1
|
Bangar SP, Gumber S, Whiteside WS, Phimolsiripol Y. Arabinoxylan-based films and coatings for fresh produce: A review of emerging trends in food packaging. Int J Biol Macromol 2025; 310:143097. [PMID: 40233901 DOI: 10.1016/j.ijbiomac.2025.143097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Arabinoxylans (AX) are the major non-cellulosic polysaccharides found in cereals and grasses. It comprises a linear chain of β-(1,4)-xylopyranosyl units, which can be substituted at the O-3 and O-2 positions. The high molar mass of cereal AXs provides a robust foundation for developing packaging materials with excellent mechanical properties. Combined with their solubility, biocompatibility, and ability to form films, AXs emerge as a promising candidates for advanced packaging applications. The hydrogen bonding (H-bonding) between adjacent AX chains forms a dense macromolecular network, resulting in reduced mobility and, consequently, improved barrier properties against oxygen in packaging films. Furthermore, the natural variability due to their reactive -OH enables multi-faceted strategies to enhance their material properties. AX-based films have proven to be an economical and effective solution for extending the shelf life of fresh produce during transportation and storage. Considering AXs potential to reduce plastic waste significantly, this review compiles the latest research findings to elucidate the structure and composition of arabinoxylans, their significance in packaging, and their impact on the characteristics of AX-based films. Additionally, the review highlights the application of AX-based films, showcasing their beneficial role in advancing packaging technology.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Packaging and Graphic Media Science, Rochester Institute of Technology, Rochester, NY 14623, USA; Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.
| | - Sakshi Gumber
- BRIC-National Agri-Food Biomanufacturing Institute, S.A.S Nagar, Mohali 140306, India
| | - William Scott Whiteside
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
2
|
Xue Y, Yang F, He Y, Wang F, Xia D, Liu Y. Multifunctional Hydrogel with Photothermal ROS Scavenging and Antibacterial Activity Accelerates Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2402236. [PMID: 39780538 DOI: 10.1002/adhm.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO2 NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO2/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO2/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO2/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO2/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.
Collapse
Affiliation(s)
- Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yunjiao He
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
3
|
Sathyanarayanan H, Vaiyapuri M, Kumar R, Gnanadesigan M. Standardization of silver nanoparticle synthesis: Photocatalytic application (immobilized with chitosan complex) with textile dyes and antibacterial activity against Staphylococcus aureus using banana pseudo stem. CHEMOSPHERE 2024; 364:143246. [PMID: 39236920 DOI: 10.1016/j.chemosphere.2024.143246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The purpose of the study is to standardize the silver nanoparticle (BP-AgNPs) synthesis and its antibacterial activity and photocatalytic application with the selected dyes using the banana pseudo stem extract. "One-factor analysis (OFTA)" was carried out for the standardization of silver nanoparticle synthesis and nanoparticle-chitosan complex immobilization. The parameters were identified with plant quantity (20 g), silver nitrate concentration (1 mM), the ratio of plant extract and silver nitrate solution (2:8), pH (12), temperature (37 °C), dispersed light conditions, shaking conditions (120 rpm), and time (6 h) were analysed. The photocatalytic decolorization efficiency of the standardized BP-AgNPs (immobilized with chitosan complex) has shown 96.92% for methylene blue (10 ppm) at 3 h and 97.55% for safranin (100 ppm) at 15 h. The antibacterial activity for the synthesised BP-AgNPs was determined. MIC value of the BP-AgNPs was determined to be 15.62 μg. mL-1 for S. aureus. The synthesised BP-AgNPs treated with 0.5×, 1× and 2× MIC concentration (x = 15.62 μg. mL-1) showed decreased viable counts of S. aureus (99.6% at 2× concentration having viable count of 22.6 × 102 CFU. mL-1) at 24 h incubation when compared with the control culture. The structural characteristics of the BP-AgNPs were identified as spherical with SEM and the size was identified as 12.19 ± 1.62 nm with TEM and as 37.23 ± 17.89 nm with XRD. The parameters such as FTIR, Zeta potential, EDS further supports the nanoparticle synthesis with banana pseudostem extract. The current result suggested that, the silver nanoparticles (BP-AgNPs) synthesised using the extract of the banana pseudo stem could be used as an alternative source for dye decolorization and antibacterial activities.
Collapse
Affiliation(s)
- Harithaa Sathyanarayanan
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Mithra Vaiyapuri
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Ranjith Kumar
- Water-Energy-Biotech-Nanomaterials Nexus ET Research Group, Environmental Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Murugesan Gnanadesigan
- Natural Products Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| |
Collapse
|
4
|
Padmavathi AR, Reddy GKK, Murthy PS, Nancharaiah YV. New arsenals for old armour: Biogenic nanoparticles in the battle against drug-resistant Candidaalbicans. Microb Pathog 2024; 194:106800. [PMID: 39025380 DOI: 10.1016/j.micpath.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Candida albicans is a common commensal fungus and fourth most frequent causative agent of nosocomial infections including life-threatening invasive candidiasis in humans. The effectiveness of present antifungal therapies using azoles, polyenes, flucytosine and echinocandins has plateaued in managing fungal infections. The limitations of these antifungal drugs are related to polymorphic morphology, biofilm formation, emergence of drug-resistant strains and production of several virulence factors. Development of new antifungal agents, which can particularly afflict multiple cellular targets and limiting evolving resistant strains are needed. Recently, metal nanoparticles have emerged as a source of new antifungal agents for antifungal formulations. Furthermore, green nanotechnology deals with the use of biosynthetic routes that offer new avenue for synthesizing antifungal nanoparticles coupled with less toxic chemical inventory and environmental sustainability. This article reviews the recent developments on C. albicans pathogenesis, biofilm formation, drug resistance, mode of action of antifungal drugs and antifungal activities of metal nanoparticles. The antifungal efficacy and mode of action of metal nanoparticles are described in the context of prospective therapeutic applications.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
5
|
Liu M, Wang X, Sun B, Wang H, Mo X, El-Newehy M, Abdulhameed MM, Yao H, Liang C, Wu J. Electrospun membranes chelated by metal magnesium ions enhance pro-angiogenic activity and promote diabetic wound healing. Int J Biol Macromol 2024; 259:129283. [PMID: 38199538 DOI: 10.1016/j.ijbiomac.2024.129283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Diabetic wounds, resulting from skin atrophy due to localized ischemia and hypoxia in diabetic patients, lead to chronic pathological inflammation and delayed healing. Using electrospinning technology, we developed magnesium ion-chelated nanofiber membranes to explore their efficacy in antibacterial, anti-inflammatory, and angiogenic applications for wound healing. These membranes are flexible and elastic, resembling native skin tissue, and possess good hydrophilicity for comfortable wound bed contact. The mechanical properties of nanofiber membranes are enhanced by the chelation of magnesium ions (Mg2+), which also facilitates a long-term slow release of Mg2+. The cytocompatibility of the nanofibrous membranes is influenced by their Mg2+ content: lower levels encourage the proliferation of fibroblasts, endothelial cells, and macrophages, while higher levels are inhibitory. In a diabetic rat model, magnesium ion-chelated nanofibrous membranes effectively reduced early wound inflammation and notably accelerated wound healing. This study highlights the potential of magnesium ion-chelated nanofiber membranes in treating diabetic wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haochen Yao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China.
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
6
|
Wang F, Zheng Y, Ning J. Biogenic preparation of copper oxide nanoparticles using table olive: Catalytic reduction, cytotoxicity, and burn wound healing activities. ENVIRONMENTAL RESEARCH 2023; 237:116995. [PMID: 37633630 DOI: 10.1016/j.envres.2023.116995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Green strategy for the preparation of copper oxide nanoparticles (CuO NPs) using table olive has been researched in the present work. Some characterization assays viz., transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) was used for evaluation of the crystal structure, size and morphology of the manufactured NPs. As a catalyst, the prepared material demonstrated remarkable catalytic capability (>99% in 4 min) for the reduction of rhodamine B using sodium borohydride. In addition, the treated cells with the CuO NPs were examined by regarding the cytotoxicity properties on normal (HUVEC) cell line. The results showed that the prepared CuO NPs did not have any cytotoxicity effects on HUVEC (up to 500 μg/mL). Furthermore, in vivo experiments on burn wounds in rats show that the synthesized CuO NPs ointment significantly diminished (p ≤ 0.01) the wound area. On the other hand, the wound contracture factor was increased in comparison with the control groups. Collectively, the CuO NPs prepared by biological method have potential applications in organic pollutants reduction and wound care applications. In this viewpoint, CuO NPs may be considered as an effective for treatment of different wounds including burn wounds or injuries from surgeries such as plastic surgery.
Collapse
Affiliation(s)
- Fuyong Wang
- Burn and Plastic Surgery, Kaifeng Central Hospital, No. 153 Wufu Road, Kaifeng City, Henan Province, 475000, China
| | - Yuhong Zheng
- Burn and Plastic Surgery, Kaifeng Central Hospital, No. 153 Wufu Road, Kaifeng City, Henan Province, 475000, China
| | - Jing Ning
- Department of Medical Cosmetic, Burn and Plastic Surgery,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Department of Medical Cosmetic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Palanisamy DS, Gounder BS, Selvaraj K, Kandhasamy S, Alqahtani T, Alqahtani A, Chidambaram K, Arunachalam K, Alkahtani AM, Chandramoorthy HC, Sharma N, Rajeshkumar S, Marwaha L. Synergistic antibacterial and mosquitocidal effect of Passiflora foetida synthesized silver nanoparticles. BRAZ J BIOL 2023; 84:e263391. [PMID: 36651434 DOI: 10.1590/1519-6984.263391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/26/2022] [Indexed: 01/11/2023] Open
Abstract
Silver nanoparticles are opted to have various applications in different fields ranging from traditional medicines to culinary items. It is toxic and most effective against bacteria, fungi viruses, parasites, parasite carrying vectors such as mosquitoes and their larvae and other eukaryotic microorganisms at low concentration without any side effects and toxicity to humans. In view of these data, the present research has been investigated by synthesizing silver nanoparticles using 1mM silver nitrate and aqueous extract of Passiflora foetida. The variation of nanoparticles in size and shape concerning the concentration of extract prepared were analysed. The formation of silver nanoparticles was confirmed by colour changing from yellowish green to reddish-brown implicating the surface plasmon resonance. Further, it was concluded by obtaining an absorbance peak at 420 nm using UV-Visible spectrophotometer analysis. FTIR analysis was used to identify the capping ligands, which included alkanes, aromatic groups and nitro compounds. The average grain size of ~12 nm to 14 nm with crystalline phase was revealed by X-ray Diffraction studies. The SEM images depicted the surface morphology with agglomeration; TEM studies showed the shape of nanoparticles as spherical and hexagonal with sizes ranging from 40 nm to 100 nm and EDAX analysis confirmed the presence of elemental silver as the principal constituent. The characterized silver nanoparticles were then tested for synergistic antibacterial effects with tetracycline, and the results show that they are more active against E. coli and S. aureus, but moderately effective against B. cereus and K. pneumoniae . It also had a strong larval and pupal toxic effects on the dengue vector, Aedes aegypti with the highest mortality. As a result, silver nanoparticles could be a viable alternative for a variety of applications.
Collapse
Affiliation(s)
- D S Palanisamy
- Bharathiar University, Research and Development Centre, Coimbatore, India.,Nandha Arts and Science College, Department of Biotechnology, Erode, India
| | - B S Gounder
- Government Arts College, Department of Botany, Salem, India
| | - K Selvaraj
- Bharathiar University, Research and Development Centre, Coimbatore, India.,Nandha Arts and Science College, Department of Biotechnology, Erode, India
| | - S Kandhasamy
- Nandha Arts and Science College, Department of Biotechnology, Erode, India
| | - T Alqahtani
- King Khalid University, College of Pharmacy, Department of Pharmacology, Abha, Saudi Arabia
| | - A Alqahtani
- King Khalid University, College of Pharmacy, Department of Pharmacology, Abha, Saudi Arabia
| | - K Chidambaram
- King Khalid University, College of Pharmacy, Department of Pharmacology, Abha, Saudi Arabia
| | - K Arunachalam
- Mulungushi University, School of Science, Engineering and Technology, Department of Science and Mathematics, Kabwe, Zambia
| | - A M Alkahtani
- King Khalid University, College of Medicine, Department of Microbiology & Clinical Parasitology, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- King Khalid University, College of Medicine, Department of Microbiology & Clinical Parasitology, Abha, Saudi Arabia.,King Khalid University, College of Medicine, Centre for Stem Cell Research, Abha, Saudi Arabia
| | - N Sharma
- Maharishi Markandeshwar University, Research and Development Centre, Solan, Himachal Pradesh, India
| | - S Rajeshkumar
- Saveetha Institute of Medical and Technical Sciences, Department of Pharmacology, Chennai, India
| | - L Marwaha
- Lovely Professional University, School of Bioengineering and Bio Sciences, Department of Zoology, Punjab, India
| |
Collapse
|
8
|
Wang Y, Lu H, Wang X, Han L, Liu X, Cheng D, Yang F, Guo F, Wang W. Green tubular micro/nano architecture constructed by in-situ planting of small AgNPs on Kapok fiber for oil spill recovery, smart oil-water separation and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Landeros-Páramo L, Saavedra-Molina A, Gómez-Hurtado MA, Rosas G. The effect of AgNPS bio-functionalization on the cytotoxicity of the yeast Saccharomyces cerevisiae. 3 Biotech 2022; 12:196. [PMID: 35928500 PMCID: PMC9343563 DOI: 10.1007/s13205-022-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
This work used Sedum praealtum leaf extract to synthesize silver nanoparticles (AgNPs) in a single step. The cytotoxicity of AgNPs was studied with the yeast Saccharomyces cerevisiae W303-1. In addition, the antioxidant activity of the DPPH radical was studied both in the extract of S. praealtum and in the AgNPs. UV-Vis spectroscopy determined the presence of AgNPs by the location of the surface plasmon resonance (SPR) band at 434 nm. TEM and XRD analyzes show AgNPs with fcc structure and hemispherical morphology. Also, AgNPs range in size from 5 to 25 nm and have an average size of 14 nm. 1H NMR, FTIR, and UV-Vis spectroscopy techniques agreed that glycosidic compounds were the main phytochemical components responsible for the reduction and stabilization of AgNPs. In addition, AgNPs presented a maximum of 12% toxicity in yeast attributed to the generation of ROS. Consequently, there was low bioactivity because glycoside compounds cover the biosynthesized AgNPs from S. praealtum. These findings allow applications of AgNPs involving contact with mammals and higher organisms.
Collapse
Affiliation(s)
- L. Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - A. Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| |
Collapse
|
10
|
Luna-Vázquez-Gómez R, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Pestryakov A, Bogdanchikova N. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1066. [PMID: 35407184 PMCID: PMC9000491 DOI: 10.3390/nano12071066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
The hemolytic activity assay is a versatile tool for fast primary toxicity studies. This work presents a systematic study of the hemolytic properties of ArgovitTM silver nanoparticles (AgNPs) extensively studied for biomedical applications. The results revealed an unusual and unexpected bell-shaped hemolysis curve for human healthy and diabetic donor erythrocytes. With the decrease of pH from 7.4 and 6.8 to 5.6, the hemolysis profiles for AgNPs and AgNO3 changed dramatically. For AgNPs, the bell shape changed to a step shape with a subsequent sharp increase, and for AgNO3 it changed to a gradual increase. Explanations of these changes based on the aggregation of AgNPs due to the increase of proton concentration were suggested. Hemolysis of diabetic donor erythrocytes was slightly higher than that of healthy donor erythrocytes. The meta-analysis revealed that for only one AgNPs formulation (out of 48), a bell-shaped hemolysis profile was reported, but not discussed. This scarcity of data was explained by the dominant goal of studies consisting in achieving clinically significant hemolysis of 5-10%. Considering that hemolysis profiles may be bell-shaped, it is recommended to avoid extrapolations and to perform measurements in a wide concentration interval in hemolysis assays.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | | | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Balam Ruiz-Ruiz
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| |
Collapse
|
11
|
Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/2779237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The potential applications of Ag NPs are exciting and beneficial in a variety of fields; however, there is less awareness of the new risks posed by inappropriate disposal of Ag NPs. The Ag NPs have medicinal, plasmonic, and catalytic properties. The Ag NPs can be prepared via physical, chemical, or biological routes, and the selection of any specific route depends largely on the end-use. The downside of a physical and chemical approach is that it requires a wide space, high temperature, high temperature for a longer time to preserve the thermal stability of synthesized Ag NPs, and the use of toxic chemicals. Although these methods produce nanoparticles with high purity and well-defined morphology, it is critical to develop cost-effective, energy-efficient, and facile route, such as green synthesis; it suggests the desirable use of renewable resources by avoiding the use of additional solvents and toxic reagents in order to achieve the ultimate goal. However, each method has its pros and cons. The synthesized Ag NPs obtained using the green approach have larger biocompatibility and are less toxic towards the biotic systems. However, identifying the phytoconstituents that are responsible for nanoparticle synthesis is difficult and has been reported as a suitable candidate for biological application. The concentration of the effective bioreducing phytoconstituents plays a crucial role in deciding the morphology of the nanoparticle. Besides these reaction times, temperature, pH, and concentration of silver salt are some of the key factors that determine the morphology. Hence, careful optimization in the methodology is required as different morphologies have different properties and usage. It is due to which the development of methods to prepare nanoparticles effectively using various plant extracts is gaining rapid momentum in recent days. To make sense of what involves in the bioreduction of silver salt and to isolate the secondary metabolites from plants are yet challenging. This review focuses on the contribution of plant-mediated Ag NPs in different applications and their toxicity in the aquatic system.
Collapse
|
12
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
13
|
Wang L, Tian Y, Zhang P, Li C, Chen J. Polysaccharide isolated from Rosa roxburghii Tratt fruit as a stabilizing and reducing agent for the synthesis of silver nanoparticles: antibacterial and preservative properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Hashemi Z, Mizwari ZM, Mohammadi-Aghdam S, Mortazavi-Derazkola S, Ali Ebrahimzadeh M. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Oves M, Ahmar Rauf M, Aslam M, Qari HA, Sonbol H, Ahmad I, Sarwar Zaman G, Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 2022; 29:460-471. [PMID: 35002442 PMCID: PMC8716933 DOI: 10.1016/j.sjbs.2021.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Due to drug addiction and the emergence of antibiotic resistance in pathogens, the disease load and medication intake have risen worldwide. The alternative treatment for drug-resistant infections is Nano formulation-based antimicrobial agents. The plant extract of Conocarpus Lancifolius fruits was used to synthesize silver nanoparticles in the current study, and it was further employed as an antimicrobial and anticancer agent. Nanoparticles have been characterized by UV-visible spectrometer revealed the notable peak of λmax = 410-442 nm, which confirms the reduction of silver ion to elemental silver nanoparticles, and the biological moieties in the synthesis were further confirmed by FTIR analysis. The stability and crystalline nature of materials were approved by XRD analysis and expected the size of the nanomaterials of 21 to 173 nm analyzed by a nanophox particle-size analyzer. In vitro, synthesized materials act as an antibacterial agent against Streptococcus pneumonia and Staphylococcus aureus. The inhibition zones of 18 and 24 mm have been estimated to be antibacterial activity against both bacteria. The potency of up to 100% of AgNPs for bacterial strains was incubated overnight at 60 μg/ml. Based on our results, biogenic AgNPs reveal significant activity against fungal pathogen Rhizopusus stolonifera and Aspergillus flavus that cause leading infectious diseases. Additionally, nanomaterials were biocompatible and demonstrated the potential anticancer activities against MDA MB-231 cells after 24-hour exposure.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
| | - Mohd Ahmar Rauf
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mohammad Aslam
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
| | - Huda A Qari
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, 21589 Jeddah, Saudi Arabia
| | - Hana Sonbol
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
16
|
Iram F, Yasmeen A, Massey S, Iqbal MS, Asim S, Irshad M, Zahid H, Khan AY, Kazimi SGT. Synthesis of gold and silver nanoparticles by use of arabinoglucan from Lallemantia royleana. Int J Biol Macromol 2021; 191:1137-1150. [PMID: 34563577 DOI: 10.1016/j.ijbiomac.2021.09.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Highly stable gold and silver nanoparticles were synthesized by use of an arabinoglucan from Lallemantia royleana seeds without additional use of reducing or stabilizing agents. The mechanism involved the reduction potential of the hemicellulose as verified by cyclic voltammetry. The arabinoglucan used was substantially free from ferulic acid and phenolic content, suggesting the inherent reducing potential of arabinoglucan for gold and silver ions. The synthesized nanoparticles exhibited surface plasmon resonance maxima at 515 nm (gold) and 397 nm (silver) corresponding to sizes of 10 nm and 8 nm, respectively. The zeta potential values were -24.1 mV (gold) and -22.3 mV (silver). The silver nanoparticles showed potential for application in surface-enhanced Raman spectroscopy. Gold nanoparticles were found to be non-toxic, whereas silver nanoparticles exhibited dose-dependent biological activities and found to be cytotoxic against brine shrimps and HeLa cell lines and the tumours caused by A. tumefaciens.
Collapse
Affiliation(s)
- Fozia Iram
- Department of Chemistry, LCW University, Lahore 54600, Pakistan.
| | - Abida Yasmeen
- Department of Chemistry, LCW University, Lahore 54600, Pakistan.
| | - Shazma Massey
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan.
| | - Mohammad S Iqbal
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan.
| | - Sumreen Asim
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.
| | - Misbah Irshad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| | - Hina Zahid
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan
| | - Athar Y Khan
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan.
| | - Syed G T Kazimi
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
17
|
Wani IA, Ahmad T, Khosla A. Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. NANOTECHNOLOGY 2021; 32:462001. [PMID: 34340224 DOI: 10.1088/1361-6528/ac19d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Development of eco-friendly synthetic methods has resulted in the production of biocompatible Ag NPs for applications in medical sector. To overcome the prevailing antibiotic resistance in bacteria, Ag NPs are being extensively researched over the past few years due to their broad spectrum and robust antimicrobial properties. Silver nanoparticles are also being studied widely in advanced anticancer therapy as an alternative anticancer agent to combat cancer in an effective manner. Keeping this backdrop in consideration, this review aims to provide an extensive coverage of the recent progresses in the green synthesis of Ag NPs specifically using plant derived reducing agents such phytochemicals and numerous other biopolymers. Current development in antimicrobial activity of Ag NPs against various pathogens has been deliberated at length. Recent advances in potent anticancer activity of the biogenic Ag NPs against various cancerous cell lines has also been discussed in detail. Mechanistic details of the synthesis of Ag NPs, their anticancer and antimicrobial action has also been highlighted.
Collapse
Affiliation(s)
- Irshad A Wani
- Postgraduate Department of Chemistry, Govt. Degree College Bhadarwah, University of Jammu, Jammu & Kashmir-182222, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
18
|
Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS NANO 2021; 15:12655-12686. [PMID: 34346204 PMCID: PMC8397433 DOI: 10.1021/acsnano.1c03948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 05/24/2023]
Abstract
Agrochemicals have supported the development of the agricultural economy and national population over the past century. However, excessive applications of agrochemicals pose threats to the environment and human health. In the last decades, nanoparticles (NPs) have been a hot topic in many fields, especially in agriculture, because of their physicochemical properties. Nevertheless, the prevalent methods for fabricating NPs are uneconomical and involve toxic reagents, hindering their extensive applications in the agricultural sector. In contrast, inspired by biological exemplifications from microbes and plants, their extract and biomass can act as a reducing and capping agent to form NPs without any toxic reagents. NPs synthesized through these bioinspired routes are cost-effective, ecofriendly, and high performing. With the development of nanotechnology, biosynthetic NPs (bioNPs) have been proven to be a substitute strategy for agrochemicals and traditional NPs in heavy-metal remediation of soil, promotion of plant growth, and management of plant disease with less toxicity and higher performance. Therefore, bioinspired synthesis of NPs will be an inevitable trend for sustainable development in agricultural fields. This critical review will demonstrate the bioinspired synthesis of NPs and discuss the influence of bioNPs on agricultural soil, crop growth, and crop diseases compared to chemical NPs or agrochemicals.
Collapse
Affiliation(s)
- Liang Xu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Zhiwei Zhu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Kaplan Ö, Gökşen Tosun N, Özgür A, Erden Tayhan S, Bilgin S, Türkekul İ, Gökce İ. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Catalano PN, Chaudhary RG, Desimone MF, Santo-Orihuela PL. A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials. Curr Pharm Biotechnol 2021; 22:823-847. [PMID: 33397235 DOI: 10.2174/1389201022666210104122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.
Collapse
Affiliation(s)
- Paolo N Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Av. General Paz 1499 (1650), San Martin, Argentina
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, S.K. Porwal College, Kamptee 441001, India
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| | - Pablo L Santo-Orihuela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| |
Collapse
|
21
|
Shirzadi-Ahodashti M, Hashemi Z, Mortazavi Y, Khormali K, Mortazavi-Derazkola S, Ebrahimzadeh MA. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida A, Allzrag AMM, Ming LC, Pagano E, Capasso R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life (Basel) 2021; 11:348. [PMID: 33923529 PMCID: PMC8072717 DOI: 10.3390/life11040348] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious disease (ID) is one of the top-most serious threats to human health globally, further aggravated by antimicrobial resistance and lack of novel immunization options. Andrographis paniculata (Burm. f.) Wall. ex Nees and its metabolites have been long used to treat IDs. Andrographolide, derived from A. paniculata, can inhibit invasive microbes virulence factors and regulate the host immunity. Controlled clinical trials revealed that A. paniculata treatment is safe and efficacious for acute respiratory tract infections like common cold and sinusitis. Hence, A. paniculata, mainly andrographolide, could be considered as an excellent candidate for antimicrobial drug development. Considering the importance, medicinal values, and significant role as antimicrobial agents, this study critically evaluated the antimicrobial therapeutic potency of A. paniculata and its metabolites, focusing on the mechanism of action in inhibiting invasive microbes and biofilm formation. A critical evaluation of the secondary metabolites with the aim of identifying pure compounds that possess antimicrobial functions has further added significant values to this study. Notwithstanding that A. paniculata is a promising source of antimicrobial agents and safe treatment for IDs, further empirical research is warranted.
Collapse
Affiliation(s)
- Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Hidayah Karuniawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia;
| | - Ramisa Binti Mohiuddin
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh 1902, Tangail, Bangladesh;
| | - Ahmed Moh Qrimida
- Department of Agriculture, Higher Institute of Overall Occupations-Sooq Al Khamees Imsahil, Tripoli 1300, Libya; (A.M.Q.); (A.M.M.A.)
| | - Akrm Mohamed Masaud Allzrag
- Department of Agriculture, Higher Institute of Overall Occupations-Sooq Al Khamees Imsahil, Tripoli 1300, Libya; (A.M.Q.); (A.M.M.A.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
23
|
Choudhuri I, Khanra K, Maity P, Patra A, Maity GN, Pati BR, Nag A, Mondal S, Bhattacharyya N. Structure and biological properties of exopolysaccharide isolated from Citrobacter freundii. Int J Biol Macromol 2020; 168:537-549. [PMID: 33316341 DOI: 10.1016/j.ijbiomac.2020.12.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the molecular characterization, antioxidant activity in vitro, cytotoxicity study of an exopolysaccharide isolated from Citrobacter freundii. Firstly, the culture conditions were standardized by the Design of experiments (DoE) based approach, and the final yield of thecrude exopolysaccharide was optimized at 2568 ± 169 mg L-1. One large fraction of exopolysaccharide was obtained from the culture filtrate by size exclusion chromatography and molecular characteristics were studied. A new mannose rich exopolysaccharide (Fraction-I) with average molecular weight ~ 1.34 × 105 Da was isolated. The sugar analysis showed the presence of mannose and glucose in a molar ratio of nearly 7:2 respectively. The structure of the repeating unit in the exopolysaccharide was determined through chemical and 1D/2D- NMR experiments as: Finally, the antioxidant activity, and the cytotoxicity of the exopolysaccharide were investigated and the relationship with molecular properties was discussed as well.
Collapse
Affiliation(s)
- Indranil Choudhuri
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Kalyani Khanra
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Prasenjit Maity
- Department of Chemistry, Sabang Sajanikanta Mahavidyalaya, Sabang, Paschim Midnapore, West Bengal PIN-721166, India
| | - Anutosh Patra
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Gajendra Nath Maity
- Department of Chemistry, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Bikas Ranjan Pati
- Dept. of Microbiology, Vidyasagar University, Medinipur, West Bengal PIN-721102, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru PIN-560029, India
| | - Soumitra Mondal
- Department of Chemistry, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India.
| | - Nandan Bhattacharyya
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India.
| |
Collapse
|
24
|
Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. Int J Nanomedicine 2020; 15:9717-9743. [PMID: 33299313 PMCID: PMC7721306 DOI: 10.2147/ijn.s276001] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic wound shows delayed and incomplete healing processes, which in turn exposes patients to an environment with a high risk of infection. This article has summarized current developments of nanoparticles/hydrogels and nanotechnology used for promoting the wound healing process in either diabetic animal models or patients with diabetes mellitus. These nanoparticles/hydrogels promote diabetic wound healing by loading bioactive molecules (such as growth factors, genes, proteins/peptides, stem cells/exosomes, etc.) and non-bioactive substances (metal ions, oxygen, nitric oxide, etc.). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favored by researchers. In addition, nanoparticles/hydrogels can be combined with some technology (including PTT, LBL self-assembly technique and 3D-printing technology) to treat diabetic wound repair. By reviewing the recent literatures, we also proposed new strategies for improving multifunctional treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Que Bai
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Qianfa Long
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an710003, People’s Republic of China
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| |
Collapse
|