1
|
El-Belkasy RO, El-Kemary M, Hanafy NAN. Evaluating the role of targeted silymarin loaded hyaluronic acid/protein nanoparticles in activating hepatic progenitor stem cells for liver regeneration after CCl 4-induced liver damage. Int J Biol Macromol 2025; 309:142837. [PMID: 40188925 DOI: 10.1016/j.ijbiomac.2025.142837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Silymarin is a natural flavonoid component isolated from the Silybum Marianum (Milk Thistle) plant with multiple pharmacological activities. We investigated its anti-fibrotic effect on the liver and demonstrated its role in activating hepatic progenitor stem cells during liver regeneration. METHODS Hybrid polymeric protein nanoparticles were prepared by loading silymarin with an albumin-hyaluronic acid complex to achieve stem cell targeting and increase silymarin's bioavailability. RESULTS TEM, Zeta potential, DLS, UV-visible spectrophotometer, Fluorescence analysis, and FTIR verified the successful formation of nanoparticles and efficient encapsulation. In the present study, The liver fibrotic model was induced by the intraperitoneal injection of carbon tetrachloride, followed by the injection of silymarin NPs into mice twice a week for 4 weeks. We evaluated the expression of hepatic fibrosis markers such as (Collagen I, TGF-β1, SMAD3, and MMP-3) and hepatic progenitor stem cell activation markers such as (HNF1β, FOXl1, CD90, Vimentin, and CD105). The results showed that the targeted silymarin NPs caused significant suppression and downregulation of Collagen I, TGF-β, SMAD-3, and MMP-3 and upregulation of the hepatic progenitor stem cells markers HNF1β, FOXl1, CD90, Vimentin, and CD105. They also didn't induce expression of IL-6, IL-1β, and TNF-α, proving that they cause no signs of inflammation. CONCLUSION The novel point is that these results demonstrated that the targeted Silymarin NPs not only could efficiently alleviate CCl4-induced liver fibrosis more than using only free silymarin; by inhibiting the TGF-β/Smad-3 signaling pathway, but also could activate hepatic progenitor stem cells causing liver regeneration.
Collapse
Affiliation(s)
- Rawan O El-Belkasy
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Maged El-Kemary
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Nile Valley University, Fayoum 63518, Egypt
| | - Nemany A N Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; NanoBio4Can program, Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| |
Collapse
|
2
|
Han Q, Shi J, Yu Y, Yuan H, Guo Y, Liu X, Xue Y, Li Y. Calycosin alleviates ferroptosis and attenuates doxorubicin-induced myocardial injury via the Nrf2/SLC7A11/GPX4 signaling pathway. Front Pharmacol 2024; 15:1497733. [PMID: 39600362 PMCID: PMC11589554 DOI: 10.3389/fphar.2024.1497733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Heart failure is primarily characterized by damage to the structure and function of the heart. Ferroptosis represents a form of programmed cell death, and studies indicate that it constitutes one of the primary mechanisms underlying cardiomyocyte death in heart failure. Calycosin, a natural compound derived from astragalus, exhibits various pharmacological properties, including anti-ferroptosis, antioxidant effects, and cardiovascular protection. Nonetheless, the specific role of Calycosin in the treatment of ferroptosis in heart failure remains poorly understood. Objective This study aims to elucidate the regulatory effect of Calycosin on ferroptosis and its influence on the treatment mechanisms of heart failure through in vivo and in vitro experiments. Methods A rat model of heart failure was induced using doxorubicin, and the cardiac function was evaluated through cardiac ultrasound examination and NT-Pro BNP detection. Myocardial injury was assessed using H&E staining and Masson staining. The extent of mitochondrial damage was evaluated through transmission electron microscopy. Concurrently, the level of ferroptosis was analyzed by measuring ferroptosis markers, including MDA, ferrous ions, the GSH/GSSG ratio, and GPX4 activity. Subsequently, the molecular mechanism by which Calycosin exerts its therapeutic effects in heart failure was investigated through immunofluorescence and Western blotting. Finally, H9c2 cardiomyocytes were treated with doxorubicin to simulate myocardial injury, and the mechanism by which Calycosin mediates its effects in the treatment of heart failure was further verified through Nrf2 gene silencing. Results Calycosin significantly improves cardiac function in rats, reduces serum NT-Pro BNP levels, and alleviates myocardial cell damage. Additionally, it significantly decreases the levels of ferroptosis in myocardial tissue, as confirmed through transmission electron microscopy and the assessment of ferroptosis markers, including MDA, ferrous ions, GSH, and GPX4 activity. At the molecular level, Calycosin exerts its effects by activating the Nrf2/SLC7A11/GPX4 signaling pathway, evidenced by the upregulation of Nrf2, SLC7A11, GPX4, GSS, and GCL protein expression. This process substantially enhances the antioxidant capacity of rat myocardial tissue and effectively suppresses ferroptosis in myocardial cells. The results obtained from both in vivo and in vitro experiments are consistent. Notably, when Nrf2 is silenced, the protective effect of Calycosin on the myocardium is markedly diminished. Conclusion Calycosin effectively treats doxorubicin-induced cardiac injury, and its therapeutic effect is likely closely associated with the activation of the Nrf2/SLC7A11/GPX4 signaling pathway and the inhibition of ferroptosis in myocardial cells. Consequently, Calycosin, as a promising compound against doxorubicin-induced cardiotoxicity, warrants further investigation.
Collapse
Affiliation(s)
- Quancheng Han
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Awad MG, Hanafy NAN, Ali RA, Abd El-Monem DD, El-Shafiey SH, El-Magd MA. Exploring the therapeutic applications of nano-therapy of encapsulated cisplatin and anthocyanin-loaded multiwalled carbon nanotubes coated with chitosan-conjugated folic acid in targeting breast and liver cancers. Int J Biol Macromol 2024; 280:135854. [PMID: 39307483 DOI: 10.1016/j.ijbiomac.2024.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
This study aimed to assess the targeted nano-therapy of encapsulated cisplatin (Cis) and anthocyanin (Ant)-loaded multiwalled carbon nanotubes (CNT) coated with chitosan conjugated folic acid on breast MCF7 and liver HepG2 cancer cells. Zeta potential, UV-spectroscopy, FTIR, TEM, and SEM were used to evaluate CNT, its modified form (CNT Mod), CNT-loaded Cis NPs, CNT-loaded Ant NPs, and CNT- Cis + Ant NPs. All treatments induced apoptosis-dependent cytotoxicity in both cell lines as revealed functionally by the MTT assay, morphologically (DNA degradation) by acridine orange/ethidium bromide (AO/EB) double staining, and molecularly (Bax upregulation and Bcl2 downregulation) by real-time PCR, with best effect for the combined treatment (CNT- Cis + Ant NPs). This combined treatment also significantly reduced inflammation (low TNFα), migration (low MMP9 and high TIMP1), and angiogenesis (low VEGF), while significantly increasing antioxidant status (high Nrf2 and OH-1) in MCF7 and HepG2 cells compared to other treatments. Interestingly, cells treated with CNT Mod exhibited higher cytotoxic, apoptotic, anti-migratory, and anti-angiogenic potentials relative to CNT-treated cells. In conclusion, targeted nano-therapy of encapsulated cisplatin and anthocyanin-loaded carbon nanotubes coated with chitosan conjugated folic acid can efficiently combat breast and liver cancers by sustained release, in addition to its apoptotic, antioxidant, anti-inflammatory, anti-metastatic, and anti-angiogenic effects.
Collapse
Affiliation(s)
- Mai G Awad
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Nemany A N Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Ramadan A Ali
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Dalia D Abd El-Monem
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sara H El-Shafiey
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
4
|
Hilal A, Florowska A, Florowski T, Rybak K, Domian E, Szymański M, Wroniak M. Effects of Sequential Induction Combining Thermal Treatment with Ultrasound or High Hydrostatic Pressure on the Physicochemical and Mechanical Properties of Pea Protein-Psyllium Hydrogels as Elderberry Extract Carriers. Int J Mol Sci 2024; 25:9033. [PMID: 39201717 PMCID: PMC11354354 DOI: 10.3390/ijms25169033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Entrapping bioactive ingredients like elderberry extract in hydrogels improves their stability and functionality in food matrices. This study assessed the effect of sequential thermal treatment with ultrasound (US) or high hydrostatic pressure (HHP) and treatment duration on pea protein-psyllium hydrogels as elderberry extract carriers. Measurements included color parameters, extract entrapment efficiency, physical stability, textural properties, microrheology, FT-IR, thermal degradation (TGA), SEM images, total polyphenols content, antioxidant activity, and reducing power. The control hydrogel was obtained using only thermal induction. Both treatments impacted physical stability by affecting biopolymer aggregate structures. Thermal and US combined induction resulted in hydrogels with noticeable color changes and reduced entrapment efficiency. Conversely, thermal and HHP-combined induction, especially with extended secondary treatment (10 min), enhanced hydrogel strength, uniformity, and extract entrapment efficiency (EE = 33% for P10). FT-IR and TGA indicated no chemical structural alterations post-treatment. Sequential thermal and HHP induction preserved polyphenol content, antioxidant activity (ABTS = 5.8 mg TE/g d.m.; DPPH = 11.1 mg TE/g d.m.), and reducing power (RP = 1.08 mg TE/g d.m.) due to the dense hydrogel structure effectively enclosing the elderberry extract. Sequential thermal and HHP induction was more effective in developing pea protein-psyllium hydrogels for elderberry extract entrapment.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (T.F.); (M.W.)
| | - Anna Florowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (T.F.); (M.W.)
| | - Tomasz Florowski
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (T.F.); (M.W.)
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.R.); (E.D.)
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.R.); (E.D.)
| | - Marcin Szymański
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (T.F.); (M.W.)
| | - Małgorzata Wroniak
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (T.F.); (M.W.)
| |
Collapse
|
5
|
Ozkan G, Ceyhan T, Çatalkaya G, Rajan L, Ullah H, Daglia M, Capanoglu E. Encapsulated phenolic compounds: clinical efficacy of a novel delivery method. PHYTOCHEMISTRY REVIEWS 2024; 23:781-819. [DOI: 10.1007/s11101-023-09909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2025]
Abstract
AbstractEncapsulation is a drug or food ingredient loaded-delivery system that entraps active components, protecting them from decomposition/degradation throughout the processing and storage stages and facilitates their delivery to the target tissue/organ, improving their bioactivities. The application of this technology is expanding gradually from pharmaceuticals to the food industry, since dietary bioactive ingredients, including polyphenols, are susceptible to environmental and/or gastrointestinal conditions. Polyphenols are the largest group of plants' secondary metabolites, with a wide range of biological effects. Literature data have indicated their potential in the prevention of several disorders and pathologies, ranging from simpler allergic conditions to more complex metabolic syndrome and cardiovascular and neurodegenerative diseases. Despite the promising health effects in preclinical studies, the clinical use of dietary polyphenols is still very limited due to their low bioaccessibility and/or bioavailability. Encapsulation can be successfully employed in the development of polyphenol-based functional foods, which may improve their bioaccessibility and/or bioavailability. Moreover, encapsulation can also aid in the targeted delivery of polyphenols and may prevent any possible adverse events. For the encapsulation of bioactive ingredients, several techniques are applied such as emulsion phase separation, emulsification/internal gelation, film formation, spray drying, spray-bed-drying, fluid-bed coating, spray-chilling, spray-cooling, and melt injection. The present review aims to throw light on the existing literature highlighting the possibility and clinical benefits of encapsulated polyphenols in health and disease. However, the clinical data is still very scarce and randomized clinical trials are needed before any conclusion is drawn.
Graphical abstract
Collapse
|
6
|
Singh A, Sharma JJ, Mohanta B, Sood A, Han SS, Sharma A. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:675-716. [PMID: 37943320 DOI: 10.1080/09205063.2023.2278814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Collapse
Affiliation(s)
- Anand Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Janmay Jai Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Billeswar Mohanta
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
7
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
8
|
Cheng Y, Liu J, Li L, Ren J, Lu J, Luo F. Advances in embedding techniques of anthocyanins: Improving stability, bioactivity and bioavailability. Food Chem X 2023; 20:100983. [PMID: 38144721 PMCID: PMC10740132 DOI: 10.1016/j.fochx.2023.100983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
The health benefits of anthocyanins have attracted extensive research interest. However, anthocyanins are sensitive to certain environmental and gastrointestinal conditions and have low oral bioavailability. It has been reported that delivery systems made in different ways could improve the stability, bioavailability and bioactivity of anthocyanins. This present review summarizes the factors affecting the stability of anthocyanins and the reasons for poor bioavailability, and various technologies for encapsulation of anthocyanins including microcapsules, nanoemulsions, microemulsions, Pickering emulsions, nanoliposomes, nanoparticles, hydrogels and co-assembly with amphiphilic peptides were discussed. In particular, the effects of these encapsulation technologies on the stability, bioavailability and bioactivities of anthocyanins in vitro and in vivo experiments are reviewed in detail, which provided scientific insights for anthocyanins encapsulation methods. However, the application of anthocyanins in food industry as well as the biological fate and functional pathways in vivo still need to be further explored.
Collapse
Affiliation(s)
- Yingying Cheng
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiayi Liu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ling Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Lu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
Meng X, Shen Q, Song T, Zhao H, Zhang Y, Ren A, Yang W. Facile Fabrication of Anthocyanin-Nanocellulose Hydrogel Indicator Label for Intelligent Evaluation of Minced Pork Freshness. Foods 2023; 12:2602. [PMID: 37444340 DOI: 10.3390/foods12132602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In order to develop a reliable and rapid method for meat freshness detection, nanocellulose (TOCNF) prepared via the TEMPO (2,2,6,6-tetramethylpiperidine oxidation) oxidation method was used as raw material to prepare hydrogels using Zn2+ coordination and binding. Physicochemical properties such as water absorption and porosity were analyzed. It was further used to select suitable hydrogels for the preparation of indication labels after anthocyanin adsorption, and it was applied in the freshness detection of fresh minced pork. Five percent TOCNF (w/w) aqueous solution was homogenized by high shear for 4 min, and 20% (w/w) zinc chloride solution was added to it, so that the concentration of zinc ions could reach 0.25 mol/L. After standing for 24 h, the hydrogel was obtained with good water absorption and a porous three-dimensional network structure. The activation energies of volatile base nitrogen (TVBN) and anthocyanin indicating label color changes were 59.231 kJ/mol and 69.453 kJ/mol, respectively. The difference between the two is within 25 kJ/mol, so the prepared indicator label can accurately visualize the shelf life of fresh pork.
Collapse
Affiliation(s)
- Xiangyong Meng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qinqin Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Teng Song
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Honglei Zhao
- Weifang Inspection and Testing Center, Weifang 261100, China
| | - Yong Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Aiqing Ren
- Institute of Food Research, Hezhou University, Hezhou 542899, China
| | - Wenbin Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
10
|
Nunes AR, Costa EC, Alves G, Silva LR. Nanoformulations for the Delivery of Dietary Anthocyanins for the Prevention and Treatment of Diabetes Mellitus and Its Complications. Pharmaceuticals (Basel) 2023; 16:ph16050736. [PMID: 37242519 DOI: 10.3390/ph16050736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by abnormal blood glucose levels-hyperglycemia, caused by a lack of insulin secretion, impaired insulin action, or a combination of both. The incidence of DM is increasing, resulting in billions of dollars in annual healthcare costs worldwide. Current therapeutics aim to control hyperglycemia and reduce blood glucose levels to normal. However, most modern drugs have numerous side effects, some of which cause severe kidney and liver problems. On the other hand, natural compounds rich in anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) have also been used for the prevention and treatment of DM. However, lack of standardization, poor stability, unpleasant taste, and decreased absorption leading to low bioavailability have hindered the application of anthocyanins as therapeutics. Therefore, nanotechnology has been used for more successful delivery of these bioactive compounds. This review summarizes the potential of anthocyanins for the prevention and treatment of DM and its complications, as well as the strategies and advances in the delivery of anthocyanins using nanoformulations.
Collapse
Affiliation(s)
- Ana R Nunes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete C Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Research Unit for Inland Development, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-554 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
11
|
El-Borlsy H, Hanafy NAN, El-Kemary MA. Development and application of naturally derived, cost-effective CQDs with cancer targeting potential. Cell Biol Int 2023; 47:808-822. [PMID: 36640423 DOI: 10.1002/cbin.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Carbon quantum dots (CQDs) derived from natural sources have obtained potential interest in biomedical imaging and therapy because of their excellent biocompatibility properties, which include water solubility, simple synthesis and low cytotoxicity. Here the cytotoxicity of ethylene-diamine doped carbon quantum dots (N-CQDs) delivered to breast cancer MCF-7 cells was investigated. Folic acid was used to raise folate recognition and increase FA-NCQD accumulation in the cells, then apoptosis was assayed using nuclear fragmentation, acridine orange labeling, fluorescence imaging, flow cytometry, and caspase 3 expression. The data show that functionalization of these CQDs, derived from a natural source, have potential application in eliminating cancer cells, as shown here for the invasive breast cancer cells, MCF-7. This nano-delivery system provides a novel target therapy possibility therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Hanaa El-Borlsy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
12
|
Hanafy NAN, Eltonouby EAB, Salim EI, Mahfouz ME, Leporatti S, Hafez EH. Simultaneous Administration of Bevacizumab with Bee-Pollen Extract-Loaded Hybrid Protein Hydrogel NPs Is a Promising Targeted Strategy against Cancer Cells. Int J Mol Sci 2023; 24:3548. [PMID: 36834960 PMCID: PMC9963805 DOI: 10.3390/ijms24043548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Bevacizumab (Bev) a humanized monoclonal antibody that fights vascular endothelial growth factor A (VEGF-A). It was the first specifically considered angiogenesis inhibitor and it has now become the normative first-line therapy for advanced non-small-cell lung cancer (NSCLC). In the current study, polyphenolic compounds were isolated from bee pollen (PCIBP) and encapsulated (EPCIBP) inside moieties of hybrid peptide-protein hydrogel nanoparticles in which bovine serum albumin (BSA) was combined with protamine-free sulfate and targeted with folic acid (FA). The apoptotic effects of PCIBP and its encapsulation (EPCIBP) were further investigated using A549 and MCF-7 cell lines, providing significant upregulation of Bax and caspase 3 genes and downregulation of Bcl2, HRAS, and MAPK as well. This effect was synergistically improved in combination with Bev. Our findings may contribute to the use of EPCIBP simultaneously with chemotherapy to strengthen the effectiveness and minimize the required dose.
Collapse
Affiliation(s)
- Nemany A. N. Hanafy
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Eman Ali Bakr Eltonouby
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed I. Salim
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Magdy E. Mahfouz
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Stefano Leporatti
- CNR NANOTEC-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Ezar H. Hafez
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
13
|
El-brolsy HMEM, Hanafy NAN, El-Kemary MA. Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int J Mol Sci 2022; 23:13283. [PMID: 36362075 PMCID: PMC9658332 DOI: 10.3390/ijms232113283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 μg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.
Collapse
|
14
|
The Role of Anthocyanin in Modulating Diabetic Cardiovascular Disease and Its Potential to Be Developed as a Nutraceutical. Pharmaceuticals (Basel) 2022; 15:ph15111344. [PMID: 36355516 PMCID: PMC9692260 DOI: 10.3390/ph15111344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiovascular disease (CVD) is directly linked to diabetes mellitus (DM), and its morbidity and mortality are rising at an alarming rate. Individuals with DM experience significantly worse clinical outcomes due to heart failure as a CVD consequence than non-diabetic patients. Hyperglycemia is the main culprit that triggers the activation of oxidative damage, inflammation, fibrosis, and apoptosis pathways that aggravate diabetic CVD progression. In recent years, the development of phytochemical-based nutraceutical products for diabetic treatment has risen due to their therapeutic properties. Anthocyanin, which can be found in various types of plants, has been proposed for preventing and treating various diseases, and has elicited excellent antioxidative, anti-inflammation, anti-fibrosis, and anti-apoptosis effects. In preclinical and clinical studies, plants rich in anthocyanin have been reported to attenuate diabetic CVD. Therefore, the development of anthocyanin as a nutraceutical in managing diabetic CVD is in demand. In this review, we unveil the role of anthocyanin in modulating diabetic CVD, and its potential to be developed as a nutraceutical for a therapeutic strategy in managing CVD associated with DM.
Collapse
|
15
|
Gonçalves AC, Falcão A, Alves G, Lopes JA, Silva LR. Employ of Anthocyanins in Nanocarriers for Nano Delivery: In Vitro and In Vivo Experimental Approaches for Chronic Diseases. Pharmaceutics 2022; 14:2272. [PMID: 36365091 PMCID: PMC9695229 DOI: 10.3390/pharmaceutics14112272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/18/2023] Open
Abstract
Anthocyanins are among the best-known phenolic compounds and possess remarkable biological activities, including antioxidant, anti-inflammatory, anticancer, and antidiabetic effects. Despite their therapeutic benefits, they are not widely used as health-promoting agents due to their instability, low absorption, and, thus, low bioavailability and rapid metabolism in the human body. Recent research suggests that the application of nanotechnology could increase their solubility and/or bioavailability, and thus their biological potential. Therefore, in this review, we have provided, for the first time, a comprehensive overview of in vitro and in vivo studies on nanocarriers used as delivery systems of anthocyanins, and their aglycones, i.e., anthocyanidins alone or combined with conventional drugs in the treatment or management of chronic diseases.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - João A. Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
16
|
Abou El-Naga HMH, El-Hashash SA, Yasen EM, Leporatti S, Hanafy NAN. Starch-Based Hydrogel Nanoparticles Loaded with Polyphenolic Compounds of Moringa Oleifera Leaf Extract Have Hepatoprotective Activity in Bisphenol A-Induced Animal Models. Polymers (Basel) 2022; 14:polym14142846. [PMID: 35890622 PMCID: PMC9324559 DOI: 10.3390/polym14142846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is an xenoestrogenic chemical used extensively in the fabrication of baby bottles, reusable plastic water bottles and polycarbonate plastic containers. The current study aims to investigate the hepatoprotective activity of Moringa oleifera Lam leaf extract (MOLE) and hydrogel NPs made of starch-MOLE-Bovine Serum Albumin (BSA) against Bisphenol A-induced liver toxicity in male rats. Fabrication and characterization of hydrogel NPs formed of starch-MOLE-BSA were investigated using FTIR, TEM, zeta potential, UV-visible spectroscopy and fluorescence spectrophotometer. The potential efficacy of hydrogel NPs was studied. Compared to the results of control, the level of liver function, oxidative stress markers and lipid profile status were remodulated in the groups treated with MOLE and hydrogel NPs (Encap. MOLE). Meanwhile, the administration of MOLE and Encap MOLE significantly increased antioxidant activity and decreased the level of apoptotic pathways. Heme oxygenase (HO)-1 and growth arrest -DNA damage-inducible gene 45b (Gadd45b) were also regulated in the groups treated with MOLE and Encap. MOLE compared to the group which received BPA alone. In the present study, MOLE and hydrogel NPs led to remarkable alterations in histological changes during BPA administration. Overall, MOLE has a potential antioxidant activity which can be used in the treatment of liver disorders.
Collapse
Affiliation(s)
- Hend Mohamed Hasanin Abou El-Naga
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta P.O. Box 31732, Egypt; (H.M.H.A.E.-N.); (S.A.E.-H.); (E.M.Y.)
| | - Samah A. El-Hashash
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta P.O. Box 31732, Egypt; (H.M.H.A.E.-N.); (S.A.E.-H.); (E.M.Y.)
| | - Ensaf Mokhtar Yasen
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Nawag, Tanta P.O. Box 31732, Egypt; (H.M.H.A.E.-N.); (S.A.E.-H.); (E.M.Y.)
| | - Stefano Leporatti
- Cnr Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy;
| | - Nemany A. N. Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
- Correspondence:
| |
Collapse
|
17
|
Ding Q, Liu W, Liu X, Ding C, Zhao Y, Dong L, Chen H, Sun S, Zhang Y, Zhang J, Wu M. Polyvinylpyrrolidone-Modified Taxifolin Liposomes Promote Liver Repair by Modulating Autophagy to Inhibit Activation of the TLR4/NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 10:860515. [PMID: 35721857 PMCID: PMC9199375 DOI: 10.3389/fbioe.2022.860515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Taxifolin (TAX) is a hepatoprotective flavanol compound, which is severely limited by poor solubility and low bioavailability. Liposomes (Lips) are used as well-recognized drug carrier systems that improve the water solubility and bioavailability of drugs, but are easily damaged by gastric juice after oral administration, resulting in the release of drugs in the gastric juice. Therefore, it is important to find materials that modify liposomes and avoid the destruction of the liposomal phospholipid bilayer structure by the gastrointestinal environment. Taxifolin liposomes (TAX-Lips) were modified by polyvinylpyrrolidone-k30 (PVP-TAX-Lips) and manufactured using a thin-film hydration technique. Particle size (109.27 ± 0.50 nm), zeta potential (−51.12 ± 3.79 mV), polydispersity coefficient (PDI) (0.189 ± 0.007), and EE (84.7 ± 0.2%) of PVP-TAX-Lips were studied. In addition, the results of in vitro release experiments indicated that the cumulative release rates of TAX-Lips and PVP-TAX-Lips were 89.73 ± 5.18% and 65.66 ± 4.86% in the simulated gastric fluid after 24 h, respectively, while the cumulative release rates were 68.20 ± 4.98% and 55.66 ± 3.92% in the simulated intestinal fluid after 24 h, respectively. Moreover, PVP-TAX-Lips were able to reverse lipopolysaccharide and D-galactosamine (LPS/D-GalN)-induced acute liver injury (ALI) by inducing autophagy to inhibit the expression levels of the TLR4/NF-κB signaling pathway and inflammatory factors, which suggested that PVP-TAX-Lips played an important role in the prevention of ALI and also provided a promising drug delivery system for the application of TAX.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Ling Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Huiying Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Yiwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Ming Wu
- College of Life Science, Jilin Agricultural University, Jilin, China
- *Correspondence: Ming Wu,
| |
Collapse
|
18
|
Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol 2022; 198:101-110. [PMID: 34968533 PMCID: PMC8712435 DOI: 10.1016/j.ijbiomac.2021.12.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023]
Abstract
Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/μL & 6 ± 0.5 μg/μL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/μL & 7 ± 0.5 μg/μL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/μL & 10 ± 0.6 μg/μL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
19
|
Elsayed AM, Sherif NM, Hassan NS, Althobaiti F, Hanafy NAN, Sahyon HA. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model. Int J Biol Macromol 2021; 185:134-152. [PMID: 34147524 DOI: 10.1016/j.ijbiomac.2021.06.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023]
Abstract
This study was designed to present a new quercetin encapsulated chitosan functionalized copper oxide nanoparticle (CuO-ChNPs-Q) and assessed its anti-breast cancer activity both in vitro and in vivo. The CuO-ChNPs-Q may act as anti-proliferating agent against DMBA-induced mammary carcinoma in female rats. The CuONPs was functionalized with chitosan then quercetin was conjugated with them producing CuO-ChNPs-Q, then characterized. The in vitro anti-proliferating activity of the CuO-ChNPs-Q was evaluated against three human cell line. Then, the anti-breast cancer effect of the CuO-ChNPs-Q was assessed against DMBA-induction compared to both CuONPs and Q in female rat model. The in vitro results proved the potent anticancer activity of the CuO-ChNPs-Q compared to CuONPs and quercetin. The in vivo data showed significant reduction in breast tumors of DMBA-induced rats treated with CuO-ChNPs-Q compared to CuONPs and Q. The CuO-ChNPs-Q treatment had induced apoptosis via increased p53 gene, arrested the cell-cycle, and increased both cytochrome c and caspase-3 levels leading to mammary carcinoma cell death. Also, the CuO-ChNPs-Q treatment had suppressed the PCNA gene which decreased the proliferation of the mammary carcinoma cells. In conclusion, the CuO-ChNPs-Q might be a promising chemotherapeutic agent for treatment of breast cancer with a minimal toxicity on vital organs.
Collapse
Affiliation(s)
- Awny M Elsayed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Naglaa M Sherif
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nahla S Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
20
|
Hanafy NAN. Optimally designed theranostic system based folic acids and chitosan as a promising mucoadhesive delivery system for encapsulating curcumin LbL nano-template against invasiveness of breast cancer. Int J Biol Macromol 2021; 182:1981-1993. [PMID: 34058209 DOI: 10.1016/j.ijbiomac.2021.05.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022]
Abstract
Curcumin is a potential candidate in cancer therapy due to its ability to inhibit many signalling pathways at the same time of exposure because of its unique content of aromatic ring, B diketone, olefinic linker, and O methoxy phenolic groups. Its applications in biomedical therapy is limited because of its sensitivity, and its rapid degradation. In the current study, curcumin inserted into polyelectrolyte pairs (protamine and dextran) and then was functionalized by folic acid conjugated chitosan used for the first time, as theranostic system. Such this strategy allows to improve its mucoadhesion and penetration that increases their accumulation inside cancer cells. CUR-LbL NPs were then used to investigate drug release inside Human Mammary Carcinoma (MCF-7 cell lines) after their incubations for 3 h, 6 h and 24 h. Flow cytometry indicated that the percentages of apoptosis, necrosis and cell cycle arrest were increased significantly in MCF-7 cell lines treated by CUR-LbL NPs. Furthermore, SEM image showed many debris in the section of MCF-7 treated by CUR-LbL NPs. Here, it can be summarized that curcumin functionalized by multi-layered polyelectrolyte capsules can be used as a model to study the fate of the adsorbed nanocarriers and to investigate the drug release inside cells.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
21
|
Extraction of chlorophyll and carotenoids loaded into chitosan as potential targeted therapy and bio imaging agents for breast carcinoma. Int J Biol Macromol 2021; 182:1150-1160. [PMID: 33865895 DOI: 10.1016/j.ijbiomac.2021.03.189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
In the current study, the treatment efficacy of ECHCAH was evaluated in vitro studies using cell viability and flow cytometry in human TNBCs. The results here showed significant gradual reduction in growth of TNBCs (MDA-231cell lines) after their exposure to serial concentrations for hydrogel assembly (5 μg/mL to 25 μg/mL) for 24 and 48 h, representing (86 ± 1% to 45 ± 1.5% p < 0.001) and (79 ± 1.5% to 35 ± 2.5% p < 0.001) respectively. The flow cytometry showed significant increase in the present of late apoptotic and necrotic cells (64% ± 1.2 and 27% ± 0.3 p < 0.001) after 48 h incubation compared to untreated cells (1.13% ± 0.3 and 4% ± 0.2 p < 0.001) respectively. It can be summarized that ECHCA inside targeted hydrogel assemblies can inhibit proliferation of cancer cells.
Collapse
|