. A multifunctional graphene oxide-based nanodrug delivery system for tumor targeted diagnosis and treatment under chemotherapy-photothermal-photodynamic synergy. Colloids Surf B Biointerfaces 2025; 248:114479. [PMID: 39740485 DOI: 10.1016/j.colsurfb.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs). In vitro and in vivo experiments demonstrated that GO-HA-Ce6-GNRs exhibited excellent biocompatibility, remarkable photothermal and photodynamic properties, high drug-loading capacity for the anticancer drug doxorubicin hydrochloride (DOX), and a dual pH/near-infrared (NIR) light-responsive drug release profile. Additionally, GO-HA-Ce6-GNRs displayed enhanced tumor targeting and efficient fluorescence imaging capabilities. Notably, GO-HA-Ce6-GNRs@DOX manifested highly effective chemotherapy-photothermal-photodynamic synergistic anti-tumor effects in both MCF-7 and HeLa cancer cells as well as U14 tumor-bearing mice. Therefore, GO-HA-Ce6-GNRs@DOX represents a promising nanoplatform for tumor diagnosis and therapy, significantly improving the safety and efficacy of chemotherapy. This work provides a solid foundation and theoretical basis for the development of new targeted nano drug delivery systems that integrate both diagnosis and treatment.
Collapse
Affiliation(s)
- Huirui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Ruolan Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Dongkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Meijuan Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Yijie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Yumeng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Rampim IT, Wiggers HJ, Bueno CZ, Chevallier P, Copes F, Mantovani D. Sourcing Interchangeability in Commercial Chitosan: Focus on the Physical-Chemical Properties of Six Different Products and Their Impact on the Release of Antibacterial Agents. Polymers (Basel) 2025; 17:884. [PMID: 40219274 PMCID: PMC11991257 DOI: 10.3390/polym17070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Sourcing and batch differences are often cited as intrinsic drawbacks for all natural polymers. Chitosan makes no exception. Chitosan is a biocompatible and biodegradable biopolymer with high potential for several biomedical applications, especially for releasing drugs and bactericidal and virucidal agents. Despite the potential of chitosan as a matrix for producing antibacterial films, the variability in its composition, stemming from its natural sources, can hinder the translation from bench to industry. To overcome this concern, we conducted a study to access the interchangeability of chitosan for the development of antibacterial drug release systems, in particular one system crosslinked with tannic acid and iron sulfate. Chitosans from different suppliers were characterized and used to synthetize films containing gentamicin, according to a previously reported protocol. The impact of molecular weight (MW), deacetylation degree and purity on film properties and antibiotic release kinetics was assessed and results were compared. The films exhibited different initial bursts followed by similar sustained release profiles. All films exhibited antibacterial activity against both E. coli and S. aureus for at least 42 days. Moreover, films were cyto- and hemocompatible. Therefore, despite some differences in physicochemical properties, the interchangeability among the studied chitosan suppliers to produce antibacterial films is feasible, and the final product properties and performances are not significantly altered.
Collapse
Affiliation(s)
- Isabela Tavares Rampim
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil; (I.T.R.); (C.Z.B.)
| | - Helton José Wiggers
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil; (I.T.R.); (C.Z.B.)
| | - Cecilia Zorzi Bueno
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil; (I.T.R.); (C.Z.B.)
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering (LBB-UL), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Division Regenerative Medicine, Laval University, Quebec City, QC G1V0A6, Canada; (P.C.); (F.C.)
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering (LBB-UL), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Division Regenerative Medicine, Laval University, Quebec City, QC G1V0A6, Canada; (P.C.); (F.C.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil; (I.T.R.); (C.Z.B.)
- Laboratory for Biomaterials and Bioengineering (LBB-UL), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Division Regenerative Medicine, Laval University, Quebec City, QC G1V0A6, Canada; (P.C.); (F.C.)
| |
Collapse
|
3
|
Mithra S, Asna Jabeen A, Kumar V, Abdul Majeed S, Balaji MB, Vimal S, Mubeen Sultana D, Mohammed Safiullah S, Taju G, Sahul Hameed AS. Development and characterization of polyvinyl alcohol/gelatin/chitosan hydrogel for tissue engineering and wound healing applications using a fish cell line model. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00996-y. [PMID: 39671120 DOI: 10.1007/s11626-024-00996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
Chitosan-based hydrogels have gained considerable attention in biomedical research due to their inherent biocompatibility, biodegradability, and non-toxicity. When combined with polyvinyl alcohol (PVA), the resulting hydrogels exhibit superior mechanical strength, elasticity, and swelling capacity, making them highly suitable for a range of applications, including wound healing, tissue engineering, and controlled drug delivery. In this study, we synthesized and characterized a novel PVA/gelatin/chitosan (PVA/G/C) hydrogel composite using a series of analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDAX). The morphological, structural, and compositional analyses confirmed the successful formation of a homogenous, porous network conducive to cell proliferation and nutrient diffusion. In this study, polyvinyl alcohol/gelatin/chitosan-based hydrogels were prepared to study the potential for micro-tissue formation and wound healing application using Danio rerio gill (DrG) and Danio rerio fin (DrF) cell lines, respectively. Overall, the findings indicated the potential use of PVA/G/C hydrogel films as wound dressings. The idea of creating physically cross-linked hydrogels of PVA and chitosan without using any harmful organic chemicals or solvents is the novelty of this work. This study highlights the versatility and potential of PVA/G/C hydrogels, not only as a promising material for wound healing and drug delivery but also as an effective scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Sivaraj Mithra
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Melvisharam, 632509, Tamil Nadu, India
| | - Ali Asna Jabeen
- PG & Research Department of Zoology, Justice Basheer Ahmed Sayeed College for Women, Chennai, Tamil Nadu, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India
| | - Seepoo Abdul Majeed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Melvisharam, 632509, Tamil Nadu, India.
| | - Manickam Balu Balaji
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India
| | - Sugumar Vimal
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India.
| | - Dawood Mubeen Sultana
- PG & Research Department of Zoology, Justice Basheer Ahmed Sayeed College for Women, Chennai, Tamil Nadu, India
| | - Sakvai Mohammed Safiullah
- PG & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, 632509, Tamil Nadu, India
| | - Gani Taju
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Melvisharam, 632509, Tamil Nadu, India
| | - Azeez Sait Sahul Hameed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Affiliated to Thiruvalluvar University), Melvisharam, 632509, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu B, He M, Chen B, Shuai Y, He X, Liu K, Li J, Jin L. Identification of key pathways in zirconia/dental pulp stem cell composite scaffold-mediated macrophage polarization through transcriptome sequencing. Biotechnol Genet Eng Rev 2024; 40:833-857. [PMID: 36942591 DOI: 10.1080/02648725.2023.2191080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Seed cells and scaffold materials are essential components of tissue engineering. In this study, we investigated the key pathway of the zirconia/dental pulp stem cell composite scaffold in regulating macrophage polarization by transcriptome sequencing. We established N-rGO/ZrO2 composite scaffold and confirmed its structure using various analytical techniques, including SEM, TEM, FTIR, Raman spectra, XPS, and XRD. DPSCs were seeded onto N-rGO/ZrO2 composite scaffold material, and their proliferation, adhesion, and osteogenic differentiation were evaluated by CCK-8, immunofluorescence staining, ALP staining, and alizarin red staining. We then co-cultured DPSCs combined with N-rGO/ZrO2 as composite material with THP-1 cells in a transwell system to investigate the effect of the composite on macrophage polarization. The levels of pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes were assessed by RT-qPCR and western blot. Through bulk RNA sequencing, we detected the transcriptional characteristics of macrophages under the regulation of the composite materials, and identified the differential genes using the DEseq2 package. We also analyzed the cellular and molecular functions of differentially expressed genes (DEGs) in THP-1 cells with DPSCs combined with N-rGO/ZrO2 treatment using GO enrichment analysis and KEGG pathway enrichment analysis. Our results showed that N-rGO/ZrO2 composite scaffold promoted the proliferation, adhesion, and osteogenic differentiation of DPSCs. Moreover, N-rGO/ZrO2 composite scaffold combined with DPSCs regulated macrophage migration, polarization, and glycolysis. Mechanistically, the combination of N-rGO/ZrO2 composite materials and DPSCs regulated macrophage polarization by activating the TNF signaling pathway. This finding provides a new approach to the clinical preservation of maxillofacial bone defect repair.
Collapse
Affiliation(s)
- Bingyao Liu
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maodian He
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Chen
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Shuai
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyao He
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Li
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
5
|
Chen X, Zou M, Liu S, Cheng W, Guo W, Feng X. Applications of Graphene Family Nanomaterials in Regenerative Medicine: Recent Advances, Challenges, and Future Perspectives. Int J Nanomedicine 2024; 19:5459-5478. [PMID: 38863648 PMCID: PMC11166159 DOI: 10.2147/ijn.s464025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Graphene family nanomaterials (GFNs) have attracted considerable attention in diverse fields from engineering and electronics to biomedical applications because of their distinctive physicochemical properties such as large specific surface area, high mechanical strength, and favorable hydrophilic nature. Moreover, GFNs have demonstrated the ability to create an anti-inflammatory environment and exhibit antibacterial effects. Consequently, these materials hold immense potential in facilitating cell adhesion, proliferation, and differentiation, further promoting the repair and regeneration of various tissues, including bone, nerve, oral, myocardial, and vascular tissues. Note that challenges still persist in current applications, including concerns regarding biosecurity risks, inadequate adhesion performance, and unsuitable degradability as matrix materials. This review provides a comprehensive overview of current advancements in the utilization of GFNs in regenerative medicine, as well as their molecular mechanism and signaling targets in facilitating tissue repair and regeneration. Future research prospects for GFNs, such as potential in promoting ocular tissue regeneration, are also discussed in details. We hope to offer a valuable reference for the clinical application of GFNs in the treatment of bone defects, nerve damage, periodontitis, and atherosclerosis.
Collapse
Affiliation(s)
- Xiuwen Chen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Meiyan Zou
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siquan Liu
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weilin Cheng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Feng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Amiryaghoubi N, Fathi M. Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering. BIOIMPACTS : BI 2023; 14:27684. [PMID: 38327630 PMCID: PMC10844587 DOI: 10.34172/bi.2023.27684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 02/09/2024]
Abstract
Introduction Biomaterials currently utilized for the regeneration of myocardial tissue seem to associate with certain restrictions, including deficiency of electrical conductivity and sufficient mechanical strength. These two factors play an important role in cardiac tissue engineering and regeneration. The contractile property of cardiomyocytes depends on directed signal transmission over the electroconductive systems that happen inside the innate myocardium. Because of their distinctive electrical behavior, electroactive materials such as graphene might be used for the regeneration of cardiac tissue. Methods In this review, we aim to provide deep insight into the applications of graphene and graphene derivative-based hybrid polymeric scaffolds in cardiomyogenic differentiation and cardiac tissue regeneration. Results Synthetic biodegradable polymers are considered as a platform because their degradation can be controlled over time and easily functionalized. Therefore, graphene-polymeric hybrid scaffolds with anisotropic electrical behavior can be utilized to produce organizational and efficient constructs for macroscopic cardiac tissue engineering. In cardiac tissue regeneration, natural polymer based-scaffolds such as chitosan, gelatin, and cellulose can provide a permissive setting significantly supporting the differentiation and growth of the human induced pluripotent stem cells -derived cardiomyocytes, in large part due to their negligible immunogenicity and suitable biodegradability. Conclusion Cardiac tissue regeneration characteristically utilizes an extracellular matrix (scaffold), cells, and growth factors that enhance cell adhesion, growth, and cardiogenic differentiation. From the various evaluated electroactive polymeric scaffolds for cardiac tissue regeneration in the past decade, graphene and its derivatives-based materials can be utilized efficiently for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Zhang X, Li Y, Zhang K, Yin Y, Wang J, Wang L, Wang Z, Zhang R, Wang H, Zhang Z. Graphene oxide affects bacteriophage infection of bacteria by promoting the formation of biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163027. [PMID: 36963686 DOI: 10.1016/j.scitotenv.2023.163027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) is increasingly used in a range of fields, such as electronics, biosensors, drug delivery, and water treatment, and the likelihood of its release into the environment is increasing correspondingly. GO is involved in the formation of biofilms and leads bacteria to over proliferate, but the effects of GO on bacteriophage infection remain unexplored. We noted bacterial overgrowth in experiments when GO was used to treat the bacterial culture medium, leading us to question whether bacterial proliferation caused by GO affects phage infection of target bacteria. Treating Pseudomonas aeruginosa with GO at a low dosage (0.02 mg/mL) led to biofilm expansion in LB medium. Biofilm formation in the presence of GO affected the ability of bacteriophages to kill bacteria and reproduce. Similarly, the presence of GO deposits increased the ratio of bacteria to phage, providing a favorable environment for bacterial growth. Additionally, increasing the positive electrical charge in the culture environment inhibited the rejection of bacteriophages by negatively charged GO, improving phage reproduction. Finally, adding GO to sewage in imitation field experiments significantly increased the bacterial diversity and richness in the sewage, stimulating a significant increase in the variety and number of bacteria. Collectively, these results indicate that GO hinders phage infection by providing a bacterial refuge. The results of this study provide valuable insights into how GO interacts with bacteriophages to explore the effects on bacterial growth.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China
| | - Jie Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Luocheng Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zhexing Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250102, China.
| | - Haijun Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China.
| | - Zhong Zhang
- Weifang Medical University, Weifang, 261053, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China.
| |
Collapse
|
11
|
Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, Chauhan NPS, Rabiee N, Kuang T, Kucinska-Lipka J, Saeb MR, Mozafari M. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. COMPOSITES PART B: ENGINEERING 2023; 258:110701. [DOI: 10.1016/j.compositesb.2023.110701] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
12
|
Graça MFP, Melo BL, Lima-Sousa R, Ferreira P, Moreira AF, Correia IJ. Reduced graphene oxide-enriched chitosan hydrogel/cellulose acetate-based nanofibers application in mild hyperthermia and skin regeneration. Int J Biol Macromol 2023; 229:224-235. [PMID: 36586651 DOI: 10.1016/j.ijbiomac.2022.12.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Asymmetric wound dressings have captured researchers' attention due to their ability to reproduce the structural and functional properties of the skin layers. Furthermore, recent studies also report the benefits of using near-infrared (NIR) radiation-activated photothermal therapies in treating infections and chronic wounds. Herein, a chitosan (CS) and reduced graphene oxide (rGO) hydrogel (CS_rGO) was combined with a polycaprolactone (PCL) and cellulose acetate (CA) electrospun membrane (PCL_CA) to create a new NIR-responsive asymmetric wound dressing. The rGO incorporation in the hydrogel increased the NIR absorption capacity and allowed a mild hyperthermy effect, a temperature increase of 12.4 °C when irradiated with a NIR laser. Moreover, the PCL_CA membrane presented a low porosity and hydrophobic nature, whereas the CS_rGO hydrogel showed the ability to provide a moist environment, prevent exudate accumulation and allow gaseous exchanges. Furthermore, the in vitro data demonstrate the capacity of the asymmetric structure to act as a barrier against bacteria penetration as well as mediating a NIR-triggered antibacterial effect. Additionally, human fibroblasts were able to adhere and proliferate in the CS_rGO hydrogel, even under NIR laser irradiation, presenting cellular viabilities superior to 90 %. Altogether, our data support the application of the NIR-responsive asymmetric wound dressings for skin regeneration.
Collapse
Affiliation(s)
- Mariana F P Graça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, 3030-790 Coimbra, Portugal; Instituto Superior de Engenharia de Coimbra, Instituto Politécnico de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI/IPG - Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, 6300-559 Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
13
|
Review on Biomedical Advances of Hybrid Nanocomposite Biopolymeric Materials. Bioengineering (Basel) 2023; 10:bioengineering10030279. [PMID: 36978670 PMCID: PMC10045899 DOI: 10.3390/bioengineering10030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Hybrid materials are classified as one of the most highly important topics that have been of great interest to many researchers in recent decades. There are many species that can fall under this category, one of the most important of which contain biopolymeric materials as a matrix and are additionally reinforced by different types of carbon sources. Such materials are characterized by many diverse properties in a variety industrial and applied fields but especially in the field of biomedical applications. The biopolymeric materials that fall under this label are divided into natural biopolymers, which include chitosan, cellulose, and gelatin, and industrial or synthetic polymers, which include polycaprolactone, polyurethane, and conducting polymers of variable chemical structures. Furthermore, there are many types of carbon nanomaterials that are used as enhancers in the chemical synthesis of these materials as reinforcement agents, which include carbon nanotubes, graphene, and fullerene. This research investigates natural biopolymers, which can be composed of carbon materials, and the educational and medical applications that have been developed for them in recent years. These applications include tissue engineering, scaffold bones, and drug delivery systems.
Collapse
|
14
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
16
|
Rabiee N, Ghadiri AM, Alinezhad V, Sedaghat A, Ahmadi S, Fatahi Y, Makvandi P, Saeb MR, Bagherzadeh M, Asadnia M, Varma RS, Lima EC. Synthesis of green benzamide-decorated UiO-66-NH 2 for biomedical applications. CHEMOSPHERE 2022; 299:134359. [PMID: 35318020 DOI: 10.1016/j.chemosphere.2022.134359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | | | - Vida Alinezhad
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Anna Sedaghat
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| |
Collapse
|
17
|
Asano A, Koyama H, Suzuki A. Crystal growth of
PPS
nanofibers during annealing studied by solid‐state
13
C CPMAS NMR
. J Appl Polym Sci 2022. [DOI: 10.1002/app.51752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Asano
- Department of Applied Chemistry National Defense Academy Yokosuka Japan
| | - Hiroyuki Koyama
- Interdisciplinary Graduate of School of Medicine and Engineering University of Yamanashi Kofu Japan
| | - Akihiro Suzuki
- Graduate Faculty of Interdisciplinary Research University of Yamanashi Kofu Japan
| |
Collapse
|
18
|
Ali A, Hasan A, Negi YS. Effect of carbon based fillers on xylan/chitosan/nano-HAp composite matrix for bone tissue engineering application. Int J Biol Macromol 2022; 197:1-11. [PMID: 34914910 DOI: 10.1016/j.ijbiomac.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/31/2023]
Abstract
The objective of our present work is to analyze the effect of carbon derived fillers (GO/RGO) on microstructural, mechanical and osteoinductive potential of xylan/chitosan/HAp composite matrix for bone tissue engineering application. The composites were characterized by FTIR, XRD and SEM to evaluate the composition and morphological parameters. Change in microstructural and mechanical properties of scaffold was observed on tuning filler type (GO/RGO) and concentration. Composites with GO and RGO content demonstrated significant mineralization potential with dense apatite growth. A comparative evaluation of cell viability using MG-63 cell line revealed improved cell response in samples incorporated with carbon fillers than their native parent matrix. MTT Assay revealed highest cell viability in composite with 0.75% RGO content. Cell attachment was observed in all the scaffold samples cultured for 72 h. The filler incorporated X/C/HAp matrix demonstrated increase in ALP activity over a period of 7 and 14 days. Synergistic effect of these fillers in enhancing in vitro mineralization tendency and osteogenic differentiation capability make the composites a potential candidate for bone tissue engineering construct.
Collapse
Affiliation(s)
- Asif Ali
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, U.P., India
| | - Abshar Hasan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, U.P., India.
| |
Collapse
|
19
|
Salmankhani A, Mousavi Khadem SS, Seidi F, Hamed Mashhadzadeh A, Zarrintaj P, Habibzadeh S, Mohaddespour A, Rabiee N, Lima EC, Shokouhimehr M, Varma RS, Saeb MR. Adsorption onto zeolites: molecular perspective. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01817-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Alagumalai K, Musuvadhi Babulal S, Chen SM, Shanmugam R, Yesuraj J. Electrochemical evaluation of naproxen through Au@f-CNT/GO nanocomposite in environmental water and biological samples. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5978. [PMID: 34683568 PMCID: PMC8538389 DOI: 10.3390/ma14205978] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Carbon nanomaterials (CNMs) have received tremendous interest in the area of nanotechnology due to their unique properties and flexible dimensional structure. CNMs have excellent electrical, thermal, and optical properties that make them promising materials for drug delivery, bioimaging, biosensing, and tissue engineering applications. Currently, there are many types of CNMs, such as quantum dots, nanotubes, nanosheets, and nanoribbons; and there are many others in development that promise exciting applications in the future. The surface functionalization of CNMs modifies their chemical and physical properties, which enhances their drug loading/release capacity, their ability to target drug delivery to specific sites, and their dispersibility and suitability in biological systems. Thus, CNMs have been effectively used in different biomedical systems. This review explores the unique physical, chemical, and biological properties that allow CNMs to improve on the state of the art materials currently used in different biomedical applications. The discussion also embraces the emerging biomedical applications of CNMs, including targeted drug delivery, medical implants, tissue engineering, wound healing, biosensing, bioimaging, vaccination, and photodynamic therapy.
Collapse
Affiliation(s)
- Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Charu Misra
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Fionn Ó. Maolmhuaidh
- National Centre for Sensor Research, School of Chemistry, Dublin City University, D09 V209 Dublin, Ireland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Ahmed Barhoum
- Nano Struc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
22
|
Saeb MR, Rabiee N, Seidi F, Farasati Far B, Bagherzadeh M, Lima EC, Rabiee M. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Dadrasi A, Fooladpanjeh S, Eshkalak KE, Sadeghzadeh S, Saeb MR. Crack pathway analysis in graphene-like BC 3 nanosheets: Towards a deeper understanding. J Mol Graph Model 2021; 107:107980. [PMID: 34218025 DOI: 10.1016/j.jmgm.2021.107980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Carbon based two-dimensional (2D) nanostructures have exceptional mechanical properties. Analysis of crack pathway in 2D graphenic materials allows for developing crack arrestors. Herein, we serve Molecular Dynamics (MD) to simulate the fracture behavior of 2D graphene-like boron-carbide (BC3) by manipulating the crack length (10, 20, 30, 40, and 50 Å) and the crack arrestor (circular and square). Young's modulus, the failure stress, failure strain, and fracture toughness of theoretically born BC3 nanosheets were then captured. The crack arrestors were studied in three different states (constant position, as well as 4 and 6 Å from crack tips). Three factors, i.e. the stress, crack length, and geometry of nanosheets determined crack pathway considering zigzag and armchair directions. Overall, circular arrestors more severely affected the fracture toughness, failure stress and failure strain with respect to square ones; while Young's modulus variation followed an inverse trend. Moreover, the highest Young's modulus was detected for cracks having length of 10 Å. Fracture toughness increased upon increasing the crack length. In conclusion, the crack arrestors were promising for tuning the mechanical properties of 2D nanosheets.
Collapse
Affiliation(s)
- Ali Dadrasi
- Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Sasan Fooladpanjeh
- Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Sadegh Sadeghzadeh
- School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Fatahi Y, Tavakolizadeh M, Pourjavadi A, Jouyandeh M, Saeb MR, Mozafari M, Shokouhimehr M, Varma RS. Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:8706-8720. [DOI: 10.1021/acssuschemeng.1c00781] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Universal Scientific Education and Research Network (USERN), Tehran 15875-4413, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran
| | | | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
25
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Aldhaher A, Makvandi P, Dinarvand R, Jouyandeh M, Saeb MR, Mozafari M, Shokouhimehr M, Hamblin MR, Varma RS. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS APPLIED BIO MATERIALS 2021; 4:5336-5351. [PMID: 35007014 DOI: 10.1021/acsabm.1c00447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hybrid bioactive inorganic-organic carbon-based nanocomposites of reduced graphene oxide (rGO) nanosheets enlarged with multi-walled carbon nanotubes (MWCNTs) were decorated to provide a suitable space for in situ growth of CoNi2S4 and green-synthesized ZnO nanoparticles. The ensuing nanocarrier supplied π-π interactions between the DOX drug and a stabilizing agent derived from leaf extracts on the surface of ZnO nanoparticles and hydrogen bonds; gene delivery of (p)CRISPR was also facilitated by chitosan and alginate renewable macromolecules. Also, these polymers can inhibit the potential interactions between the inorganic parts and cellular membranes to reduce the potential cytotoxicity. Nanocomposite/nanocarrier analyses and sustained DOX delivery (cytotoxicity analyses on HEK-293, PC12, HepG2, and HeLa cell lines after 24, 48, and 72 h) were indicative of an acceptable cell viability of up to 91.4 and 78.8% after 48 at low and high concentrations of 0.1 and 10 μg/mL, respectively. The MTT results indicate that by addition of DOX to the nanostructures, the relative cell viability increased after 72 h of treatment; since the inorganic compartments, specifically CoNi2S4, are toxic, this is a promising route to increase the bioavailability of the nanocarrier before reaching the targeted cells. Nanosystems were tagged with (p)CRISPR for co-transfer of the drug/genes, where confocal laser scanning microscopy (CLSM) pictures of the 4',6-diamidino-2-phenylindole (DAPI) were indicative of appropriate localization of DOX into the nanostructure with effective cell and drug delivery at varied pH. Also, the intrinsic toxicity of CoNi2S4 does not affect the morphology of the cells, which is a breakthrough. Furthermore, the CLSM images of the HEK-293 and HeLa cell displayed effective transport of (p)CRISPR into the cells with an enhanced green fluorescent protein (EGFP) of up to 8.3% for the HEK-293 cell line and 21.4% for the HeLa cell line, a record. Additionally, the specific morphology of the nanosystems before and after the drug/gene transport events, via images by TEM and FESEM, revealed an intact morphology for these biopolymers and their complete degradation after long-time usage.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Universal Scientific Education and Research Network (USERN), Tehran 15875-4413, Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran
| | | | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto ON M5S, Canada
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Johannesburg 2028, South Africa
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
26
|
Rabiee N, Bagherzadeh M, Jouyandeh M, Zarrintaj P, Saeb MR, Mozafari M, Shokouhimehr M, Varma RS. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS APPLIED BIO MATERIALS 2021; 4:5106-5121. [PMID: 35007059 DOI: 10.1021/acsabm.1c00332] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A one-pot and facile method with assistance of high gravity was applied for the synthesis of inorganic two-dimensional MOF-5 embedded MXene nanostructures. The innovative inorganic MXene/MOF-5 nanostructure was applied in co-delivery of drug and gene, and to increase its bioavailability and interaction with the pCRISPR, the nanomaterial was coated with alginate and chitosan. The polymer-coated nanosystems were fully characterized, and the sustained DOX delivery and comprehensive cytotoxicity studies were conducted on the HEK-293, PC12, HepG2, and HeLa cell lines, demonstrating acceptable and excellent cell viability at both very low (0.1 μg.mL-1) and high (10 μg·mL-1) concentrations. The chitosan-coated nanocarriers showed superior relative cell viability compared to others, more than 60% on average of relative cell viability in all of the cell lines. Then, alginate-coated nanocarriers ranked at second place on the higher relative cell viability, more than 50% on average for all of the cell lines. Also, MTT results showed a complete dose-dependence, and by increasing the time of treatment from 24 to 72 h, the relative cell viability decreased by a meaningful slope; however, this decrease was optimized by coating the nanocarrier with chitosan and alginate. The nanosystems were also tagged with pCRISPR to analyze the potential application in the co-delivery of drug/gene. CLSM images of the HEK-293 and HeLa cell lines unveiled successful delivery of pCRISPR into the cells, and the enhanced green fluorescent protein (EGFP) reached up to ca. 26% for the HeLa cell line. Also, a considerable drug payload of 35.7% was achieved, which would be because of the interactions between the nanocarrier and the doxorubicin. In this unprecedented report pertaining to the synthesis of MXene assisted by a MOF and high-gravity technique, the methodology and the optimized ensuing MXene/MOF-5 nanosystems can be further developed for the co-delivery of drug/gene in animal models.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran142411, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Mohammad Reza Saeb
- Laboratoire Matériaux Optiques, Photonique & Systèms (LMOPS), Université de Lorraine, CentraleSupélec, F-57000 Metz, France
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto M5S 1A1, Canada
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
27
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
28
|
Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021; 27:821-843. [PMID: 33779319 DOI: 10.1089/ten.tea.2020.0341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering intends to create functionalized tissues/organs for regenerating the injured parts of the body using cells and scaffolds. A scaffold as a supporting substrate affects the cells' fate and behavior, including growth, proliferation, migration, and differentiation. Hydrogel as a biomimetic scaffold plays an important role in cellular behaviors and tissue repair, providing a microenvironment close to the extracellular matrix with adjustable mechanical and chemical features that can provide sufficient nutrients and oxygen. To enhance the hydrogel performance and compatibility with native niche, the cell-laden hydrogel is an attractive choice to mimic the function of the targeted tissue. Injectable hydrogels, due to the injectability, are ideal options for in vivo minimally invasive treatment. Cell-laden injectable hydrogels can be utilized for tissue regeneration in a noninvasive way. This article reviews the recent advances and future opportunities of cell-laden injectable hydrogels and their functions in tissue engineering. It is expected that this strategy allows medical scientists to develop a minimally invasive method for tissue regeneration in clinical settings. Impact statement Cell-laden hydrogels have been vastly utilized in biomedical application, especially tissue engineering. It is expected that this upcoming review article will be a motivation for the community. Although this strategy is still in its early stages, this concept is so alluring that it has attracted all scientists in the community and specialists at academic health centers. Certainly, this approach requires more development, and a bunch of crucial challenges have yet to be solved. In this review, we discuss this various aspects of this approach, the questions that must be answered, the expectations associated with it, and rational restrictions to develop injectable cell-laden hydrogels.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
30
|
Hejazi F, Ebrahimi V, Asgary M, Piryaei A, Fridoni MJ, Kermani AA, Zare F, Abdollahifar MA. Improved healing of critical-size femoral defect in osteoporosis rat models using 3D elastin/polycaprolactone/nHA scaffold in combination with mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:27. [PMID: 33683483 PMCID: PMC7940275 DOI: 10.1007/s10856-021-06495-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Osteoporosis is a common bone disease that results in elevated risk of fracture, and delayed bone healing and impaired bone regeneration are implicated by this disease. In this study, Elastin/Polycaprolactone/nHA nanofibrous scaffold in combination with mesenchymal stem cells were used to regenerate bone defects. Cytotoxicity, cytocompatibility and cellular morphology were evaluated in vitro and observations revealed that an appropriate environment for cellular attachment, growth, migration, and proliferation is provided by this scaffold. At 3 months following ovariectomy (OVX), the rats were used as animal models with an induced critical size defect in the femur to evaluate the therapeutic potential of osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) seeded on 3 dimension (3D) scaffolds. In this experimental study, 24 female Wistar rats were equally divided into three groups: Control, scaffold (non-seeded BM-MSC), and scaffold + cell (seeded BM-MSC) groups. 30 days after surgery, the right femur was removed, and underwent a stereological analysis and RNA extraction in order to examine the expression of Bmp-2 and Vegf genes. The results showed a significant increase in stereological parameters and expression of Bmp-2 and Vegf in scaffold and scaffold + cell groups compared to the control rats. The present study suggests that the use of the 3D Elastin/Polycaprolactone (PCL)/Nano hydroxyapatite (nHA) scaffold in combination with MSCs may improve the fracture regeneration and accelerates bone healing at the osteotomy site in rats.
Collapse
Affiliation(s)
- Fatemeh Hejazi
- Department of Advanced Technology, Shiraz University, Shiraz, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Asgary
- Department of Biology and Anatomical Sciences, School of Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Tehran, Iran
| | - Mohammad Javad Fridoni
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Asghar Kermani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020614] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene is the most outstanding material among the new nanostructured carbonaceous species discovered and produced. Graphene’s astonishing properties (i.e., electronic conductivity, mechanical robustness, large surface area) have led to a deep change in the material science field. In this review, after a brief overview of the main characteristics of graphene and related materials, we present an extensive overview of the most recent achievements in biological uses of graphene and related materials.
Collapse
|
32
|
Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:587658. [PMID: 33042982 PMCID: PMC7527831 DOI: 10.3389/fbioe.2020.587658] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Traditional strategies of bone repair include autografts, allografts and surgical reconstructions, but they may bring about potential hazard of donor site morbidity, rejection, risk of disease transmission and repetitive surgery. Bone tissue engineering (BTE) is a multidisciplinary field that offers promising substitutes in biopharmaceutical applications, and chitosan (CS)-based bone reconstructions can be a potential candidate in regenerative tissue fields owing to its low immunogenicity, biodegradability, bioresorbable features, low-cost and economic nature. Formulations of CS-based injectable hydrogels with thermo/pH-response are advantageous in terms of their high-water imbibing capability, minimal invasiveness, porous networks, and ability to mold perfectly into an irregular defect. Additionally, CS combined with other naturally-derived or synthetic polymers and bioactive agents has proven to be an effective alternative to autologous bone and dental grafts. In this review, we will highlight the current progress in the development of preparation methods, physicochemical properties and applications of CS-based injectable hydrogels and their perspectives in bone and dental regeneration. We believe this review is intended as starting point and inspiration for future research effort to develop the next generation of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Wusi Zeng
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, Farokhimanesh S, Mohammadi Amirabad L, Zarrintaj P, Saeb MR, Hamblin MR, Zare M, Mozafari M. Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomater Sci Eng 2020; 6:5096-5109. [PMID: 33455261 DOI: 10.1021/acsbiomaterials.0c00988] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability of mesenchymal stem cells (MSCs) to enhance cutaneous wound healing has been well established. Extensive expansion of cells to reach sufficient cell numbers for regenerating tissues has always limited cell-based therapies. An ingenious solution to address this challenge is to develop a strategy to increase the immunomodulatory effects of MSCs without expanding them. In this study, we employed a simple characteristic of cells. It was observed that an optimized three-dimensional (3D) MSC culture in spheroid forms significantly improved their paracrine effects. An electrospray (ES) encapsulation apparatus was used to encapsulate individual or 3D spheroid MSCs into microscale alginate beads (microbeads). Furthermore, alginate microbeads were embedded in an injectable thermosensitive hydrogel matrix, which gels at skin temperature. The hydrogel fills and seals the wounds cavities, maintains high humidity at the wound area, absorbs exudate, and fixes microbeads, protecting them from direct contact with the harsh wound environment. In vitro investigations revealed that secretion of interleukin 10 (IL-0) and transforming growth factor β1 (TGF-β1) gene was gradually enhanced, providing a delivery platform for prolonged release of bioactive molecules. In vivo study on full-thickness wounds showed granulation and re-epithelialization, only after 7 days. Moreover, increased expression of α-smooth muscle actin (α-SMA) in the first 14 days after treatment ensured wound contraction. Besides, a gradual decrease in α-SMA secretion resulted in reduced scar formation. Well-organized collagen fibrils and high expression of the angiogenesis biomarker CD31 confirmed the promoting effect of the hydrogel on the wound-healing process. The proposed wound-dressing system would potentially be used in scalable and effective cell-based wound therapies.
Collapse
Affiliation(s)
| | | | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samila Farokhimanesh
- Department of Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Taghizadeh A, Taghizadeh M, Jouyandeh M, Yazdi MK, Zarrintaj P, Saeb MR, Lima EC, Gupta VK. Conductive polymers in water treatment: A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, Ismail AF, RamaKrishna S, Berto F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2663. [PMID: 32545256 PMCID: PMC7321644 DOI: 10.3390/ma13112663] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Chitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages, and drawbacks can open doors to optimize CS-based constructions for biomedical applications. The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers for different applications are also discussed. This review article will act as a roadmap aiming to investigate chitosan as a new feedstock concerning various 3D printing approaches which may be employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D printing coupled with the challenges associated with materials should be recognized to help make this method feasible for wider clinical requirements. This strategy is currently gaining substantial attention in terms of several industrial biomedical products. In this review, the key 3D printing approaches along with revealing historical background are initially presented, and ultimately, the applications of different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition of essential complications and technical problems related to numerous 3D printing techniques and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive investigation will be required to encounter those challenges and to completely understand the possibilities of 3D printing in the foreseeable future.
Collapse
Affiliation(s)
- Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - Ali Valiani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - S. Ali Poursamar
- Biomaterials, Nanotechnology, and Tissue Engineering Group, Advanced Medical Technology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
36
|
Zarrintaj P, Mahmodi G, Manouchehri S, Mashhadzadeh AH, Khodadadi M, Servatan M, Ganjali MR, Azambre B, Kim S, Ramsey JD, Habibzadeh S, Saeb MR, Mozafari M. Zeolite in tissue engineering: Opportunities and challenges. MedComm (Beijing) 2020; 1:5-34. [PMID: 34766107 PMCID: PMC8489670 DOI: 10.1002/mco2.5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering and regenerative medicine follow a multidisciplinary attitude to the expansion and application of new materials for the treatment of different tissue defects. Typically, proper tissue regeneration is accomplished through concurrent biocompatibility and positive cellular activity. This can be resulted by the smart selection of platforms among bewildering arrays of structural possibilities with various porosity properties (ie, pore size, pore connectivity, etc). Among diverse porous structures, zeolite is known as a microporous tectosilicate that can potentially provide a biological microenvironment in tissue engineering applications. In addition, zeolite has been particularly appeared promising in wound dressing and bone- and tooth-oriented scaffolds. The wide range of composition and hierarchical pore structure renders the zeolitic materials a unique character, particularly, for tissue engineering purposes. Despite such unique features, research on zeolitic platforms for tissue engineering has not been classically presented. In this review, we overview, classify, and categorize zeolitic platforms employed in biological and tissue engineering applications.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State University420 Engineering NorthStillwaterOKUSA
| | - Ghader Mahmodi
- School of Chemical EngineeringOklahoma State University420 Engineering NorthStillwaterOKUSA
| | - Saeed Manouchehri
- School of Chemical EngineeringOklahoma State University420 Engineering NorthStillwaterOKUSA
| | - Amin Hamed Mashhadzadeh
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Mohsen Khodadadi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Morteza Servatan
- Polymer Engineering DepartmentFaculty of Engineering, Urmia UniversityUrmiaIran
| | - Mohammad Reza Ganjali
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
- Biosensor Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bruno Azambre
- Université de LorraineLaboratoire de Chimie et Physique‐Approche Multi‐Echelle des Milieux Complexes (LCP‐A2MC‐ EA n°4362)Institut Jean‐Barriol FR2843 CNRSRue Victor DemangeSaint‐Avold57500France
| | - Seok‐Jhin Kim
- School of Chemical EngineeringOklahoma State University420 Engineering NorthStillwaterOKUSA
| | - Josh D Ramsey
- School of Chemical EngineeringOklahoma State University420 Engineering NorthStillwaterOKUSA
| | - Sajjad Habibzadeh
- Department of Chemical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran
| | - Mohammad Reza Saeb
- Department of Resin and AdditiveInstitute for Color Science and TechnologyTehranIran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative MedicineFaculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
37
|
Salati MA, Khazai J, Tahmuri AM, Samadi A, Taghizadeh A, Taghizadeh M, Zarrintaj P, Ramsey JD, Habibzadeh S, Seidi F, Saeb MR, Mozafari M. Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers (Basel) 2020; 12:1150. [PMID: 32443422 PMCID: PMC7285176 DOI: 10.3390/polym12051150] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
The lack of adequate blood/lymphatic vessels as well as low-potential articular cartilage regeneration underlines the necessity to search for alternative biomaterials. Owing to their unique features, such as reversible thermogelling behavior and tissue-like mechanical behavior, agarose-based biomaterials have played a key role in cartilage tissue repair. Accordingly, the need for fabricating novel highly efficient injectable agarose-based biomaterials as hydrogels for restoration of injured cartilage tissue has been recognized. In this review, the resources and conspicuous properties of the agarose-based biomaterials were reviewed. First, different types of signals together with their functionalities in the maintenance of cartilage homeostasis were explained. Then, various cellular signaling pathways and their significant role in cartilage tissue engineering were overviewed. Next, the molecular structure and its gelling behavior have been discussed. Eventually, the latest advancements, the lingering challenges, and future ahead of agarose derivatives from the cartilage regeneration perspective have been discussed.
Collapse
Affiliation(s)
- Mohammad Amin Salati
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran; (M.A.S.); (J.K.); (A.M.T.); (A.S.)
| | - Javad Khazai
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran; (M.A.S.); (J.K.); (A.M.T.); (A.S.)
| | - Amir Mohammad Tahmuri
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran; (M.A.S.); (J.K.); (A.M.T.); (A.S.)
| | - Ali Samadi
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia 5756151818, Iran; (M.A.S.); (J.K.); (A.M.T.); (A.S.)
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 11155-4563, Iran; (A.T.); (M.T.)
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 11155-4563, Iran; (A.T.); (M.T.)
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| | - Josh D. Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591639675, Iran;
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China;
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran P.O. Box 16765-654, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran
| |
Collapse
|
38
|
Milan PB, Khamseh S, Zarrintaj P, Ramezanzadeh B, Badawi M, Morisset S, Vahabi H, Saeb MR, Mozafari M. Copper-enriched diamond-like carbon coatings promote regeneration at the bone-implant interface. Heliyon 2020; 6:e03798. [PMID: 32368647 PMCID: PMC7184533 DOI: 10.1016/j.heliyon.2020.e03798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/17/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
There have been several attempts to design innovative biomaterials as surface coatings to enhance the biological performance of biomedical implants. The objective of this study was to design multifunctional Cu/a-C:H thin coating depositing on the Ti-6Al-4V alloy (TC4) via magnetron sputtering in the presence of Ar and CH4 for applications in bone implants. Moreover, the impact of Cu amount and sp2/sp3 ratio on the interior stress, corrosion behavior, mechanical properties, and tribological performance and biocompatibility of the resulting biomaterial was discussed. X-ray photoelectron spectroscopy (XPS) revealed that the sp2/sp3 portion of the coating was enhanced for samples having higher Cu contents. The intensity of the interior stress of the Cu/a-C:H thin bio-films decreased by increase of Cu content as well as the sp2/sp3 ratio. By contrast, the values of Young's modulus, the H3/E2 ratio, and hardness exhibited no significant difference with enhancing Cu content and sp2/sp3 ratio. However, there was an optimum Cu content (36.8 wt.%) and sp2/sp3 ratio (4.7) that it is feasible to get Cu/a-C:H coating with higher hardness and tribological properties. Electrochemical impedance spectroscopy test results depicted significant improvement of Ti-6Al-4V alloy corrosion resistance by deposition of Cu/a-C:H thin coating at an optimum Ar/CH4 ratio. Furthermore, Cu/a-C:H thin coating with higher Cu contents showed better antibacterial properties and higher angiogenesis and osteogenesis activities. The coated samples inhibited the growth of bacteria as compared to the uncoated sample (p < 0.05). In addition, such coating composition can stimulate angiogenesis, osteogenesis and control host response, thereby increasing the success rate of implants. Moreover, Cu/a-C:H thin films encouraged development of blood vessels on the surface of titanium alloy when the density of grown blood vessels was increased with enhancing the Cu amount of the films. It is speculated that such coating can be a promising candidate for enhancing the osseointegration features.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Khamseh
- Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Michael Badawi
- Université de Lorraine and CNRS, LPCT, UMR 7019, 54506, Vandoeuvre-lès-Nancy, France
| | - Sophie Morisset
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 Rue Michel Brunet, Poitiers 86022, France
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Resins and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|