1
|
Don TM, Lee KT, Chen BY, Tang S, Huang YC, Chuang AEY. Physicochemical properties of bacterial cellulose/phototherapeutic polypyrrole/antibacterial chitosan composite membranes and their evaluation as chronic wound dressings. Int J Biol Macromol 2025; 308:142183. [PMID: 40107531 DOI: 10.1016/j.ijbiomac.2025.142183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Bacterial cellulose (BC) is a natural fiber membrane and has been applied in many biomedical applications. Herein, it was used as the main scaffold to prepare wound dressings for treating diabetic skin wounds. Polypyrrole (PPy) was first synthesized by in situ oxidative polymerization within BC membrane and applied as a photothermal agent, followed by coating with chitosan (CS) to improve the biocompatibility and antibacterial properties. SEM pictures revealed sub-micron PPy particles ranging from 100 to 200 nm were formed and attached to the BC fibrils, whereas CS formed a thin, porous layer on the surface. FTIR analysis showed that there was hydrogen bonding between BC, PPy and CS components. The crystalline structure of BC was maintained yet with decreased crystallinity by addition of PPy and CS. The water absorption capability and water vapor transmission rate decreased by PPy incorporation owing to its hydrophobic nature, but they were regained by addition of hydrophilic CS. The prepared BC/PPy/CS membrane was biocompatible toward L929 cells and maintained hemocompatibility. Additionally, both PPy and CS contributed to the antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, while they demonstrated a potential for synergistic antibacterial effects when combined. Finally, the near-infrared (NIR)-driven photothermal-hyperthermic effects by PPy on lesions upregulated heat-shock protein (HSP) expression and anti-inflammatory properties by CS boosted restoration of diabetic wounds in vivo without the addition of any antibiotics or anti-inflammatory drugs. The results thus support using the BC/PPy/CS membrane for diabetic wound regeneration.
Collapse
Affiliation(s)
- Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan.
| | - Kuan-Ting Lee
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan.
| | - Bo-Yi Chen
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan.
| | - Shuoheng Tang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Ding Q, Huang S, Zhang Z, Yu D, Li M, He Q, Mei L. Integration of Photodiagnosis and Therapy Guided by Micro/Nanorobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420359. [PMID: 40079099 DOI: 10.1002/adma.202420359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Micro/Nanorobots(MNRs)integrated with phototherapy represent an emerging approach to cancer treatment and hold significant potential for addressing bacterial infections, neurological disorders, cardiovascular diseases, and related conditions. By leveraging micro/nanoscale motor systems in conjunction with phototherapy, these robots enable real-time guidance and monitoring of therapeutic processes, improving drug delivery precision and efficiency. This integration not only enhances the effectiveness of phototherapy but also minimizes damage to surrounding healthy tissues. Nevertheless, clinical translation of MNRs-assisted phototherapy still faces numerous challenges. In this review, recent key developments in the field are comprehensively summarized, the critical roles of MNRs-assisted phototherapy in clinical applications are highlighted, and insights into future directions and the pathway toward large-scale clinical implementation are provided.
Collapse
Affiliation(s)
- Qihang Ding
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Siqi Huang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zihan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
3
|
Cao X, Chen M, Fang T, Deng Y, Wang L, Wang H, Chen Z, Chen G. RSL3-loaded nanoparticles amplify the therapeutic potential of cold atmospheric plasma. J Nanobiotechnology 2025; 23:136. [PMID: 39994619 PMCID: PMC11849213 DOI: 10.1186/s12951-025-03211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Cold atmospheric plasma (CAP) has exhibited exciting potential for cancer treatment. Reactive oxygen and nitrogen species (RONS), the primary constituents in CAP, contribute to cancer cell death by elevating oxidative stress in cells. However, several intrinsic cellular antioxidant defense systems exist, such as the glutathione peroxidase 4 (GPX4) enzyme, which dampens the cell-killing efficacy of CAP. RAS-selective lethal 3 (RSL3), also known as a ferroptosis inducer, is a synthetic GPX4 inhibitor. Therefore, we hypothesized that RSL3 can amplify CAP-induced cell death by inhibition of GPX4. In this study, we showed that RSL3 loaded in poly (ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG) nanoparticles can enhance CAP-induced cell deaths in 4T1 tumor cells. Furthermore, the combination of CAP and RSL3 also promoted cancer immunogenic cell death (ICD), induced dendritic cell (DC) maturation, and macrophage polarization, initiating tumor-specific T-cell mediated immune responses against tumors. For in vivo application, RSL3@NP was co-delivered with CAP via injectable Pluronic hydrogel. In 4T1-bearing mice, hydrogel-mediated delivery of CAP and RSL3-loaded nanoparticles can effectively elicit potent anti-tumor immune responses and inhibit tumor growth.
Collapse
Affiliation(s)
- Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Yueyang Deng
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Li Wang
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Hanwen Wang
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Advanced Therapeutic Center, National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Cao X, Fang T, Chen M, Ning T, Li J, Siegel PM, Park M, Chen Z, Chen G. Trehalose enhanced cold atmospheric plasma-mediated cancer treatment. Biomaterials 2024; 309:122582. [PMID: 38678699 DOI: 10.1016/j.biomaterials.2024.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Cold atmospheric plasma (CAP) is a unique form of physical plasma that has shown great potential for cancer therapy. CAP uses ionized gas to induce lethal oxidative stress on cancer cells; however, the efficacy of CAP therapy continues to be improved. Here, we report an injectable hydrogel-mediated approach to enhance the anti-tumor efficacy of CAP by regulating the phosphorylation of eIF2α. We discovered that reactive oxygen and nitrogen species (ROS/RNS), two main anti-tumor components in CAP, can lead to lethal oxidative stress on tumor cells. Elevated oxidative stress subsequently induces eIF2α phosphorylation, a pathognomonic marker of immunogenic cell death (ICD). Trehalose, a natural disaccharide sugar, can further enhance CAP-induced ICD by elevating the phosphorylation of eIF2α. Moreover, injectable hydrogel-mediated delivery of CAP/trehalose treatment promoted dendritic cell (DC) maturation, initiating tumor-specific T-cell mediated anti-tumor immune responses. The combination therapy also supported the polarization of tumor-associated macrophages to an M1-like phenotype, reversing the immunosuppressive tumor microenvironment and promoting tumor antigen presentation to T cells. In combination with immune checkpoint inhibitors (i.e., anti-programmed cell death protein 1 antibody, aPD1), CAP/trehalose therapy further inhibited tumor growth. Importantly, our findings also indicated that this hydrogel-mediated local combination therapy engaged the host systemic innate and adaptive immune systems to impair the growth of distant tumors.
Collapse
Affiliation(s)
- Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; School of Nursing, Tianjin Medical University, Tianjin, China
| | - Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tianqin Ning
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Quebec, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Advanced Therapeutic Center, National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Jia B, Hao T, Chen Y, Deng Y, Qi X, Zhou C, Liu Y, Guo S, Qin J. Mussel-inspired tissue adhesive composite hydrogel with photothermal and antioxidant properties prepared from pectin for burn wound healing. Int J Biol Macromol 2024; 270:132436. [PMID: 38761908 DOI: 10.1016/j.ijbiomac.2024.132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Biodegradable self-healing hydrogels with antibacterial property attracted growing attentions in biomedication as wound dressings since they can prevent bacterial infection and promote wound healing process. In this research, a biodegradable self-healing hydrogel with ROS scavenging performance and enhanced tissue adhesion was fabricated from dopamine grafted oxidized pectin (OPD) and naphthoate hydrazide terminated PEO (PEO NH). At the same time, Fe3+ ions were incorporated to endow the hydrogel with near-infrared (NIR) triggered photothermal property to obtain antibacterial activity. The composite hydrogel showed good hemostasis performance based on mussel inspired tissue adhesion with biocompatibility well preserved. As expected, the composition of FeCl3 improved conductivity and endowed photothermal property to the hydrogel. The in vivo wound repairing experiment revealed the 808 nm NIR light triggered photothermal behavior of the hydrogel reduced the inflammation response and promoted wound repairing rate. As a result, this composite FeCl3/hydrogel shows great potential to be an excellent wound dressing for the treatment of infection prong wounds with NIR triggers.
Collapse
Affiliation(s)
- Boyang Jia
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Tingting Hao
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yawen Deng
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xingzhong Qi
- Hebei Zhitong Biological Pharmaceutical Co., Ltd., Baoding 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yanfang Liu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
7
|
Shen J, Fu S, Liu X, Tian S, Liu D, Liu H. Fabrication of Low-Temperature Fast Gelation β-Cyclodextrin-Based Hydrogel-Loaded Medicine for Wound Dressings. Biomacromolecules 2024; 25:55-66. [PMID: 37878661 DOI: 10.1021/acs.biomac.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
β-Cyclodextrin (β-CD) is often used as a drug carrier for biomedical materials due to its unique cavity structure. Herein, β-CD was modified by acryloyl chloride and further copolymerized with N-isopropylacrylamide (NIPAM) and acrylic acid (AA) to obtain PNIPAM-co-β-CD-AC. The results showed that the critical phase transition temperature of PNIPAM/β-CD-AC could be controlled at 19 °C, and the fast sol-gel phase transition was realized in 2-10 s. The hydrophobic drug carried in this hydrogel can constantly be released for more than 6 days at pH values (pH 5.5-8), and the duration may match the recovery of the wound. As a dressing hydrogel, its rapid gel formation and inversion as well as shear-thinning behavior prevent secondary wound damage. The β-CD-based hydrogel also has good biocompatibility and antioxidant properties, which provide a good potential choice for wound dressings, especially for exposed wounds in winter.
Collapse
Affiliation(s)
- Juanli Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohong Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shenglong Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Yurdabak Karaca G, Bulbul YE, Oksuz AU. Gold-hyaluranic acid micromotors and cold atmospheric plasma for enhanced drug delivery and therapeutic applications. Int J Biol Macromol 2023; 253:127075. [PMID: 37769768 DOI: 10.1016/j.ijbiomac.2023.127075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Micro/nanomotors have emerged as promising platforms for various applications, including drug delivery and controlled release. These tiny machines, built from nanoscale materials such as carbon nanotubes, graphene, metal nanoparticles, or nanowires, can convert different forms of energy into mechanical motion. In the field of medicine, nanomotors offer potential for targeted drug delivery and diagnostic applications, revolutionizing areas such as cancer treatment and lab-on-a-chip devices. One prominent material used in drug delivery is hyaluronic acid (HA), known for its biocompatibility and non-immunogenicity. HA-based drug delivery systems have shown promise in improving the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX). Additionally, micro/nanomotors controlled by external stimuli enable precise drug delivery to specific areas of the body. Cold atmospheric plasma (CAP) has also emerged as a promising technology for drug delivery, utilizing low-temperature plasma to enhance drug release and bioavailability. CAP offers advantages such as localized delivery and compatibility with various drug types. However, further research is needed to optimize CAP drug delivery systems and understand their mechanisms. In this study, gold-hyaluronic acid (Au-HA) micromotors were synthesized for the first time, utilizing acoustic force for self-motion. The release profile of DOX, a widely used anticancer drug, was investigated in pH-dependent conditions, and the effect of CAP on drug release from the micromotors was examined. Following exposure to the CAP jet for 1 min, the micromotors released approximately 29 μg mL-1 of DOX into the PBS (pH 5), which is significantly higher than the 17 μg mL-1 released without CAP. The research aims to minimize side effects, increase drug loading and release efficiency, and highlight the potential of HA-based micromotors in cancer therapy. This study contributes to the advancement of micro-motor technology and provides insights into the utilization of pH and cold plasma technology for enhancing drug delivery systems.
Collapse
Affiliation(s)
- Gozde Yurdabak Karaca
- Department of Medical Services and Techniques, Isparta Health Services Vocational School, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Y Emre Bulbul
- Department of Chemistry, Faculty of Arts and Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Faculty of Arts and Science, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
9
|
Jheng PR, Chiang CC, Kang JH, Fan YJ, Wu KCW, Chen YT, Liang JW, Bolouki N, Lee JW, Hsieh JH, Chuang EY. Cold atmospheric plasma-enabled platelet vesicle incorporated iron oxide nano-propellers for thrombolysis. Mater Today Bio 2023; 23:100876. [PMID: 38089433 PMCID: PMC10711232 DOI: 10.1016/j.mtbio.2023.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/08/2023] [Accepted: 11/18/2023] [Indexed: 10/16/2024] Open
Abstract
A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.
Collapse
Affiliation(s)
- Pei-Ru Jheng
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiunn-Horng Kang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kevin C.-W. Wu
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Nanomedicine and Medical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Institute of Biomedical Optomechatronics, International Ph.D. Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
| |
Collapse
|
10
|
Liu CH, Liu MC, Jheng PR, Yu J, Fan YJ, Liang JW, Hsiao YC, Chiang CW, Bolouki N, Lee JW, Hsieh JH, Mansel BW, Chen YT, Nguyen HT, Chuang EY. Plasma-Derived Nanoclusters for Site-Specific Multimodality Photo/Magnetic Thrombus Theranostics. Adv Healthc Mater 2023; 12:e2301504. [PMID: 37421244 DOI: 10.1002/adhm.202301504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ming-Che Liu
- Clinical Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, 60177, Czech Republic
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
11
|
Chen YM, Wong CC, Weng PW, Chiang CW, Lin PY, Lee PW, Jheng PR, Hao PC, Chen YT, Cho EC, Chuang EY. Bioinspired and self-restorable alginate-tyramine hydrogels with plasma reinforcement for arthritis treatment. Int J Biol Macromol 2023; 250:126105. [PMID: 37549762 DOI: 10.1016/j.ijbiomac.2023.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Long-standing administration of disease-modifying antirheumatic drugs confirms their clinical value for managing rheumatoid arthritis (RA). Nevertheless, there are emergent worries over unwanted adverse risks of systemic drug administration. Hence, a novel strategy that can be used in a drug-free manner while diminishing side effects is immediately needed, but challenges persist in the therapy for RA. To this end, herein we conjugated tyramine (TYR) with alginate (ALG) to form ALG-TYR and then treated it for 5 min with oxygen plasma (ALG-TYR + P/5 min). It was shown that the ALG-TYR + P/5 min hydrogel exhibited favorable viscoelastic, morphological, mechanical, biocompatible, and cellular heat-shock protein amplification behaviors. A thorough physical and structural analysis was conducted on the ALG-TYR + P/5 min hydrogel, revealing favorable physical characteristics and uniform porous structural features within the hydrogel. Moreover, ALG-TYR + P/5 min not only effectively inhibited inflammation of RA but also potentially regulated lesion immunity. Once ALG-TYR + P/5 min was intra-articularly administered to joints of rats with zymosan-induced arthritis, we observed that ALG-TYR + P/5 min could ameliorate syndromes of RA joint. This bioinspired and self-restorable ALG-TYR + P/5 min hydrogel can thus serve as a promising system to provide prospective outcomes to potentiate RA therapy.
Collapse
Affiliation(s)
- Yu-Ming Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chiang
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Yen Lin
- BioGend Therapeutics Co., New Taipei City 23561, Taiwan
| | - Po-Wei Lee
- BioGend Therapeutics Co., New Taipei City 23561, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Chen Cho
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
12
|
Balavigneswaran CK, Selvaraj S, Vasudha TK, Iniyan S, Muthuvijayan V. Tissue engineered skin substitutes: A comprehensive review of basic design, fabrication using 3D printing, recent advances and challenges. BIOMATERIALS ADVANCES 2023; 153:213570. [PMID: 37540939 DOI: 10.1016/j.bioadv.2023.213570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
The multi-layered skin structure includes the epidermis, dermis and hypodermis, which forms a sophisticated tissue composed of extracellular matrix (ECM). The wound repair is a well-orchestrated process when the skin is injured. However, this natural wound repair will be ineffective for large surface area wounds. Autografts-based treatment is efficient but, additional pain and secondary healing of the patient limits its successful application. Therefore, there is a substantial need for fabricating tissue-engineered skin constructs. The development of a successful skin graft requires a fundamental understanding of the natural skin and its healing process, as well as design criteria for selecting a biopolymer and an appropriate fabrication technique. Further, the fabrication of an appropriate skin graft needs to meet physicochemical, mechanical, and biological properties equivalent to the natural skin. Advanced 3D bioprinting provides spatial control of the placement of functional components, such as biopolymers with living cells, which can satisfy the prerequisites for the preparation of an ideal skin graft. In this view, here we elaborate on the basic design requirements, constraints involved in the fabrication of skin graft and choice of ink, the probable solution by 3D bioprinting technique, as well as their latest advancements, challenges, and prospects.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Sowmya Selvaraj
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - T K Vasudha
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Saravanakumar Iniyan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
13
|
Li M, Gao J, Wang L, Liu J, Fu C, Yang X, Zhang S, Li X, Luo S, Yang C. Basic research and clinical exploration of cold atmospheric plasma for skin wounds. Bioeng Transl Med 2023; 8:e10550. [PMID: 37693064 PMCID: PMC10487309 DOI: 10.1002/btm2.10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 09/12/2023] Open
Abstract
Skin wounds, such as burns, diabetic foot ulcers, pressure sores, and wounds formed after laser or surgical treatment, comprise a very high proportion of dermatological disorders. Wounds are treated in a variety of ways; however, some wounds are greatly resistant, resulting in delayed healing and an urgent need to introduce new alternatives. Our previous studies have shown that cold atmospheric plasma (CAP) has antibacterial activity and promotes cell proliferation, differentiation, and migration in vitro. To further advance the role of CAP in wound healing, we evaluated the safety and efficacy of CAP in vitro by irradiation of common refractory bacteria on the skin, irradiation of normal skin of rats and observing reactions, treatment of scald wounds in rats, and treating clinically common acute wounds. Our findings revealed that CAP can eliminate refractory skin bacteria in vitro; CAP positively affected wound healing in a rat scalding wound model; and direct CAP irradiation of low intensity and short duration did not lead to skin erythema or edema. CAP promises to be a new, economical, and safe means of wound treatment.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jing Gao
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Provincial Institute of Translational MedicineHefeiAnhuiChina
| | - Liyun Wang
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jia Liu
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Chuyu Fu
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xingyu Yang
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Shengquan Zhang
- Anhui Provincial Institute of Translational MedicineHefeiAnhuiChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
| | - Xinwei Li
- Anhui Academy of Medical SciencesHefeiAnhuiChina
| | | | - Chunjun Yang
- Department of Dermatology and Venereologythe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
14
|
Chen YT, Liu CH, Pan WY, Jheng PR, Hsieh YSY, Burnouf T, Fan YJ, Chiang CC, Chen TY, Chuang EY. Biomimetic Platelet Nanomotors for Site-Specific Thrombolysis and Ischemic Injury Alleviation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384742 DOI: 10.1021/acsami.3c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Due to the mortality associated with thrombosis and its high recurrence rate, there is a need to investigate antithrombotic approaches. Noninvasive site-specific thrombolysis is a current approach being used; however, its usage is characterized by the following limitations: low targeting efficiency, poor ability to penetrate clots, rapid half-life, lack of vascular restoration mechanisms, and risk of thrombus recurrence that is comparable to that of traditional pharmacological thrombolysis agents. Therefore, it is vital to develop an alternative technique that can overcome the aforementioned limitations. To this end, a cotton-ball-shaped platelet (PLT)-mimetic self-assembly framework engineered with a phototherapeutic poly(3,4-ethylenedioxythiophene) (PEDOT) platform has been developed. This platform is capable of delivering a synthetic peptide derived from hirudin P6 (P6) to thrombus lesions, forming P6@PEDOT@PLT nanomotors for noninvasive site-specific thrombolysis, effective anticoagulation, and vascular restoration. Regulated by P-selectin mediation, the P6@PEDOT@PLT nanomotors target the thrombus site and subsequently rupture under near-infrared (NIR) irradiation, achieving desirable sequential drug delivery. Furthermore, the movement ability of the P6@PEDOT@PLT nanomotors under NIR irradiation enables effective penetration deep into thrombus lesions, enhancing bioavailability. Biodistribution analyses have shown that the administered P6@PEDOT@PLT nanomotors exhibit extended circulation time and metabolic capabilities. In addition, the photothermal therapy/photoelectric therapy combination can significantly augment the effectiveness (ca. 72%) of thrombolysis. Consequently, the precisely delivered drug and the resultant phototherapeutic-driven heat-shock protein, immunomodulatory, anti-inflammatory, and inhibitory plasminogen activator inhibitor-1 (PAI-1) activities can restore vessels and effectively prevent rethrombosis. The described biomimetic P6@PEDOT@PLT nanomotors represent a promising option for improving the efficacy of antithrombotic therapy in thrombus-related illnesses.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wu-Hsing Street, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23559, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE106 91, Sweden
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| |
Collapse
|
15
|
Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, Li X, Wang L, Lou X, Zhu B, Fan K, Qin Z. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210464. [PMID: 36964940 DOI: 10.1002/adma.202210464] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ya Dong
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Baoyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
16
|
Wang Y, Abazid A, Badendieck S, Mustea A, Stope MB. Impact of Non-Invasive Physical Plasma on Heat Shock Protein Functionality in Eukaryotic Cells. Biomedicines 2023; 11:biomedicines11051471. [PMID: 37239142 DOI: 10.3390/biomedicines11051471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, biomedical research has increasingly investigated physical plasma as an innovative therapeutic approach with a number of therapeutic biomedical effects. It is known from radiation and chemotherapy that these applications can lead to the induction and activation of primarily cytoprotective heat shock proteins (HSP). HSP protect cells and tissues from physical, (bio)chemical, and physiological stress and, ultimately, along with other mechanisms, govern resistance and treatment failure. These mechanisms are well known and comparatively well studied in drug therapy. For therapies in the field of physical plasma medicine, however, extremely little data are available to date. In this review article, we provide an overview of the current studies on the interaction of physical plasma with the cellular HSP system.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Steffen Badendieck
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
17
|
Liao T, Chen Z, Kuang Y, Ren Z, Yu W, Rao W, Li L, Liu Y, Xu Z, Jiang B, Li C. Small-size Ti 3C 2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater 2023; 159:312-323. [PMID: 36708854 DOI: 10.1016/j.actbio.2023.01.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
As a controllable, simple method with few side effects, near-infrared (NIR) light-based photothermal therapy (PTT) has been proven an effective cancer therapeutic approach. However, PTT-induced inflammation is a potential negative factor. And the overexpressed heat shock proteins (HSPs) by cancer cells can protect them from hyperthermia during PTT. In this work, small-size Ti3C2Tx MXene nanosheets with high photothermal conversion efficiency in the region of NIR, high cargo loading capability and good free radical scavenging capability were chosen for cancer PTT and anti-inflammation. And (-)-epigallocatechin gallate (EGCG) was applied to form EGCG/Fe metal-polyphenol nanodots on the nanosheets. EGCG being released in acid cancer cells could reduce the expression of HSPs and could be used for anti-inflammation. As a result, the complex nanosheets named MXene@EGCG could achieve enhanced cancer PTT and be anti-inflammatory. Both in vitro and in vivo studies proved the good photothermal ability of MXene@EGCG and demonstrated that it could inhibit the expression of HSPs in tumor cells and relieve PTT-induced inflammation. Therefore, the nanosheets show good results in tumor ablation with a low level of inflammation, which provides another possibility for cancer therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT)-induced inflammation plays an essential role in some important stages of tumor development and is unfavorable for cancer treatment. And hyperthermia leads to the overexpression of heat shock proteins (HSPs) in cancer cells, which limits the therapeutic effect of PTT. Therefore, we coated small-size Ti3C2Tx MXene nanosheets with (-)-epigallocatechin gallate (EGCG)/Fe metal-polyphenol nanodots and named them as MXene@EGCG. This system shows a good photothermal conversion efficiency at 808 nm. And it can release EGCG in cancer cells to inhibit the expression of HSPs, thus achieving an enhanced cancer PTT. Both MXene and EGCG can also diminish the PTT-trigged inflammation. Both in vitro and in vivo studies prove the good anti-cancer PTT effect and anti-inflammation capability of MXene@EGCG.
Collapse
Affiliation(s)
- Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Zhongyin Chen
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Zhe Ren
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Wenqian Yu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Wen Rao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Linwei Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 524023, Zhanjiang, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Bingbing Jiang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
18
|
Zheng BD, Xiao MT. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr Polym 2023; 299:120228. [PMID: 36876827 DOI: 10.1016/j.carbpol.2022.120228] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Polysaccharide-based hydrogel has excellent biochemical function, abundant sources, good biocompatibility and other advantages, and has a broad application prospect in biomedical fields, especially in the field of wound healing. With its inherent high specificity and low invasive burden, photothermal therapy has shown great application prospect in preventing wound infection and promoting wound healing. Combining polysaccharide-based hydrogel with photothermal therapy (PTT), multifunctional hydrogel with photothermal, bactericidal, anti-inflammatory and tissue regeneration functions can be designed, so as to achieve better therapeutic effect. This review first focuses on the basic principles of hydrogel and PTT, and the types of polysaccharides that can be used to design hydrogels. In addition, according to the different materials that produce photothermal effects, the design considerations of several representative polysaccharide-based hydrogels are emphatically introduced. Finally, the challenges faced by polysaccharide-based hydrogels with photothermal properties are discussed, and the future prospects of this field are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|