1
|
Sun J, Liu Q, Peng F, Gu Y. Exploring new approach for resource utilization of crab shell waste: Optimized microwave torrefaction parameters and efficient self-desulfurization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123582. [PMID: 39642822 DOI: 10.1016/j.jenvman.2024.123582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Finding alternative energy sources and reducing the impact of waste on the environment are pressing global challenges. Crab shells possess the dual characteristics of a pollutant and a resource; therefore, transforming them into clean energy is an urgent issue that needs to be addressed for reducing environmental pollution. This study uses microwave torrefaction to treat crab shell waste efficiently and optimizes the torrefaction conditions through response surface methodology to rapid prepare derived fuel. At a microwave power of 2500 W, temperature of 225 °C, and a treatment duration of 11 min, the specific surface area of the crab shell derived fuel increased by 21.2%; furthermore, its high heating value increased from 14.41 to 18.18 MJ/kg and combustion and desulfurization performances improved considerably. As a proof-of-concept, these derived fuels were utilized as substitutes for fossil fuels and as desulfurization agents to capture SO2 in situ during coal combustion. Results indicated that after microwave torrefaction, the desulfurization capability of the crab shell derived fuel increased by 16.6%. At a derived fuel and coal blending ratio of 35%, SO2 emissions were reduced by 85.27%, with more desulfurization efficiency compared with conventional calcium-based dry desulfurization. To the best of our knowledge, this is the first report on using crab shell waste as derived fuel to achieve in situ SO2 capture. Given the low cost and renewability of crab shell, our study provides a promising strategy for the large-scale utilization of solid waste and its harmless disposal.
Collapse
Affiliation(s)
- Jianguo Sun
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qian Liu
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Fei Peng
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China; Hefei Intellectual Property Protection Center, Hefei, 230071, China
| | - Yonghua Gu
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, School of Energy and Environment, Southeast University, Nanjing, 210096, China; Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Nanjing, 210036, China
| |
Collapse
|
2
|
Iñiguez-Moreno M, Santiesteban-Romero B, Melchor-Martínez EM, Parra-Saldívar R, González-González RB. Valorization of fishery industry waste: Chitosan extraction and its application in the industry. MethodsX 2024; 13:102892. [PMID: 39221014 PMCID: PMC11363563 DOI: 10.1016/j.mex.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Zhang J, Mohd Said F, Jing Z. Hydrogels based on seafood chitin: From extraction to the development. Int J Biol Macromol 2023; 253:126482. [PMID: 37640188 DOI: 10.1016/j.ijbiomac.2023.126482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Chitin is extensively applied in vast applications due to its excellent biological properties, such as biodegradable and non-toxic. About 50 % of waste generated during seafood processing is chitin. Conventionally, chitin is extracted via chemical method. However, it has many shortcomings. Many novel extraction methods have emerged, including enzymatic hydrolysis, microbial fermentation, ultrasonic or microwave-assisted, ionic liquids, and deep eutectic solvents. Chitin and its derivatives-based hydrogels have attracted much attention due to their excellent properties. Nevertheless, they all have many limitations. Therefore, the preparation and application of chitin and its derivatives-based hydrogels are still facing great challenges. This review focuses on the challenges and prospects for sustainable chitin extraction from seafood waste and the preparation and application of chitin and its derivatives-based hydrogels. First section summarizes the mechanism and application of several methods of extracting chitin. The different extraction methods were evaluated from the aspects of yield, degree of acetylation, and protein and mineral residuals. The shortcomings of the extraction methods are also discussed. Next section summarizes the preparation and application of chitin and its derivatives-based hydrogels. Overall, we hope this mini-review can provide a practical reference for selecting chitin extraction methods from seafood and applying chitin and its derivatives-based hydrogels.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
6
|
Hou F, Gong Z, Jia F, Cui W, Song S, Zhang J, Wang Y, Wang W. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: A review. Food Chem 2023; 409:135336. [PMID: 36586263 DOI: 10.1016/j.foodchem.2022.135336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Chitin as the second plentiful polysaccharide has arouse widely attention due to its remarkable availability and biocompatibility. While the strong inter/intra molecular hydrogen bonds and crystallinity severely restrict its applications. Recently, multiple emerging technologies are increasingly used to modify chitin structure for the sake of obtaining excellent functional properties, as well as broadening the corresponding applications. Firstly, this review systematically outlines the features of single and combined methods for chitin modification. Then, the impacts of various modifying methods on the structural characteristics of chitin, including molecular weight, degree of acetylation and functional groups, are further summarized. In addition, the effects of these structural characteristics on the functional properties as well as its potential related applications are illustrated. The conclusion of this review provides better understanding of the relationships among the modifying methods, structure, properties and applications, contributing to chitin modification for the targeted purpose in the future study.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiqing Gong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengjuan Jia
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Cui
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shasha Song
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jian Zhang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
7
|
King crab gills as a new source of chitin/chitosan and protein hydrolysates. Int J Biol Macromol 2023; 232:123346. [PMID: 36682662 DOI: 10.1016/j.ijbiomac.2023.123346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
This is the first report on the physicochemical properties of chitin obtained from gills of the king crab Paralithodes camtschaticus. In the present study, we investigated the chemical composition of red king crab gills and considered methods of its complex processing to obtain chitin and enzymatic protein hydrolysates. The gills contained approximately 21 % chitin in terms of dry matter. For the first time, the gills of the king crab were investigated as a source of chitin and chitosan. Chitin was isolated from crab gills using chemical and enzymatic methods. The physicochemical properties of chitin and chitosan from the gills were investigated. By performing infrared spectroscopy and X-ray phase analyses, the chitin present in the gills was established to be α-chitin. The physical and chemical properties (degree of deacetylation, molecular weight and crystal structure) of gill chitin and chitosan were absolutely similar to those of crab shell. Crab gills can be used as an additional source of chitin in the integrated processing of king crabs. The yield of chitin from the gills is up to 45 % of the yield of chitin from the crab carapace.
Collapse
|
8
|
Response Surface Methodology (RSM) Approach to Optimization of Coagulation-Flocculation of Aquaculture Wastewater Treatment Using Chitosan from Carapace of Giant Freshwater Prawn Macrobrachium rosenbergii. Polymers (Basel) 2023; 15:polym15041058. [PMID: 36850341 PMCID: PMC9961931 DOI: 10.3390/polym15041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
The major sources of waste from aquaculture operations emanates from fish or shellfish processing and wastewater generation. A simple technique called coagulation/flocculation utilizes biowaste from aquaculture to produce chitosan coagulant for wastewater treatment. A chemical method was applied in the present study for chitin and chitosan extraction from carapace of Macrobrachium rosenbergii and subsequent application for removal of turbidity and salinity from shrimp aquaculture wastewater. Box-Behnken in RSM was used to determine the optimum operating conditions of chitosan dosage, pH, and settling time, after which quadratic models were developed and validated. Results show that 80 g of raw powder carapace yielded chitin and chitosan of 23.79% and 20.21%, respectively. The low moisture (0.38%) and ash (12.58%) content were an indication of good quality chitosan, while other properties such as water-binding capacity (WBC), fat-binding capacity (FBC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) confirmed the structure and the α-group, as well as the rough morphology of chitosan. In addition, the high solubility (71.23%) and DDA (85.20%) suggested good coagulant potentials. It was recorded in this study that 87.67% turbidity was successfully removed at 20 mg/L of chitosan dosage and 6.25 pH after 30 min settling time, while 21.43% salinity was removed at 5 mg/L of chitosan dosage, 7.5 pH, and 30 min settling time. Therefore, the process conditions adopted in this study yielded chitosan of good quality, suitable as biopolymer coagulant for aquaculture wastewater treatment.
Collapse
|
9
|
Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 2023; 299:120142. [PMID: 36876773 DOI: 10.1016/j.carbpol.2022.120142] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Collapse
|
10
|
Insight into the adsorption of dyes onto chitin in aqueous solution: An experimental and computational study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Antifungal Agent Chitooligosaccharides Derived from Solid-State Fermentation of Shrimp Shell Waste by Pseudonocardia antitumoralis 18D36-A1. FERMENTATION 2022. [DOI: 10.3390/fermentation8080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shrimp shell waste is a potential source of the biopolymer chitin. Through fermentation, chitin can be converted into its derivative products. This study aimed to isolate and characterize the products of the biodegradation of chitin from shrimp shell waste through a solid-state fermentation process using actinomycetes. Actinomycete isolates were obtained from tunicate marine biota collected from the waters of Buleleng, Bali, using a dilution technique on 1% chitin colloid agar medium. The isolated actinomycetes were cultivated on a shrimp shell waste medium for 7 days, and then the products of the biodegradation of the oligomers were extracted using water. The extracts of the biodegradation products of the shrimp shells were isolated through several chromatographic steps and analyzed using LC–MS–MS, and the bioactivity of the biodegradation products against fungi was tested. The morphological observations and phylogenetic analysis showed that the isolate 18D36-A1 was a rare actinomycete with the proposed name Pseudonocardia antitumoralis 18D36-A1. The results of the analysis using TLC showed that the solid-state fermented water isolate 18D36-A1 produced several oligomeric components. These results indicate that the isolate 18D36-A1 was able to convert chitin into chitooligosaccharides. Further isolation of the extract produced the active fraction D36A1C38, which can inhibit the growth of fungi by 74% at a concentration of 1 mg/mL. This initial information is very important for further studies related to the development of a solid-state fermentation process for obtaining bioactive compounds from shrimp shell waste.
Collapse
|