1
|
Li Z, Gao C, Wang Z, Huang S, Jiang Z, Liu J, Yang H. Application of omics technology in ecotoxicology of arthropod in farmland. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1187-1208. [PMID: 39908451 DOI: 10.1093/etojnl/vgaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Arthropods, abundant in farmland, have unique biological traits that make them valuable for studying the ecotoxicological impacts of pollutants. Recent advancements in multi-omics technologies have enhanced their use in assessing pollution risks and understanding toxicity mechanisms. This article reviews recent developments in applying omics technologies-genomics, transcriptomics, proteomics, metabolomics, and meta-omics-to ecotoxicological research on farmland arthropods. Agricultural arthropods manage genes and proteins, such as metallothioneins, antioxidant enzyme systems, heat shock proteins, cytochrome P450, carboxylesterases, and glutathione S-transferases, for detoxification and antioxidant purposes. They adjust amino acid, sugar, and lipid metabolism to counteract pollutant-induced energy drain and modify gut microbiota to aid in detoxification. This study advocates for enhanced analysis of compound pollution and emerging pollutants using multi-omics, especially meta-omics, to clarify the toxicological mechanisms underlying arthropod responses to these pollutants. Furthermore, it underscores the urgent need for subsequent gene function mining and validation to support biological control strategies and promote sustainable agricultural practices. The findings of this research provide significant insights into the toxicological impacts and mechanisms of pollutants within farmland ecosystems, thereby contributing to the preservation of arthropod diversity.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, Hunan, China
| | - Cuimei Gao
- College of Environment & Ecology, Hunan Agricultural University, Changsha, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, Hunan, China
| | - Zhuoman Wang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, Hunan, China
| | - Siqi Huang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, Hunan, China
| | - Zijian Jiang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, Hunan, China
| | - Jing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Huilin Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, Hunan, China
| |
Collapse
|
2
|
Guo FR, Wang SC, Liu Y, Wang S, Huang JM, Sun H, He LF, Xie Y, Qiao ST, Yang FX, Bass C, Gao CF, Wu SF. CYP321F3 mediates metabolic resistance to methoxyfenozide in rice stem borer, Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106383. [PMID: 40262888 DOI: 10.1016/j.pestbp.2025.106383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
The development of insecticide resistance in insect populations is a major challenge to sustainable agriculture and food security worldwide. Methoxyfenozide, an insect growth regulator that acts as an agonist of 20-hydroxyecdysone (20E), has severely declined in its efficacy against the rice stem borer (Chilo suppressalis), a notorious pest of rice crops in East and Southeast Asia. To date, however, the genes involved in methoxyfenozide resistance in target pests remain unclear. We conducted a long-term (seven years from 2017 to 2023) and large geographical scale (8 provinces and 45 cities in China) resistance monitoring program for methoxyfenozide in C. suppressalis. Resistance was seen to arise rapidly in this species, with >100-fold resistance being detected in nearly all the field populations after 2018. Piperonyl butoxide (PBO), an inhibitor of cytochrome P450 enzymes (P450s), significantly increased the sensitivity of resistant strains of C. suppressalis to methoxyfenozide, implicating P450s in resistance. Six P450 genes: CYP321F3, CYP6CV5, CYP9A68, CYP6AB45, CYP324A12 and CYP6SN2 were identified as highly expressed in resistant C. suppressalis by transcriptome profiling. Of these, ectopic expression of CYP321F3 in Drosophila melanogaster resulted in a 7.0-fold increase in resistance to methoxyfenozide demonstrating its causal role in resistance. Collectively, these findings provide insight into the mechanisms mediating resistance to insect growth regulators and will inform the development of future pest and resistance management strategies.
Collapse
Affiliation(s)
- Fang-Rui Guo
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-Chao Wang
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Liu
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Wang
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Mei Huang
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Sun
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Feng He
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Xie
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Song-Tao Qiao
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng-Xia Yang
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Cong-Fen Gao
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shun-Fan Wu
- Sanya Institute of Nanjing Agricultural University/College of Plant Protection, State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Metabolomics' Change Under β-Cypermethrin Stress and Detoxification Role of CYP5011A1 in Tetrahymena thermophila. Metabolites 2025; 15:143. [PMID: 40137108 PMCID: PMC11944115 DOI: 10.3390/metabo15030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND β-cypermethrin (β-CYP) exhibits high toxicity to aquatic organisms and poses significant risks to aquatic ecosystems. Tetrahymena thermophila, a protozoa widely distributed in aquatic environments, can tolerate high concentrations of β-cypermethrin. However, the comprehensive detoxification mechanisms remain poorly understood in Tetrahymena. METHODS Untargeted metabolomics was used to explore the detoxification mechanisms of T. thermophila under β-CYP stress. RESULTS Trehalose, maltose, glycerol, and D-myo-inositol were upregulated under β-CYP exposure in Tetrahymena. Furthermore, the expression level of CYP5011A1 was upregulated under β-CYP treatment. CYP5011A1 knockout mutants resulted in a decreasing proliferation rate of T. thermophila under β-CYP stress. The valine-leucine and isoleucine biosynthesis and glycine-serine and threonine metabolism were significantly affected, with significantly changed amino acids including serine, isoleucine, and valine. CONCLUSIONS These findings confirmed that T. thermophila develops β-CYP tolerance by carbohydrate metabolism reprogramming and Cyp5011A1 improves cellular adaptations by influencing amino acid metabolisms. Understanding these mechanisms can inform practices aimed at reducing the adverse effects of agricultural chemicals on microbial and environmental health.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
4
|
Yainna S, Hilliou F, Haenniger S, d'Alençon E, Brévault T, Nam K. Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes. BMC Genomics 2024; 25:949. [PMID: 39385072 PMCID: PMC11462754 DOI: 10.1186/s12864-024-10845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses. RESULTS Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties. CONCLUSIONS These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.
Collapse
Affiliation(s)
- Sudeeptha Yainna
- DGIMI, INRAE, Univ Montpellier, Montpellier, France
- CIRAD, UPR AIDA, Montpellier, France
| | - Frédérique Hilliou
- INRAE, Institut Sophia Agrobiotech, Université Côte D'Azur, CNRS, Sophia Antipolis, France
| | - Sabine Haenniger
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | | | - Thierry Brévault
- CIRAD, UPR AIDA, Montpellier, France.
- AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Kiwoong Nam
- DGIMI, INRAE, Univ Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Li H, Huang X, Yang L, Liu H, Liu B, Lu Y. Behavioral, Physiological, and Molecular Mechanisms Underlying the Adaptation of Helicoverpa armigera to the Fruits of a Marginal Host: Walnut ( Juglans regia). PLANTS (BASEL, SWITZERLAND) 2024; 13:2761. [PMID: 39409631 PMCID: PMC11478790 DOI: 10.3390/plants13192761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced Helicoverpa armigera to feed on the marginal host walnut (Juglans regia). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, and molecular mechanisms underlying the local adaptation of this pest to walnut fruits. The green husk and shell generally contained higher levels of phytochemicals than the kernel. Bioassays revealed that the phytochemical-rich green husk and shell were less preferred, reduced larval fitness and growth, and elevated the activity of detoxification enzymes compared to the nutrient-rich kernel, which were further supported by a larger number of upregulated detoxification genes in insects fed green husks or shells based on transcriptome sequencing. Together, these data suggest that P450 genes (LOC110371778) may be crucial to H. armigera adaptation to the phytochemicals of walnuts. Our findings provide significant insight into the adaptation of H. armigera to walnut, an alternative host of lower quality. Meanwhile, our study provides a theoretical basis for managing resistance to H. armigera larvae in walnut trees and is instrumental in developing comprehensive integrated pest management strategies for this pest in walnut orchards and other agricultural systems.
Collapse
Affiliation(s)
- Haiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
- Scientific Observing Experimental Station of Crop Pest in Korla, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Long Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Haining Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| |
Collapse
|
6
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
7
|
Shao B, Yu S, Wang S, Li S, Ding L, Li M, Cheng L, Pan Q, Cong L, Ran C. A UDP-glycosyltransferase gene PcUGT202A9 was associated with abamectin resistance in Panonychus citri (McGregor). Int J Biol Macromol 2024; 270:132228. [PMID: 38734355 DOI: 10.1016/j.ijbiomac.2024.132228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Panonychus citri (McGregor) strains have developed a high level of resistance to abamectin, but the underlying molecular mechanism is unknown. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are critical for the removal of a variety of exogenous and endogenous substances. In this study, an enzyme activity assay revealed that UGTs potentially contribute to P. citri abamectin resistance. Spatiotemporal expression profiles showed that only PcUGT202A9 was significantly overexpressed in the abamectin-resistant strain (AbR) at all developmental stages. Moreover, UGT activity decreased significantly, whereas abamectin susceptibility increased significantly, in AbR after PcUGT202A9 was silenced. Three-dimensional modeling and molecular docking analyses revealed that PcUGT202A9 can bind stably to abamectin. Recombinant PcUGT202A9 activity was detected when α-naphthol was used, but the enzymatic activity was inhibited by abamectin (50 % inhibitory concentration: 803.3 ± 14.20 μmol/L). High-performance liquid chromatography and mass spectrometry analyses indicated that recombinant PcUGT202A9 can effectively degrade abamectin and catalyze the conjugation of UDP-glucose to abamectin. These results imply PcUGT202A9 contributes to P. citri abamectin resistance.
Collapse
Affiliation(s)
- Binbin Shao
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Shijiang Yu
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Shuqi Wang
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Sichen Li
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Lili Ding
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Mingyue Li
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Luyan Cheng
- Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China.
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Engineering Research Center for Citrus, Chongqing 400712, China.
| |
Collapse
|
8
|
Ma C, Shi X, Chen S, Han J, Bai H, Li Z, Li-Byarlay H, Bai L. Combined pesticides in field doses weaken honey bee (Apis cerana F.) flight ability and analyses of transcriptomics and metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105793. [PMID: 38685207 DOI: 10.1016/j.pestbp.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 μL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.
Collapse
Affiliation(s)
- Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihao Chen
- University of Liverpool, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Liverpool L69 3BX, UK; Department of Health and Environmental Sciences, Xi'an-Jiaotong Liverpool University, Suzhou 215123, China
| | - Jincai Han
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haodong Bai
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zuren Li
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hongmei Li-Byarlay
- Agriculture Research and Development Program, Central State University, Wilberforce OH, 45384, USA.
| | - Lianyang Bai
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
9
|
Wang A, Zhang Y, Liu S, Xue C, Zhao Y, Zhao M, Yang Y, Zhang J. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm, Spodoptera frugiperda (J.E. Smith). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 38563228 DOI: 10.1017/s000748532300038x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Shaofang Liu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongxin Zhao
- Shandong Province Yuncheng County Agricultural and Rural Bureau, Yuncheng, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| |
Collapse
|
10
|
Fei H, Cui J, Zhu S, Xia Y, Xing Y, Gao Y, Shi S. Integrative Analyses of Transcriptomics and Metabolomics in Immune Response of Leguminivora glycinivorella Mats to Beauveria bassiana Infection. INSECTS 2024; 15:126. [PMID: 38392545 PMCID: PMC10889468 DOI: 10.3390/insects15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This study utilized Beauveria bassiana to infect Leguminivora glycinivorella, analyzed the effects on the transcriptome and metabolome, and further investigated the antibacterial function of L. glycinivorella. We performed transcriptome and metabolome sequencing on the L. glycinivorella infected with B. bassiana and its control groups, and performed a joint analysis of transcriptome and metabolome results. Upon screening, 4560 differentially expressed genes were obtained in the transcriptome and 71 differentially expressed metabolites were obtained in the metabolome. On this basis, further integration of the use of transcriptomics and metabonomics combined an analysis of common enrichments of pathways of which there were three. They were glutathione S-transferase (GSTs) genes, heat shock protein (HSP) genes, and cytochrome P450 (CYP450) genes. These three pathways regulate the transport proteins, such as ppars, and thus affect the digestion and absorption of sugars and fats, thus regulating the development of pests. The above conclusion indicates that B. bassiana can affect the sugar metabolism, lipid metabolism, and amino acid metabolism pathways of L. glycinivorella, and can consume the necessary energy, protein, and lipids of L. glycinivorella. The research on the immune response mechanism of pests against pathogens can provide an important scientific basis and target for the development of immunosuppressants. This study laid an information foundation for the application of entomogenous fungi to control soybean borer at the molecular level.
Collapse
Affiliation(s)
- Hongqiang Fei
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Jilin City Academy of Agricultural Sciences, Jilin 132101, China
| | - Juan Cui
- Agriculture Science and Technology College, Jilin 132109, China
| | - Shiyu Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ye Xia
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yichang Xing
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
11
|
García-Saldaña EA, Cerqueda-García D, Ibarra-Laclette E, Aluja M. Insights into the differences related to the resistance mechanisms to the highly toxic fruit Hippomane mancinella (Malpighiales: Euphorbiaceae) between the larvae of the sister species Anastrepha acris and Anastrepha ludens (Diptera: Tephritidae) through comparative transcriptomics. Front Physiol 2024; 15:1263475. [PMID: 38304114 PMCID: PMC10830740 DOI: 10.3389/fphys.2024.1263475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.
Collapse
Affiliation(s)
- Essicka A. García-Saldaña
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Daniel Cerqueda-García
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Clúster Científico y Tecnológico BioMimic, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| |
Collapse
|
12
|
Liu W, Yu Q, Wang C, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Silencing the rhythm gene AgCLK-1 reduced feeding of Aphis gossypii. Int J Biol Macromol 2024; 254:127777. [PMID: 37907175 DOI: 10.1016/j.ijbiomac.2023.127777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The cotton aphid Aphis gossypii Glover is an important cotton pest, and means of controlling this insect is a primary research focus. Although biological rhythm is an important mechanism that regulates numerous insect processes and activities, its role in cotton aphid has not been elucidated. In the present study, four highly-expressed circadian rhythm genes were selected from the cotton aphid genome database and their physicochemical properties and protein structures were analyzed. These genes were in the Takeout, Timeless, and Timeless interacting-related families, and the corresponding proteins contained highly-conserved Swis and TIMELESS domains. Gene expression analysis at multiple developmental stages revealed differing expression patterns between the four genes. AgCLK-1 had the highest relative expression of the four, especially during the nymph period. Silencing AgCLK-1 caused a significant refusal of the cotton aphids to feed at 1, 3, and 5 d of treatment. These results demonstrated that AgCLK-1 played a key role in regulating the feeding behavior of cotton aphid. This new functional understanding provides novel insights into cotton aphid biology and suggests new targeting strategies for agricultural pest control.
Collapse
Affiliation(s)
- Weijiao Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qiqing Yu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chuanpeng Wang
- Zoucheng Municipal Bureau of Agriculture and Rural Affairs, Jining 273500, Shandong, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Li Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kaixin Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dongyang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jichao Ji
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junyu Luo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jinjie Cui
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xueke Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
13
|
Hu Z, Chen S, Shi T, Dong Z, Cheng M, Li N, Zhao H, Zhu H, Han C, Xu L. Masson pine pollen aqueous extract ameliorates cadmium-induced kidney damage in rats. Front Mol Biosci 2023; 10:1249744. [PMID: 38143799 PMCID: PMC10748820 DOI: 10.3389/fmolb.2023.1249744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/19/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: Cadmium (Cd) is a hazardous environmental pollutant present in soil, water, and food. Accumulation of Cd in organisms can cause systematic injury and damage to the kidney. The Masson pine pollen aqueous extract (MPPAE) has attracted increasing attention due to its antioxidant activity and ability to enhance immunity. Methods: In this study, we investigated the potential of MPPAE to protect against Cd-induced kidney damage in rats and the underlying mechanism. The transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, were explored. Results: The concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were both significantly altered after treatment with MPPAE. Furthermore, sequencing and analysis of the transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, revealed differential expression of numerous genes and metabolites compared with the untreated control rats. These differentially expressed genes (DEGs) included detoxification-related genes such as cytochrome P450 and the transporter. The differentially expressed metabolites (DEMs) included 4-hydroxybenzoic acid, L-ascorbate, and ciliatine. Conjoint transcriptome and metabolome analysis showed that several DEGs were correlated with DEMs. Conclusion: These preliminary findings indicate the potential of MPPAE for the treatment of toxic metal poisoning.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Sixin Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Tala Shi
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Zhaoju Dong
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Haibo Zhu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Chunlei Han
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Lanlan Xu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Mu N, Tang JC, Zhao J, Fu QC, Ma YF, Tang R, Dong WX. Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights. Life (Basel) 2023; 13:2174. [PMID: 38004314 PMCID: PMC10672149 DOI: 10.3390/life13112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
This research investigates how fourth-instar larvae of the potato tuber moth, Phthorimaea operculella, respond to plant secondary metabolites (sucrose, glucose, nicotine, and tannic acid) both in terms of gustatory electrophysiology and feeding behavior. The objective is to establish a theoretical foundation for employing plant-derived compounds in potato tuber moth control. We employed single-sensillum recording techniques and dual-choice leaf disk assays to assess the gustatory electrophysiological responses and feeding preferences of these larvae towards the mentioned compounds. Sensory neurons responsive to sucrose, glucose, nicotine, and tannic acid were identified in the larvae's medial and lateral sensilla styloconica. Neuronal activity was influenced by stimulus type and concentration. Notably, the two types of sensilla styloconica displayed distinct response patterns for sucrose and glucose while they had similar firing patterns towards nicotine and tannic acid. Sucrose and glucose significantly promoted larval feeding, while nicotine and tannic acid had significant inhibitory effects. These findings demonstrate that the medial and lateral sensilla styloconica house sensory neurons sensitive to both feeding stimulants and inhibitors, albeit with differing response profiles and sensitivities. This study suggests that sucrose and glucose are promising candidates for feeding stimulants, while nicotine and tannic acid show potential as effective feeding inhibitors of P. operculella larvae.
Collapse
Affiliation(s)
- Ni Mu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| | - Jia-Cai Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| | - Qi-Chun Fu
- Plant Protection and Quarantine Station of Daguan County in Yunnan Province, Daguan 657400, China;
| | - Yan-Fen Ma
- Department of Agronomy and Biological Science, Dehong Teacher’s College, Mangshi 678400, China;
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization—Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Wen-Xia Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| |
Collapse
|
15
|
Xia T, Liu Y, Lu Z, Yu H. Natural Coumarin Shows Toxicity to Spodoptera litura by Inhibiting Detoxification Enzymes and Glycometabolism. Int J Mol Sci 2023; 24:13177. [PMID: 37685985 PMCID: PMC10488291 DOI: 10.3390/ijms241713177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Coumarin and its derivatives are plant-derived compounds that exhibit potent insecticidal properties. In this study, we found that natural coumarin significantly inhibited the growth and development of Spodoptera litura larvae through toxicological assay. By transcriptomic sequencing, 80 and 45 differentially expressed genes (DEGs) related to detoxification were identified from 0 to 24 h and 24 to 48 h in S. litura after coumarin treatment, respectively. Enzyme activity analysis showed that CYP450 and acetylcholinesterase (AChE) activities significantly decreased at 48 h after coumarin treatment, while glutathione S-transferases (GST) activity increased at 24 h. Silencing of SlCYP324A16 gene by RNA interference significantly increased S. litura larval mortality and decreased individual weight after treatment with coumarin. Additionally, the expression levels of DEGs involved in glycolysis and tricarboxylic acid (TCA) cycle were inhibited at 24 h after coumarin treatment, while their expression levels were upregulated at 48 h. Furthermore, metabonomics analysis identified 391 differential metabolites involved in purine metabolism, amino acid metabolism, and TCA cycle from 0 to 24 h after treated with coumarin and 352 differential metabolites associated with ATP-binding cassette (ABC) transporters and amino acid metabolism. These results provide an in-depth understanding of the toxicological mechanism of coumarin on S. litura.
Collapse
Affiliation(s)
- Tao Xia
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
| | - Yan Liu
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341003, China
| | - Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341003, China; (T.X.); (Y.L.); (Z.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341003, China
| |
Collapse
|
16
|
Yuan X, Li H, Guo X, Jiang H, Zhang Q, Zhang L, Wang G, Li W, Zhao M. Functional roles of two novel P450 genes in the adaptability of Conogethes punctiferalis to three commonly used pesticides. Front Physiol 2023; 14:1186804. [PMID: 37457033 PMCID: PMC10338330 DOI: 10.3389/fphys.2023.1186804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Insect cytochrome P450 (CYP450) genes play important roles in the detoxification and metabolism of xenobiotics, such as plant allelochemicals, mycotoxins and pesticides. The polyphagous Conogethes punctiferalis is a serious economic pest of fruit trees and agricultural crops, and it shows high adaptability to different living environments. Methods: The two novel P450 genes CYP6CV1 and CYP6AB51 were identified and characterized. Quantitative real-time PCR (qRT-PCR) technology was used to study the expression patterns of the two target genes in different larval developmental stages and tissues of C. punctiferalis. Furthermore, RNA interference (RNAi) technology was used to study the potential functions of the two P450 genes by treating RNAi-silenced larvae with three commonly used pesticides. Results: The CYP6CV1 and CYP6AB51 genes were expressed throughout various C. punctiferalis larval stages and in different tissues. Their expression levels increased along with larval development, and expression levels of the two target genes in the midgut were significantly higher than in other tissues. The toxicity bioassay results showed that the LC50 values of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin on C. punctiferalis larvae were 0.2028 μg/g, 0.0683 μg/g and 0.6110 mg/L, respectively. After treating with different concentrations of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin (LC10, LC30, LC50), independently, the relative expressions of the two genes CYP6CV1 and CYP6AB51 were significantly induced. After the dsRNA injection, the expression profiles of the two CYP genes were reduced 72.91% and 70.94%, respectively, and the mortality rates of the larvae significantly increased when treated with the three insecticides independently at LC10 values. Discussion: In the summary, after interfering with the CYP6CV1 and CYP6AB51 in C. punctiferalis, respectively, the sensitivity of C. punctiferalis to chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin was significantly increased, indicating that the two CYP6 genes were responsible for the adaptability of C. punctiferalis to the three chemical insecticides in C. punctiferalis. The results from this study demonstrated that CYP6CV1 and CYP6AB51 in C. punctiferalis play crucial roles in the detoxification of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xingxing Yuan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Han Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weizheng Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1164-1177. [PMID: 36891808 DOI: 10.1111/tpj.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.
Collapse
Affiliation(s)
- Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, 100091, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
18
|
Zhang C, Wang X, Tai S, Qi L, Yu X, Dai W. Transcription factor CncC potentially regulates cytochrome P450 CYP321A1-mediated flavone tolerance in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105360. [PMID: 36963951 DOI: 10.1016/j.pestbp.2023.105360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Insect P450s play crucial roles in metabolizing insecticides and toxic plant allelochemicals. In this study, our results demonstrate that Helicoverpa armigera can adapt to a lower concentration of flavone (a flavonoid phytochemical), and P450 activities and CYP321A1 transcript levels significantly increase after exposure to flavone. RNAi-mediated knockdown of CYP321A1 significantly reduced the tolerance of H. armigera larvae to flavone. In addition, the regulatory mechanisms driving CYP321A1 induction following exposure to flavone were investigated. Flavone exposure significantly increased H2O2 generation in the larval midgut. The mRNA levels of HaCncC and HaMaf-s significantly increased in the midgut of H. armigera after exposure to flavone. Knockdown of HaCncC significantly inhibited expression of flavone-induced CYP321A1 and resulted in a decrease in flavone induction of CYP321A1. HaCncC knockdown significantly reduced the tolerance of H. armigera larvae to flavone. Taken together, these results indicate that HaCncC regulates expression of the CYP321A1 gene responsible for flavone tolerance in H. armigera.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinxiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shulei Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
19
|
Tan S, Li G, Guo H, Wang C, Wang H, Liu Z, Xu B, Wang Y, Guo X. RNAi-mediated silencing of AccCYP6k1 revealed its role in the metabolic detoxification of Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105377. [PMID: 36963945 DOI: 10.1016/j.pestbp.2023.105377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s or CYPs) perform important functions in the metabolic detoxification of both endogenous and exogenous substrates. However, the mechanism of action of the P450 genes in bees is unclear. In this study, we investigated the effects of AccCYP6k1 on the metabolism and detoxification of Apis cerana cerana. Spatiotemporal expression profiling revealed that the expression of AccCYP6k1 was the highest in foragers (A15) and was mainly expressed in the leg, midgut and head. RT-qPCR results showed that AccCYP6k1 exhibited different expression patterns following exposure to xenobiotics. In addition, silencing AccCYP6k1 increased the pesticides sensitivity and affected the detoxification system and antioxidant process of A. cerana cerana. In brief, the induced expression of AccCYP6k1 is related to the resistance of A. cerana cerana, while knockdown AccCYP6k1 affect the pesticides resistance and metabolic detoxification system of A. cerana cerana. These findings not only support the theoretical basis of metabolic detoxification in bees but also provide a better understanding of P450-mediated resistance to pesticides in insects.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
20
|
Li J, Lv Y, Liu Y, Bi R, Pan Y, Shang Q. Inducible Gut-Specific Carboxylesterase SlCOE030 in Polyphagous Pests of Spodoptera litura Conferring Tolerance between Nicotine and Cyantraniliprole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4281-4291. [PMID: 36877657 DOI: 10.1021/acs.jafc.3c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insecticides tolerance in herbivorous arthropods is associated with preadaptation to host plant allelochemicals. However, how plant secondary metabolites activate detoxifying metabolic genes to develop tolerance remains unclear. Herein, the tolerance of Spodoptera litura larvae to cyantraniliprole was increased after nicotine exposure. An S. litura α esterase, SlCOE030, was predominantly expressed in the midgut and induced after exposure to cyantraniliprole, nicotine, and cyantraniliprole plus nicotine. Drosophila melanogaster with ectopically overexpressed SlCOE030 enhanced cyantraniliprole and nicotine tolerance by 4.91- and 2.12-fold, respectively. Compared to UAS-SlCOE030 and Esg-GAL4 lines, the Esg > SlCOE030 line laid more eggs after nicotine exposure. SlCOE030 knockdown decreased the sensitivity of nicotine-treated S. litura larvae to cyantraniliprole. Metabolism assays indicated that recombinant SlCOE030 protein metabolizes cyantraniliprole. Homology modeling and molecular docking analysis demonstrated that SlCOE030 exhibits effective affinities for cyantraniliprole and nicotine. Thus, insect CarEs may result in the development of cross-tolerance between synthetic insecticides and plant secondary metabolites.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
21
|
You C, Zhang L, Song J, Zhang L, Zhen C, Gao X. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. Int J Biol Macromol 2023; 236:123399. [PMID: 36775219 DOI: 10.1016/j.ijbiomac.2023.123399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Long term and excessive insecticide use has resulted in some environmental problems and especially, insecticide resistance evolution in insect pests. The variation of cytochrome P450 monooxygenases (P450s), associated with the metabolic detoxification of toxic xenobiotics, is often involved in insecticide resistance. Here, we found that the variation in a P450 gene, CYP6G4, is the most important driver of carbamates resistance in the house fly (Musca domestica). Deciphering the detailed molecular mechanisms of the insecticide resistance is critical for performing suitable insecticide resistance management strategies. Our research results revealed that the combination of amino acid mutations (110C-330E-360N/S, 110C-330E-360S) of CYP6G4 could improve the resistance to propoxur. The nucleotide variations in the promoter region of CYP6G4 significantly increased the luciferase activity by the reporter gene assays. Additionally, miR-281-1-5p was confirmed to post-transcriptionally down-regulate the expression of CYP6G4. These findings suggest that three independent mechanisms; amino acid mutations of the P450 protein, mutations in the promoter region and low expression of post-trans-regulatory factors, as the powerful strategies for the insect resistance to toxic compounds, play a crucial role in the evolutionary processes of insecticide resistance.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lulu Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Zhao L, Li XD, Jiang T, Wang H, Dan Z, Xu SQ, Guan DL. The Chromosome-Level Genome of Hestina assimilis (Lepidoptera: Nymphalidae) Reveals the Evolution of Saprophagy-Related Genes in Brush-Footed Butterflies. Int J Mol Sci 2023; 24:ijms24032087. [PMID: 36768416 PMCID: PMC9917059 DOI: 10.3390/ijms24032087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Most butterflies feed on nectar, while some saprophagous butterflies forage on various non-nectar foods. To date, little is known about the genomic and molecular shifts associated with the evolution of the saprophagous feeding strategy. Here, we assembled the high-quality chromosome-level genome of Hestina assimilis to explore its saprophagous molecular and genetic mechanisms. This chromosome-level genome of H. assimilis is 412.82 Mb, with a scaffold N50 of 15.70 Mb. In total, 98.11% of contigs were anchored to 30 chromosomes. Compared with H. assimilis and other Nymphalidae butterflies, the genes of metabolism and detoxification experienced expansions. We annotated 80 cytochrome P450 (CYP) genes in the H. assimilis genome, among which genes belonging to the CYP4 subfamily were significantly expanded (p < 0.01). These P450 genes were unevenly distributed and mainly concentrated on chromosomes 6-9. We identified 33 olfactory receptor (OR), 20 odorant-binding protein (OBP), and six gustatory receptor (GR) genes in the H. assimilis genome, which were fewer than in the nectarivorous Danaus plexippus. A decreased number of OBP, OR, and GR genes implied that H. assimilis should resort less to olfaction and gustation than their nectarivorous counterparts, which need highly specialized olfactory and gustatory functions. Moreover, we found one site under positive selection occurred in residue 996 (phenylalanine) of GR genes exclusive to H. assimilis, which is conservative in most lineages. Our study provides support for the adaptive evolution of feeding habits in butterflies.
Collapse
Affiliation(s)
- Lu Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Xiao-Dong Li
- School of Chemistry and Bioengineering, Hechi University, Yizhou 546300, China
| | - Tao Jiang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Hang Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhicuo Dan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: (S.-Q.X.); (D.-L.G.)
| | - De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou 546300, China
- Correspondence: (S.-Q.X.); (D.-L.G.)
| |
Collapse
|
23
|
Two P450 genes, CYP6SN3 and CYP306A1, involved in the growth and development of Chilo suppressalis and the lethal effect caused by vetiver grass. Int J Biol Macromol 2022; 223:860-869. [PMID: 36372110 DOI: 10.1016/j.ijbiomac.2022.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chilo suppressalis is a widely distributed pest occurring in nearly all paddy fields, which has developed high level resistance to different classes of insecticides. Vetiver grass has been identified as a dead-end trap plant for the alternative control of C. suppressalis. In this study, two cytochrome P450 monooxygenase (P450) genes, CsCYP6SN3 and CsCYP306A1, were identified and characterized, which are expressed at all developmental stages, with the highest expression in the midguts and fat bodies of 3rd instar larvae. Vetiver significantly inhibited the expression levels of CsCYP6SN3 and CsCYP306A1 in 3rd larvae after feeding. RNA interference showed that silencing CsCYP6SN3 and CsCYP306A1 genes dramatically reduced the pupation rate and pupa weight. Feeding on vetiver after silencing CsCYP6SN3 and CsCYP306A1 led to higher mortality compared with feeding on rice. In conclusion, these findings indicated that the expression levels of CsCYP6SN3 and CsCYP306A1 were associated with the lethal effect of vetiver against C. suppressalis larvae and functional knowledge about these two detoxification genes could provide new targets for agricultural pest control.
Collapse
|
24
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Chen L, Siddiqui JA, Ren X, Zhou S, Imran M, Assiri MA, Zalucki MP, Lou Y, Lu Y. Characterization of Indoxacarb Resistance in the Fall Armyworm: Selection, Inheritance, Cross-Resistance, Possible Biochemical Mechanisms, and Fitness Costs. BIOLOGY 2022; 11:biology11121718. [PMID: 36552228 PMCID: PMC9774702 DOI: 10.3390/biology11121718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a voracious insect pest that is difficult to control due to resistance to insecticides and Bt proteins. We assessed cross-resistance, resistance mechanism, and fitness costs based on the life history traits of S. frugiperda. We established an S. frugiperda strain selected for resistance to indoxacarb (Ind-SEL) from a field-collected population and an unselected strain, Ind-UNSEL. Results indicated that after 24 generations of selection, the resistance to indoxacarb was increased by 472.67-fold as compared to the Ind-UNSEL. There was high cross-resistance to deltamethrin (31.23-fold) with very low or negligible cross-resistance to chlorantraniliprole, emamectin benzoate, and/or methoxyfenozide in the Ind-SEL population. Butoxide synergist increased susceptibility to indoxacarb, indicating that P450 enzymes may be involved in indoxacarb resistance. Significantly longer developmental time of larvae extended pupal duration, shorter adult longevity, and lower fecundity were observed in Ind-SEL as compared with the Ind-UNSEL population. The Net reproductive rate (R0) was the only growth parameter that differs between crosses of Ind-SEL♂ × Ind-UNSEL♀ (176 ± 46) and Ind-SEL♀ × Ind-UNSEL♂ (328 ± 57). On the other hand, all population growth parameters differ between Ind-SEL and Ind-UNSEL strains. Our work contributes to the growing body of research that demonstrates the importance of strain genetics in fitness cost experiments and helps resistance management programs make decisions.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100083, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.L.); (Y.L.)
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Y.L.); (Y.L.)
| |
Collapse
|
25
|
Liu L, Hong B, Wei JW, Wu YT, Song LW, Wang SS. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris). Int J Biol Macromol 2022; 220:250-257. [PMID: 35981673 DOI: 10.1016/j.ijbiomac.2022.08.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Although tannins are widely distributed in broad beans and alfalfa, the pea aphid (Acyrthosiphon pisum) can still destroy them. The ATP binding cassette (ABC) transporters participate in the metabolism of plant secondary metabolites and pesticides in insects. However, whether ABC transporter genes play a role in the metabolism of tannins in the pea aphid is unclear. Here, we found that verapamil (an ABC transporter inhibitor) significantly increased the mortality of tannic acid to pea aphid, which indicated that ABC transporter gene was related to the metabolism of tannic acid by pea aphid. Then, we identified 54 putative ABC transporter genes from the genome database of A. pisum. These genes were divided into eight subfamilies, ApABCA to ApABCH, of which subfamily G has the largest number of genes with 19, followed by the subfamily C with 14. RT-qPCR results show that the expression levels of ApABCA2, ApABCC7, ApABCG2, and ApABCG3 were highly expressed in the first instar, while those of ApABCA3, ApABCG6, ApABCG7, ApABCH3, and ApABCH4 were highly expressed in adults. Furthermore, transcription levels of many ABC transporter genes were induced by tannic acid. Especially, ApABCG17 and ApABCH2 were obviously induced after being exposed to tannic acid. Meanwhile, knockdown of ApABCG17 by RNA interference resulted in increased sensitivity of pea aphid to tannic acid. These results suggest that ApABCG17 may be involved in tannic acid metabolism in pea aphid. This study will help us to understand the mechanism of tannic acid metabolism in pea aphid, and provides a basis for further research on the physiological function of ABC transporter genes in pea aphid.
Collapse
Affiliation(s)
- Lei Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Bo Hong
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Jiang-Wen Wei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Yi-Ting Wu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Li-Wen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| | - Sen-Shan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
26
|
Lin DJ, Fang Y, Li LY, Zhang LZ, Gao SJ, Wang R, Wang JD. The insecticidal effect of the botanical insecticide chlorogenic acid on Mythimna separata (Walker) is related to changes in MsCYP450 gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:1015095. [PMID: 36311076 PMCID: PMC9597446 DOI: 10.3389/fpls.2022.1015095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) can feed on the leaves of many crops, resulting in vast areas of damage and severe losses. Therefore, this insect has become a significant agricultural pest in north Asia. In this study, we fed 3rd instar larvae with artificial diets containing different concentrations of chlorogenic acid and found a significant lethal effect and the mortality increased with increasing chlorogenic acid concentration. Next, we measured the sublethal effect of chlorogenic acid at LC20 on the growth and development of M. separata larvae. The durations of the 4th and 5th instar were longer than those of the control group (prolonged by 0.8 and 0.6 days, respectively), and the 6th instar was shorter (by 1.1 days). The total survival rate, pupation rate, eclosion rate, sex ratio, and oviposition amount in the LC20 chlorogenic acid-treated group were significantly lower than those in the control group. Furthermore, transcriptome analysis of 3rd instar larvae fed various concentrations of chlorogenic acid revealed that several MsCYP450 genes were significantly up-regulated, and this finding was further validated by qRT-PCR. In addition, various concentrations of chlorogenic acid and different treatment times significantly affected the enzyme activity of CYP450 in 3rd instar larvae. Importantly, dietary ingestion of dsMsCYP450 significantly reduced the mRNA level of MsCYP450 genes and increased mortality in the presence of chlorogenic acid. Our results revealed that MsCYP6B6, MsCYP321A7, and MsCYP6B7-like play an essential role in the detoxification of chlorogenic acid by M. separata. This study provides evidence of control effect by botanical insecticide chlorogenic acid on M. separata, and potential detoxification mechanism mediated by P450 of botanical insecticide in arthropods.
Collapse
Affiliation(s)
- Dong-jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha, China
| | - Ling-yun Li
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Li-zhao Zhang
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - San-ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Siddiqui JA, Luo Y, Sheikh UAA, Bamisile BS, Khan MM, Imran M, Hafeez M, Ghani MI, Lei N, Xu Y. Transcriptome analysis reveals differential effects of beta-cypermethrin and fipronil insecticides on detoxification mechanisms in Solenopsis invicta. Front Physiol 2022; 13:1018731. [PMID: 36277215 PMCID: PMC9583148 DOI: 10.3389/fphys.2022.1018731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Insecticide resistance poses many challenges in insect pest control, particularly in the control of destructive pests such as red imported fire ants (Solenopsis invicta). In recent years, beta-cypermethrin and fipronil have been extensively used to manage invasive ants, but their effects on resistance development in S. invicta are still unknown. To investigate resistance development, S. invicta was collected from populations in five different cities in Guangdong, China. The results showed 105.71- and 2.98-fold higher resistance against fipronil and beta-cypermethrin, respectively, in the Guangzhou population. The enzymatic activities of acetylcholinesterase, carboxylases, and glutathione S-transferases significantly increased with increasing beta-cypermethrin and fipronil concentrations. Transcriptomic analysis revealed 117 differentially expressed genes (DEGs) in the BC-ck vs. BC-30 treatments (39 upregulated and 78 downregulated), 109 DEGs in F-ck vs. F-30 (33 upregulated and 76 downregulated), and 499 DEGs in BC-30 vs. F-30 (312 upregulated and 187 downregulated). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs associated with insecticide resistance were significantly enriched in metabolic pathways, the AMPK signaling pathway, the insulin signaling pathway, carbon metabolism, peroxisomes, fatty acid metabolism, drug metabolism enzymes and the metabolism of xenobiotics by cytochrome P450. Furthermore, we found that DEGs important for insecticide detoxification pathways were differentially regulated under both insecticide treatments in S. invicta. Comprehensive transcriptomic data confirmed that detoxification enzymes play a significant role in insecticide detoxification and resistance development in S. invicta in Guangdong Province. Numerous identified insecticide-related genes, GO terms, and KEGG pathways indicated the resistance of S. invicta workers to both insecticides. Importantly, this transcriptome profile variability serves as a starting point for future research on insecticide risk evaluation and the molecular mechanism of insecticide detoxification in invasive red imported fire ants.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Yuanyuan Luo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| | | | | | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Imran
- State Key Laboratory for the Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Nie Lei
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| |
Collapse
|
28
|
Tan M, Wu H, Yan S, Jiang D. Evaluating the Toxic Effects of Tannic Acid Treatment on Hyphantria cunea Larvae. INSECTS 2022; 13:872. [PMID: 36292820 PMCID: PMC9604457 DOI: 10.3390/insects13100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To increase the development potential of botanical pesticides, it is necessary to expand the toxicology research on plant secondary metabolites. Herein, the Hyphantria cunea larvae were exposed to tannic acid concentrations consistent with those found in larch needles, and, subsequently, the growth and nutrient utilization, oxidative damage, and detoxification abilities in the larval midgut, as well as the changes in the gut microbiome, were analyzed. Our results revealed that tannic acid treatment significantly increased the mortality of H. cunea larvae and inhibited larval growth and food utilization. The contents of malondialdehyde and hydrogen peroxide in the larval midgut were significantly elevated in the treatment group, along with a significant decrease in the activities of antioxidant enzymes and detoxifying enzymes. However, the non-enzymatic antioxidants showed a significant increase in the tannic acid-treated larvae. From gut microbiome analysis in the treatment group, the abundance of gut microbiota related to toxin degradation and nutrient metabolism was significantly reduced, and the enrichment analysis also suggested that all pathways related to nutritional and detoxification metabolism were substantially inhibited. Taken together, tannic acid exerts toxic effects on H. cunea larvae at multiple levels and is a potential botanical pesticide for the control of H. cunea larvae.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
29
|
Peng C, Yin H, Liu Y, Mao XF, Liu ZY. RNAi Mediated Gene Silencing of Detoxification Related Genes in the Ectropis oblique. Genes (Basel) 2022; 13:genes13071141. [PMID: 35885924 PMCID: PMC9318823 DOI: 10.3390/genes13071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ectropis oblique is one of the main pests that feed on tea leaves. At present, the main control method is chemical control, but the long-term use of insecticides has been related to the development of insect resistance. One of the resistance mechanisms is the upregulation of relevant detoxification enzymes for defense. In this study, four genes with increased expression were screened from the gene sequences annotated from the transcriptome data of deltamethrin-treated larvae of E. oblique, which are acid phosphatase EoACP138, and cytochrome P450 EoCYP316, carboxylesterase EoCarE592 and acetylcholine esterase EoAchE989, respectively. The fourth instar larvae of E. oblique were stimulated by deltamethrin, chlorpyrifos and fenpropathrin respectively, and the expression levels of the genes were detected by qRT-PCR. The result showed that all four genes’ expression had significantly increased under the stimulation of three insecticides. RNAi technology was used to silence the expression of genes of EoACP138, EoCYP316, EoCarE592 and EoAchE989 in the fourth instar larvae of E. oblique. The change in the expression levels of the above genes in the larvae treated with dsRNA and stimulated with pesticides was determined by qRT-PCR. The target genes have been effectively silenced after feeding on dsRNA and higher sensitivity with higher mortality to pesticides was observed in the larvae interfered with dsRNA. The above genes are related to the detoxification and metabolism of resistance of E. oblique, which lays a foundation for further study on the mechanism of insecticide resistance in E. oblique.
Collapse
|
30
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Fernández-Grandon GM, Khan MM, Siddiqui JA, Chen L, Ren XY, Zhou S, Lou Y, Lu Y. Down-Regulation of P450 Genes Enhances Susceptibility to Indoxacarb and Alters Physiology and Development of Fall Armyworm, Spodoptera frugipreda (Lepidoptera: Noctuidae). Front Physiol 2022; 13:884447. [PMID: 35615670 PMCID: PMC9125154 DOI: 10.3389/fphys.2022.884447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a pest of many important crops globally. Effective control is challenging, with the pest exhibiting resistance to different synthetic pesticides across various groups. However, the mechanisms employed by resistant insects for overexpression of relevant detoxification genes remain unclear. The activity of detoxification enzymes was investigated in this study. Additionally, using RNA interference (RNAi), a functional analysis was completed of two P450s genes in an indoxacarb resistant population of fall armyworms. Elevated resistance levels (resistance ratio = 31.37-fold) in indoxacarb-selected populations of FAW were observed after 14 generations. The qRT-PCR showed higher expression of two cytochrome P450 genes, CYP321A7 and CYP6AE43, in this selected population compared to the control population. RNAi was applied to knock down the P450 dsCYP321A7 and dsCYP6AE43 genes in the FAW larvae. Droplet feeding of the dsRNAs (CYP321A7 and CYP6AE43) via an artificial diet significantly increased mortality rates in the indoxacarb treated population. A shorter larval developmental time of FAW was detected in all dsRNAs-fed larvae. Correspondingly, larval mass was reduced by dsRNAs in indoxacarb resistant populations of fall armyworm. Larval feeding assays demonstrate that dsRNAs targeting, specifically of CYP321A7 and CYP6AE43 enzymes, could be a beneficial technique in the management of indoxacarb resistant populations. Further study on the potential use of dsRNA and its application should be conducted in efforts to counter the development of resistance in FAW against various insecticides in the field.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Junaid Ali Siddiqui
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Xiao Yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|