1
|
Xie Y, Sun C, Zhang Y, Yang Z, Gao X, Liu L, Zhu W, Xue D, Zou J, Pei F, Yue L. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic stearic acid-grafted inulin: Preparation, characterization, and functional evaluation. Int J Biol Macromol 2025; 301:140302. [PMID: 39864681 DOI: 10.1016/j.ijbiomac.2025.140302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements. CUR-loaded SA-IN nanoparticles (CUR@SA-IN NPs) demonstrated a high encapsulation efficiency of 91.59 % ± 3.26 %, nanoscale dispersion, and an average particle size of 190.6 ± 11.2 nm. The CUR@SA-IN NPs exhibited excellent stability and sustained-release properties. Compared with free CUR, the minimum inhibitory concentration of CUR@SA-IN NPs against Escherichia coli and Staphylococcus aureus decreased by 1.5- and 1.6-fold, respectively. The antioxidant activity increased by 2.34-fold with CUR@SA-IN NPs compared with free CUR. Also, the NPs showed superior efficacy in suppressing the expression of inflammatory cytokines and inhibiting cancer cell proliferation. The cellular uptake studies confirmed enhanced CUR absorption from the NPs compared with free CUR. The CUR@SA-IN NPs exhibited good biocompatibility. These findings highlighted the potential of amphiphilic SA-IN as an effective delivery vector for hydrophobic bioactive compounds, thereby offering a promising approach for developing efficient nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Jiangsu, Nanjing 210009, China.
| | - Chenxi Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Yongrui Zhang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Zilong Yang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Xiuli Gao
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Likun Liu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Wenbin Zhu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Di Xue
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Jiaqi Zou
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Fangyi Pei
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| | - Liling Yue
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| |
Collapse
|
2
|
Hileuskaya K, Kraskouski A, Ihnatsyeu-Kachan A, Saichuk A, Pinchuk S, Nikalaichuk V, Ladutska A, Kulikouskaya V, Neves MC, Freire MG, Kim S. New insights into chitosan-Ag nanocomposites synthesis: Physicochemical aspects of formation, structure-bioactivity relationship and mechanism of antioxidant activity. Int J Biol Macromol 2025; 300:140077. [PMID: 39842576 DOI: 10.1016/j.ijbiomac.2025.140077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Herein, a novel approach to the controlled formation of chitosan-Ag nanocomposites (NCs) with different structures and tunable chemical/biological properties was proposed. The chitosan-Ag NCs were obtained using hydrothermal synthesis and varying the concentrations of components. The hypothesis of chitosan-Ag NC synthesis using polysaccharide coils as a "microreactor" system was confirmed. A comparative analysis of the physicochemical characteristics of the NCs with single-core-shell and multi-core-shell structures was carried out, and the "structure-property" relationship was revealed. The obtained NCs exhibited excellent antiradical properties, comparable to the activity of phenolic acids: the IC50 values were 0.051, 0.022, and 0.019 mg/mL for CS7, CS5, and caffeic acid, respectively. A mechanism for the antiradical activity of chitosan-Ag NCs was discussed. The redox activity of the NCs was found to be 11.4 and 2.3 mg ABTS per 1 mg of Ag in CS5 and CS7, respectively. The proposed environmentally friendly one-pot, one-step synthesis of silver nanoparticles inside chitosan "microreactors" represents an innovative approach to designing hybrid materials with nanoscale control of desired structure and properties. These findings pave the way for further optimization of biopolymer‑silver nanostructures for various biomedical and industrial applications, including the design of a new type of hybrid catalysts such as nanozymes.
Collapse
Affiliation(s)
- Kseniya Hileuskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Aliaksandr Kraskouski
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus.
| | - Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sergei Pinchuk
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Minsk, 27 Academicheskaya Str., Belarus
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Alena Ladutska
- Institute of Microbiology of National Academy of Sciences of Belarus, Minsk, 2 Kuprevich str., Belarus
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Márcia C Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
He Z, Liu Z, Zhang Y, Guo T, Feng N. Modulating metal-organic frameworks by surface engineering of stearic acid modification for follicular drug delivery and enhanced hair growth promotion. J Nanobiotechnology 2025; 23:118. [PMID: 39966985 PMCID: PMC11834556 DOI: 10.1186/s12951-025-03234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Cyclodextrin metal-organic frameworks (CD-MOF) as delivery carriers have gained great attention in the biomedical field. However, limited by challenges of moisture-sensitive nature, the design and application of CD-MOF-based hair follicle delivery for androgenic alopecia (AGA) has rarely been explored. We developed the metal-organic frameworks as hair follicle-targeted delivery system (SA-MOF), stearic acid (SA) was used to modify metal-organic frameworks to form a protective hydrophobic layer on the surface and provide the additional hair growth-promoting effect. Cardamonin (CAR), a newly discovered biosafety natural product, was encapsulated in SA-MOF (CAR@SA-MOF) to promote the therapeutic efficacy on AGA. CD-MOF surface-engineered nanoparticles modified by SA avoided the rapid hydration and disintegration of CD-MOF in water, which improved the drug release and follicular deposition of drug. Assisted by the delivery of SA-modified CD-MOF carriers, the drug significantly promoted cell proliferation and migration, achieving the promoting effect on hair follicle differentiation and hair regeneration in testosterone-challenged C57BL/6 mice. Simultaneously, SA modification provided additional promoting effects on human dermal papilla cell proliferation, regulating effect on keratinocyte growth factor, and activating effect of key signaling pathways. The surface engineering design of CD-MOF hair follicle drug delivery based on SA modification exhibits significant potential for the treatment of hair follicle and sebaceous gland-related diseases.
Collapse
Affiliation(s)
- Zehui He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China
| | - Yongtai Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China.
| |
Collapse
|
4
|
Shi S, Wang XH, Jiang B, Tao W, Yu CF, Ji B. Preparation of Consolidated Dust Suppression Materials Based on Pectin: Graft Modification Experiment and Reaction Mechanism. ACS OMEGA 2024; 9:43534-43546. [PMID: 39494024 PMCID: PMC11525491 DOI: 10.1021/acsomega.4c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The natural material pectin was used as the matrix to prepare a dust suppressant. The regression model in response to the grafting ratio was established, and the optimum modification scheme was determined. The amount of monomer, initiator, cross-linking agent, and reaction temperature was 3.20 g, 0.20 g, and 0.15 g and 92 °C, respectively. Through Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy tests, not only the formation of the product in graft copolymerization reaction was validated but also the wettability of pectin was significantly improved. The surface morphology of pectin before and after modification was observed by a scanning electron microscope. After graft copolymerization treatment, the surface of pectin presented a dense grid structure, which proved that the pectin-modified dust suppressant can play a crucial role in wetting and condensing coal dust. Contact angle tests were used to characterize the effect of pectin modification on the wettability of bituminous coal before and after modification. The results of contact angle tests showed that when the droplets just contacted the bituminous coal flakes, the contact angle of modified pectin droplets on the flakes was the smallest, and the value was 55.21°. Compared with pure water droplets and unmodified pectin droplets, it decreased by 21.66° and 18.50°. The modification reaction process and dust suppression mechanism were explained at the molecular level.
Collapse
Affiliation(s)
- Shulei Shi
- Joint
National-Local Engineering Research Centre for Safe and Precise Coal
Mining, Anhui University of Science and
Technology, Huainan 232001, China
- Mining
Enterprise Safety Management of Humanities and Social Science Key
Research Base in Anhui Province, Anhui University
of Science & Technology, Huainan 232001, China
- School
of Economics and Management, Anhui University
of Science and Technology, Huainan 232001, China
| | - Xiao-Han Wang
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan 232001, China
| | - Bingyou Jiang
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan 232001, China
| | - Wenhan Tao
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan 232001, China
| | - Chang-Fei Yu
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan 232001, China
| | - Ben Ji
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan 232001, China
| |
Collapse
|
5
|
Zhang H, Fan Z, Peng D, Huang C, Wu X, Sun F. Tunning the hydrophobic performance and thermal stability of pectin film by acetic anhydride esterification. Int J Biol Macromol 2024; 276:133746. [PMID: 39004252 DOI: 10.1016/j.ijbiomac.2024.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Pectin, a polysaccharide found in plant cell walls, is characterized by a high abundance of hydroxyl groups and carboxylic acid groups, which results in a strong affinity for water and limits its suitability as a film material. This study aimed to modulate the esterification degree of PEC films by adjusting the concentration of acetic anhydride, and assess the impact of acetic anhydride esterification modification on the properties of the resultant PEC films. The results demonstrated successful grafting of acetic anhydride onto the galacturonic acid ring in the PEC molecule through the esterification process. The hydrophobicity, thermal stability, barrier properties, and mechanical properties of the esterified PEC films were investigated. Among the various concentrations tested, the E-PEC-0.25 film exhibited the highest contact angle of 103.46° and tensile strength of 33.44 MPa, showcasing optimal performance. The E-PEC-0.1 film achieved the highest esterification degree of 0.94 and elongation at a break of 21.11 %. It also exhibited the transparency of 11.66 and the lowest water vapor transmission rate of 0.56 g·mm/(m2·h·kpa). Additionally, TGA and DSC tests revealed enhanced thermal stability of the esterification-prepared films. These findings highlight the potential of acetic anhydride tuning as a promising strategy for optimizing pectin film production.
Collapse
Affiliation(s)
- Huili Zhang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhiwei Fan
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Dandan Peng
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Xinxing Wu
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, China.
| | - Fangli Sun
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Alamdari NE, Aksoy B, Babu RJ, Jiang Z. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Int J Biol Macromol 2024; 270:132298. [PMID: 38750863 DOI: 10.1016/j.ijbiomac.2024.132298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microcrystalline cellulose (MCC) is one of the essential functional excipients in the formulation of tablets. The need for cheaper MCC sources has drawn significant attention to exploring renewable sources. In this study, MCC was produced from soybean hull (SBH), the primary by-product of the soy industry, using a novel, simplified, and cost-effective approach. Various characterization techniques were used to study the physicochemical properties and micromeritics of the SBH-based MCC powders and compare them to those of the commercial Avicel PH-101. SBH MCCs had a larger particle size, a broader particle size distribution, a higher degree of polymerization, a higher degree of crystallinity, better thermal stability, and slightly superior flowability and compressibility than Avicel PH-101. The tableting blends (containing 60 % MCC) were prepared, and the post-compression out-of-die Heckel analysis showed that formulations with aggregated SBH MCCs were less ductile than those made with Avicel PH-101, resulting in a lower porosity (better compressibility) of the latter at higher compression pressures. The hardness values for all formulations were above 6 kg, with higher values for those made with Avicel PH-101. The lubricant sensitivity was lower for SBH MCCs. All tablets made using developed formulations showed very low friability (<0.1 %) and short disintegration times (<90 s), making them well-suited candidates for manufacturing orally disintegrating tablets (ODTs).
Collapse
Affiliation(s)
- Navid Etebari Alamdari
- Alabama Center for Paper and Bioresource Engineering (AC-PABE), Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Burak Aksoy
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | | | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering (AC-PABE), Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| |
Collapse
|
7
|
Wang Y, Xie Y, Li T, Wang Y, Jiang J, Zhang X, Xia B, Wang S, Huang J, Dong W. Pickering emulsions with high ionic strength resistance stabilized by pea protein isolate-polyglycerol conjugate particles with good biocompatibility. Int J Biol Macromol 2024; 269:131797. [PMID: 38663692 DOI: 10.1016/j.ijbiomac.2024.131797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Among various biopolymers, protein particles are widely used for stabilizing Pickering emulsions, yet their emulsifying ability are easily influenced by the ion concentration, pH, and high temperatures. To address these challenges, this study utilized chemical modification to prepare pea protein isolate-polyglycerol (PPI-PG) conjugates by Schiff-base reaction. Compared with other chemical modifications, this method produces conjugate particles with excellent biocompatibility, capable of promoting cell proliferation by up to 177 %. These conjugates showed improved dispersibility, with diffusion coefficients 3.5 times greater than pure PPI, and the isoelectric points shift from pH 4.6 to pH 1.5, which contribute to the pH stability of emulsions (pH 3-9). Additionally, the anisotropic nature of the conjugate particles, with a three-phase contact angle close to 90°, make particles need more energy for detachment from the oil-water interface, leading to good thermal stability of emulsion (80 °C, 48 h). Notably, after conjugation, these particles rely more on PG chains for dispersibility, which are less affected by ions, resulting in emulsions with high ionic strength resistance (3000 mM). Furthermore, the prepared Pickering emulsion demonstrates remarkable antioxidative properties (only a 10 % decrease), indicating widely potential applications in food, cosmetics, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jie Jiang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
8
|
Said NS, Olawuyi IF, Lee WY. Tailoring Pectin-PLA Bilayer Film for Optimal Properties as a Food Pouch Material. Polymers (Basel) 2024; 16:712. [PMID: 38475392 DOI: 10.3390/polym16050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
This study focuses on developing a biodegradable film using a novel hybrid citrus peel pectin. A bilayer approach with PLA was proposed and optimized using Response Surface Methodology (RSM) to complement pectin films' mechanical and barrier property limitations. The optimized film composition (2.90 g PLA and 1.96 g pectin) showed enhanced mechanical strength with a tensile strength (TS) of 7.04 MPa and an elongation at break (EAB) of 462.63%. In addition, it demonstrated lower water vapor (1.45 × 10-10 g/msPa), oxygen (2.79 × 10-7 g/ms) permeability, and solubility (23.53%). Compared to single-layer pectin films, the optimized bilayer film had a 25% increased thickness, significantly improved water barrier (3806 times lower) and oxygen barrier (3.68 times lower) properties, and 22.38 times higher stretchability, attributed to hydrogen bond formation, as confirmed by FTIR analysis. The bilayer film, effectively protected against UV and visible light, could be a barrier against light-induced lipid oxidation. Moreover, it demonstrated superior seal efficiency, ensuring secure sealing in practical applications. The bilayer pouch containing mustard dressing exhibited stable sealing with no leakage after immersion in hot water and ethanol, making it suitable for secure food pouch packaging.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Mao S, Zhang L, Feng J, Han P, Lu C, Zhang T. Development of pH-responsive intelligent and active films based on pectin incorporating Schiff base (Phenylalanine/syringaldehyde) for monitoring and preservation of fruits. Food Chem 2024; 435:137626. [PMID: 37801766 DOI: 10.1016/j.foodchem.2023.137626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to develop pectin-based films by incorporating Schiff base compounds (SPS) synthesized by phenylalanine and syringaldehyde. The SEM images showed good compatibility between SPS and pectin matrix. The interaction of SPS and pectin matrix was analyzed by FTIR and XRD. Results indicated that the cross-linking effects between SPS and pectin matrix improved the thermal stability, water resistance and light shielding ability of the films. The incorporation of SPS in the films scavenged more than 80% of DPPH and ABTS free radicals, exhibited sustained antimicrobial ability against S. aureus, E. coli and B. cinerea, and showed significant color changes as pH-responsive films. Especially, the intelligent active coating/films inhibited the quality deterioration of cherry tomatoes and fresh-cut mangoes, and monitored the freshness of fresh-cut mangoes during storage. Therefore, the SPS/PE films have a potential application in maintaining fruit quality and monitoring the freshness of fresh-cut fruit.
Collapse
Affiliation(s)
- Shuo Mao
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Linli Zhang
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Jingyi Feng
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Ping Han
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Chengwen Lu
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China.
| |
Collapse
|
10
|
Ni C, Lu W, Yuan X, Younis HGR, Ni J. Ambient plasma treatment of pectin in aqueous solution to produce a polymer used in packaging. Int J Biol Macromol 2024; 256:128511. [PMID: 38043658 DOI: 10.1016/j.ijbiomac.2023.128511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Water resistance, mechanical behavior and coloration of pectin needs to be tuned for packing utilization. Plasma was used for the treatment of natural products, but there is no research on its effect on the biomass in the presence of ammonia. Though the reaction of pectin (PE) and ammonia was known to impart the ammonolysis and de-esterification, the plasma treatment on PE solution containing ammonia was explored to exemplify the amination and polymerization of the carbohydrate at the ambient condition. The plasma treatment increased the coloration of the solution due to the deprotonation of PE for the production of more sp2 carbon. The film from the amination of PE showed higher hydrophobicity and water stability than the bare PE. The plasma treatment alone decreased the Young's modulus (4.3 MPa versus 22 MPa), while the nitrogen addition enhanced the Young's modulus to 160 MPa and increased the tensile strength (28.7 MPa versus 25.8 MPa of PE). The hydrogen bonds from the amine group induced a glass-to-rubber transition at 77.9 °C by the increasing the crosslinking. This work provided a facile way of aminating and conjugating the biomass in solution to produce polymer with improved mechanical properties using plasma and ammonia incorporation.
Collapse
Affiliation(s)
- Chengsheng Ni
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Wenxuan Lu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xuemei Yuan
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Heba G R Younis
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Su Y, Chen Y, Qin Y, Qin R, Ahmad A, Yao S. Pectin extracted from Premna Microphylla Turcz for preparation of a "sandwich" multi-property sensor film involved with deep eutectic solvent. Int J Biol Macromol 2023; 253:127171. [PMID: 37788731 DOI: 10.1016/j.ijbiomac.2023.127171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
An acidic deep eutectic solvent (DES, choline chloride/citric acid) was used to efficiently extract edible pectin from Premna microphylla Turcz (PMTP) and further prepare the film sensor with the purpose of "four birds with one stone" with the roles of extractant, coalescent, conductivity promoter and bacteriostatic agent. The optimized extraction process accorded with pseudo second-order kinetics, which was carried out at 78.2 °C for 1.29 h with the solid-liquid ratio of 1:34.66 g/mL with the yield up to 0.8210 g/g. After comprehensive characterizations of pectin product, a simple casting method was used to prepare the PMTP-DES based composite film. It showed that the composite film has promising compatibility, smooth surface, good breathability and ideal homogeneity. After 30 power on/power off cycles at 10 V, it exhibited satisfied conductivity stability. Moreover, the PMTP-DES film could be simply assembled as the flexible visual temperature sensor, with sensitive response at breathing or finger touch; it exhibited the highest sensitivity of 134 %/°C when the external temperature changed from 15 to 55 °C. Besides, the composite film also has preferable antimicrobial activity. The whole results and findings were aimed to contribute for the raw material, composition, preparation, and functions of the existing flexible functional materials.
Collapse
Affiliation(s)
- Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuting Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruixuan Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ali Ahmad
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Zheng C, Cai N, Huang C, Huang Y, Zou J, Zhang G, Fei P. Evaluation of amidated pectin as fat substitutes for minced chicken breast: Physicochemical properties and edible quality. Food Res Int 2023; 173:113371. [PMID: 37803709 DOI: 10.1016/j.foodres.2023.113371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
An investigation was conducted to assess the gelation characteristics of amino acid amidated pectin and its subsequent influence on the quality of minced chicken breast (MCB) when employed as a lipid substitute. Through experimentation, it was evidenced that amidated pectin, such as glycine amidated pectin (AP@Gly), glutamic amidated pectin (AP@Glu), and lysine amidated pectin (AP@Lys), demonstrated superior viscosity and gelation capacity in comparison to their native pectin (PE) counterpart. In contrast to PE, amidated pectin samples exhibited the potential to form high-strength hydrogels under conditions of minimal restriction. Additionally, evaluations conducted on all samples established that MCB samples enriched with pectin and amidated pectin demonstrated superior water retention capability. Before thermal processing, MCB samples fortified with amidated pectin showcased higher hardness and L* values in comparison to PE and the control group. However, upon thermal processing, no significant divergence was found in the chroma and texture profile analysis (TPA) attributes across all MCB samples, and the electronic tongue sensory evaluation was closely aligned with the control group. This evidence substantiates the effectiveness of amidated pectin samples as viable lipid substitutes in MCB products.
Collapse
Affiliation(s)
- Chenmin Zheng
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Na Cai
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Chunchun Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yufan Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jinmei Zou
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Peng Fei
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
13
|
Kulikouskaya V, Nikalaichuk V, Hileuskaya K, Ladutska A, Grigoryan K, Kozerozhets I, Hovsepyan V, Sargsyan M, Sidarenka A. Alginate coated biogenic silver nanoparticles for the treatment of Pseudomonas infections in rainbow trout. Int J Biol Macromol 2023; 251:126302. [PMID: 37573909 DOI: 10.1016/j.ijbiomac.2023.126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Pseudomonas species are among the main pathogens causing rainbow trout infections. The present study provides a simple, green, sustainable, and rapid technique to synthesize of biogenic alginate-capped silver nanoparticles (Alg-Ag NPs) suitable for the treatment of Pseudomonas infections. It has been shown that the mechanism (aggregative or autocatalytic) of Alg-Ag NPs formation depended on Alg concentration and the heating approach used. The rate constants and activation energy were calculated. Alg-Ag NPs were characterized by UV-Vis, FTIR, XRD, TEM, AFM, XPS, and DLS. The optimal conditions for the fabrication of spherically-shaped (17-19 nm) and negatively-charged (zeta-potential <-50 mV) Alg-Ag NPs, which are stable during 9 months, included hot-plate assisted synthesis at 100 °C in diluted (1 mg/mL) Alg solutions. In vitro studies showed that Alg-Ag NPs exhibited prominent antimicrobial activity against collection Pseudomonas strains (inhibition zones ranged from 9.0 ± 1.0 to 19.0 ± 1.0 mm), with no significant loss of antibacterial efficacy after 9 months of storage. AFM analysis confirmed that the antibacterial effect of Alg-Ag NPs dealt with the direct nanomechanical disrupting of bacterial cells. The ability of Alg-Ag NPs to inhibit the growth of virulent P.aeruginosa, P.fluorescens and P. putida strains isolated from infected rainbow trout was evaluated. All tested strains were susceptible to Alg(10)-Ag NPs, while Alg(1)-Ag NPs demonstrated a limited strain-specific antibacterial effect. The obtained data displayed the prospects for the application of biogenic Alg-Ag NPs to create novel delivery systems for combating Pseudomonas infections in rainbow trout.
Collapse
Affiliation(s)
- Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus.
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus
| | - Alena Ladutska
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus, 2 Kuprevich Str., 220084 Minsk, Belarus
| | - Karine Grigoryan
- Yerevan State University, 1 Alek Manukyan St, Yerevan 0025, Armenia
| | - Irina Kozerozhets
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
| | | | - Mariam Sargsyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
| | - Anastasiya Sidarenka
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus, 2 Kuprevich Str., 220084 Minsk, Belarus
| |
Collapse
|
14
|
Li Y, Cai Z, Yin Y, Yi Y, Cai W, Tao S, Du M, Zhang J, Cao R, Luo Y, Xu W. A pectin-based photoactivated bactericide nanosystem for achieving an improved utilization rate, photostability and targeted delivery of hematoporphyrin. J Mater Chem B 2023. [PMID: 37326434 DOI: 10.1039/d3tb00300k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photoactivated pesticides have many advantages, such as high activity, low toxicity, and no drug resistance. However, poor photostability and a low utilization rate limit their practical application. Herein, the photosensitizer hematoporphyrin (HP) was used as a photoactivated pesticide, covalently linked with pectin (PEC) via ester bonds, to prepare an amphiphilic polymer pro-bactericide, and subsequently self-assembled in aqueous solutions to obtain an esterase-triggered nanobactericide delivery system. The fluorescence quenching effect due to the aggregation of HP in nanoparticles (NPs) enabled the inhibition of photodegradation of HP in this system. Esterase stimulation could trigger HP release and increase its photodynamic activity. Antibacterial assays have shown that the NPs had potent antibacterial capacity, almost completely inactivating bacteria after 60 min of exposure to light. The NPs had good adherence to the leaves. Safety assessment indicated that the NPs have no obvious toxic effects on plants. Antibacterial studies on plants have shown that the NPs have excellent antibacterial effects on infected plants. These results provide a new strategy for obtaining a photoactivated bactericide nanosystem with a high utilization rate and good photostability and targeting ability.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Ying Yi
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shengxiang Tao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Mengting Du
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ruyu Cao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yijing Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Wenjin Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
15
|
Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int J Biol Macromol 2023; 239:124248. [PMID: 37003387 DOI: 10.1016/j.ijbiomac.2023.124248] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Pectin is an abundant complex polysaccharide obtained from various plants. Safe, biodegradable, and edible pectin has been extensively utilized in the food industry as a gelling agent, thickener, and colloid stabilizer. Pectin can be extracted in a variety of ways, thus affecting its structure and properties. Pectin's excellent physicochemical properties make it suitable for many applications, including food packaging. Recently, pectin has been spotlighted as a promising biomaterial for manufacturing bio-based sustainable packaging films and coatings. Functional pectin-based composite films and coatings are useful for active food packaging applications. This review discusses pectin and its use in active food packaging applications. First, basic information and characteristics of pectin, such as the source, extraction method, and structural characteristics, were described. Then, various methods of pectin modification were discussed, and the following section briefly described pectin's physicochemical properties and applications in the food sector. Finally, the recent development of pectin-based food packaging films and coatings and their use in food packaging were comprehensively discussed.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Łukasz Łopusiewicz
- Center of Bioimmobilization and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
16
|
Liu B, Ye HB, Liang QY, Jiang LL, Chen MM, Yang SB. Development and characterization of pectin and chitosan films incorporated with a new cross-linking agent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1964-1973. [PMID: 36533998 DOI: 10.1002/jsfa.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In this study, a new crosslinking agent (CA) containing whey protein, papin, glycerin, and epigallocatechin gallate (EGCG), was prepared. The effects of CA content (0, 10, 20, 30, and 40%, v/v) on food packaging properties, crystallinity, microstructure, and antioxidant properties of pectin-CA and chitosan-CA composite films were analyzed. The results of this research offer a theoretical basis for engineering improved films for food packing. RESULTS Pectin-CA (30%) and chitosan-CA (40%) composite films showed the best light transmission, water retention, breathability, plasticity, and antioxidant activity. Scanning electron microscopy revealed that these composite films exhibited a uniform and homogeneous structure without obvious pores. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the amino acids and EGCG in CA were bonded to the film substrate (pectin/chitosan) via electrostatic interactions, hydrogen bonding, and covalent bonding, which led to an improvement in the film's properties. CONCLUSION The CA has broad application prospects in food packaging as a cross-linking agent and antioxidant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Hong-Bin Ye
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Qiu-Yan Liang
- Xinjiang Uygur autonomous region product quality supervision and inspection institute, Xinjiang Uygur autonomous region, Urumqi, PR China
| | - Liang-Liang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing, China
| | - Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Shan-Bin Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| |
Collapse
|
17
|
Zhang L, Ye S, Chen F, Xiao Q, Weng H, Xiao A. Super absorbent glutaric anhydride-modified agar: Structure, properties, and application in biomaterial delivery. Int J Biol Macromol 2023; 231:123524. [PMID: 36736981 DOI: 10.1016/j.ijbiomac.2023.123524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Agar was modified with glutaric anhydride (GA) in this study to expand its application in food and medicine. Glutaric anhydride-modified agar (GAR) can maintain high gel strength (1247.4 g/cm2) and improved transparency (82.7 %). The esterified agar formed by GA further formed a cross-linking molecule structure by increasing the reaction temperature. Notably, excellent freeze-thaw stability (24.1 %) and swelling property (3116.6 %) of GAR indicated that the carboxyl-terminal of modified agar improves its affinity with water. Therefore, satisfactory water permeability and expansive stone enable agar films to achieve high water absorption. Furthermore, GAR films exhibit a specific absorption capacity of tetracycline hydrochloride in weak acid solution, thereby suggesting its potential application as a sustainable drug delivery carrier. Finally, the structure of the modified agar was analyzed to explain the mechanism of binding water. Cryo-scanning electron microscopy (SEM) depicted the porous structure of the agar gel responsible for swelling, drug loading, and release. Low-field NMR results showed that GA improves agar gel's binding and free water content. According to our research results, these GAR hydrogel membranes with excellent properties have the potential to be used as effective drug delivery materials.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Siying Ye
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Fuquan Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
18
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
19
|
Asfaw WA, Tafa KD, Satheesh N. Optimization of citron peel pectin and glycerol concentration in the production of edible film using response surface methodology. Heliyon 2023; 9:e13724. [PMID: 36873550 PMCID: PMC9976310 DOI: 10.1016/j.heliyon.2023.e13724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Pectin-based edible film plasticized with glycerol has been developed, and the effect of pectin and glycerol concentration was optimized using response surface methodology for better mechanical properties and transparency. The upper and lower concentration of pectin (3-5 g) and glycerol (15%-25%) concentration ranges were considered in this study based on the preliminary experiment. The responses of the edible film determined were tensile strength, elongation at break and elastic modulus and opacity. The interaction effects of glycerol and pectin concentrations on edible film properties significantly affected the film properties. Tensile strength and opacity were positively affected by pectin concentrations; however, elastic modulus and elongation at break were negatively affected. Glycerol concentration negatively affected the edible film's tensile strength and elastic modulus. The decrease in the opacity of the biofilm was observed as the pectin concentration increased; however, glycerol had not shown a significant influence on opacity. The numerical optimization provided 4 g of pectin, and 20% of glycerol showed a strong and transparent edible film. The TGA curve showed that the maximum weight loss occurred between the temperatures 250-400 °C due to the loss of polysaccharides. From FTIR analysis, observed peaks around 1037 cm-1 represented the C-O-C stretching vibrations of the saccharide found in pectin and glycerol.
Collapse
Affiliation(s)
- Worku Abera Asfaw
- Department of Food Engineering, Collage of Engineering, Wolkite university (WKU), Wolkite, Ethiopia
| | - Kenenisa Dekeba Tafa
- Department of Food Engineering, Collage of Engineering, Wolkite university (WKU), Wolkite, Ethiopia
| | - Neela Satheesh
- Faculty of Chemcial and Food Engineering, Bahir Dar Inistitute of Technology, Bahir Dar, Ethiopia
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| |
Collapse
|
20
|
Simões A, Coelhoso IM, Alves VD, Brazinha C. Recovery and Purification of Cutin from Tomato By-Products for Application in Hydrophobic Films. MEMBRANES 2023; 13:261. [PMID: 36984648 PMCID: PMC10059779 DOI: 10.3390/membranes13030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Tomato pomace is a low-cost, renewable resource that has been studied for the extraction of the biopolyester cutin, which is mainly composed of long-chain hydroxy fatty acids. These are excellent building blocks to produce new hydrophobic biopolymers. In this work, the monomers of cutin were extracted and isolated from tomato pomace and utilized to produce cutin-based films. Several strategies for the depolymerization and isolation of monomeric cutin were explored. Strategies differed in the state of the raw material at the beginning of the extraction process, the existence of a tomato peel dewaxing step, the type of solvent used, the type of alkaline hydrolysis, and the isolation method of cutin monomers. These strategies enabled the production of extracts enriched in fatty acids (16-hydroxyhexadecanoic, hexadecanedioic, stearic, and linoleic, among others). Cutin and chitosan-based films were successfully cast from cutin extracts and commercial chitosan. Films were characterized regarding their thickness (0.103 ± 0.004 mm and 0.106 ± 0.005 mm), color, surface morphology, water contact angle (93.37 ± 0.31° and 95.15 ± 0.53°), and water vapor permeability ((3.84 ± 0.39) × 10-11 mol·m/m2·s·Pa and (4.91 ± 1.33) × 10-11 mol·m/m2·s·Pa). Cutin and chitosan-based films showed great potential to be used in food packaging and provide an application for tomato processing waste.
Collapse
Affiliation(s)
- Andreia Simões
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Isabel M. Coelhoso
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Carla Brazinha
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
21
|
Zheng C, Zou Y, Huang Y, Shen B, Fei P, Zhang G. Biosynthesis of amidated pectins with ultra-high viscosity and low gelation restriction through ultra-low temperature enzymatic method. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Preparation of hydrophobic composite membranes based on carboxymethyl cellulose and modified pectin: Effects of grafting a long-chain saturated fatty acid. Int J Biol Macromol 2022; 222:2318-2326. [DOI: 10.1016/j.ijbiomac.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
23
|
Preparation of amidated pectins through enzymatic method: Structures, hydrogel properties and its application potential in fat substitutes. Food Res Int 2022; 160:111719. [DOI: 10.1016/j.foodres.2022.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
|
24
|
Zhang JP, Hou JQ, Li MX, Yang TX, Xi BD. A novel process for food waste recycling: A hydrophobic liquid mulching film preparation. ENVIRONMENTAL RESEARCH 2022; 212:113332. [PMID: 35483414 DOI: 10.1016/j.envres.2022.113332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Appropriate and effective recycling of food waste (FW) has become increasingly significant with the promotion of garbage classification in China. In this study, a novel and green process was developed to recycle FW to prepare a biodegradable composite liquid mulching film (LMF) through crosslinking with sodium alginate (SA). The solid phase of FW was obtained as the raw material after hydrothermal pretreatment to remove pathogens and salts, and to improve the reactivity of active components at a moderate temperature. The prepared LMF had a hydrophobic surface and compact structure due to the lipid in FW and the acetalization reaction and hydrogen bonds among SA, glutaraldehyde and multi-active components of FW, resulting in enhanced water vapor barrier properties. The minimum water vapor permeability of the prepared LMF reached (8.23 ± 0.05) ✕ 10-12 g cm/(cm2·s·Pa) with 1.82 wt % of plasticizer, 0.74 wt% of crosslinker and a mass ratio of HTP-FW to SA of 3.56:1. The prepared LMF showed good mechanical properties and could maintain its integrity after spraying it on the soil surface for 31 days. In addition, it could effectively prevent the loss of soil moisture and heat, promote the seed germination of Chinese cabbage and achieve 89.14% of weight loss after burying in the soil for 27 days. This study provides a high value-added route to convert the FW to a hydrophobic LMF with superior properties, which addresses not only the problem of food waste but also the pollution of plastic mulching film.
Collapse
Affiliation(s)
- Jun-Ping Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia-Qi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Ming-Xiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tian-Xue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
25
|
Zheng C, Zhang Z, Ding N, Huang B, Zhang G, Fei P. Synthesis of amidated pectin with amino acid using ultra-low temperature enzymatic method and its evaluation of fat mimic characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|