1
|
Yadav A, Dogra P, Sagar P, Srivastava M, Srivastava A, Kumar R, Srivastava SK. A contemporary overview on quantum dots-based fluorescent biosensors: Exploring synthesis techniques, sensing mechanism and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126002. [PMID: 40068316 DOI: 10.1016/j.saa.2025.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
In the epoch of bioinformatics, pivotal biomedical scrutiny and clinical diagnosis hinge upon the unfolding of highly efficacious biosensors for intricate and targeted identification of specific biomolecules. In pursuit of developing robust biosensors endowed with superior sensitivity, precise selectivity, rapid performance, and operational simplicity, semiconductor QDs have been acknowledged as pivotal and advantageous entities. In this review, we present a comprehensive analysis of the latest unfolding within the domain of QDs used in fluorescent biosensors for the detection of diverse biomolecular entities, encompassing proteins, nucleic acids, and a range of small molecules, with an emphasis on the synthesis methodologies of QDs employed and mechanism behind sensing. Additionally, this review delves into several pivotal facets of QD-based fluorescent biosensors in detail, such as surface functionalization methodologies aimed at enhancing biocompatibility and improving target specificity. The challenges and future perspectives of QD-based fluorescent biosensors are also considered, emphasizing the necessity of ongoing multidisciplinary research to realize their full potential in enhancing personalized medicine and biomedical diagnostics.
Collapse
Affiliation(s)
- Anushka Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Dogra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Physics-Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur 222001, India
| | - Rajneesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Huang X, Yu Y, Li H, Xiong Z, Wei J, Yu D, Zhao H, Liao L, Li Y, Guo C, Xu C, Ni W, Han J, Gao X, Huang H. Rapid identification of multiplexed pathogens via a two-step dual-channel fluorescence turn-on array. Anal Chim Acta 2025; 1354:344012. [PMID: 40253064 DOI: 10.1016/j.aca.2025.344012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/21/2025]
Abstract
Bacterial infections have been an increasingly serious threat to human health. However, the rapid identification of multiplexed bacteria remains challenging due to their intricate composition. Herein, we developed a two-step, dual-channel fluorescence "turn-on" sensor array that sequentially amplifies signals via Indicator Displacement Analysis (IDA) and Aggregation-Induced Emission (AIE). Three weakly fluorescent, positively charged conjugated fluorophores (A1-A3) with AIE properties were designed to form electrostatic complexes (C1-C3) with negatively charged graphene oxide (GO). Upon addition of bacteria, fluorophores were released from the electrostatic complexes via IDA, resulting in fluorescence turn-on. These fluorophores then aggregated on the bacterial surface, further enhancing fluorescence. This array accurately differentiated among 10 distinct bacterial strains, achieving 98.3 % classification accuracy within 30 s. Finally, the approach facilitated semi-quantitative bacterial analysis, multiplex identification, and robust differentiation in artificial urine samples, presenting a promising method for early infectious disease diagnosis.
Collapse
Affiliation(s)
- Xingliang Huang
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China
| | - Yang Yu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Huihai Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhongzheng Xiong
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China
| | - Jinwu Wei
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China
| | - Dengqiong Yu
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China
| | - Hengfei Zhao
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China
| | - Liya Liao
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China
| | - Yong Li
- College of Life Science and Technology, Ningxia Polytechnic, Ningxia, 750021, China
| | - Chao Guo
- College of Life Science and Technology, Ningxia Polytechnic, Ningxia, 750021, China
| | - Chao Xu
- College of Life Science and Technology, Ningxia Polytechnic, Ningxia, 750021, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuejuan Gao
- Dian Jiang General Hospital of Chongqing, Chongqing, 408300, China.
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Chen Y, Liu H, Zhang D. Small molecular fluorescent probes featuring protein-assisted functional amplification for improved biosensing and cancer therapeutics. Chem Commun (Camb) 2025; 61:7908-7928. [PMID: 40351188 DOI: 10.1039/d5cc01548k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
In recent years, small molecular fluorescent probes have significantly advanced biosensing and cancer therapy, enabling applications such as target detection, cellular imaging, fluorescence-guided surgery, and phototherapy. However, conventional small molecular probes face limitations, including low biocompatibility, poor stability, and weak signal intensity. Protein-coordinated fluorescent probes have emerged as a promising solution, leveraging protein-assisted functional amplification to address these challenges. Mechanisms such as environmental shielding, conformational restriction, charge stabilization, and increased local concentration collectively enhance fluorescence emission and phototherapeutic efficacy. This article reviews recent progress (primarily within the last five years) in protein-coordinated fluorescent probes for biosensing and cancer therapy. It begins with a systematic summary of the interaction strategies between proteins and fluorescent probes and details key mechanisms behind protein-assisted functional amplification. Subsequently, the applications of these probes in biosensing and cancer therapy are comprehensively concluded. Finally, current challenges and future prospects are discussed in depth. This review aims to refine design strategies for protein-coordinated fluorescent probes and inspire innovative approaches in biosensing and cancer therapy.
Collapse
Affiliation(s)
- Ye Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Dailiang Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Sayed MG, Gad-Elkareem MAM, Ishak EA, Kamal El-Dean AM, Saddik AA. The first example of white-light emission based on pyrimido[4',5':4,5]thieno[2,3-d]pyrimidine moiety: Synthesis, photophysical, and antimicrobial studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125897. [PMID: 39961257 DOI: 10.1016/j.saa.2025.125897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
A series of new AIE systems based on the pyrimidothienopyrimidine skeleton were efficiently synthesized and fully characterized. These compounds exhibited weak emission in solution but strong solid-state fluorescence with a red shift. Notably, compound 16 displayed unique white-light emission from a single-component system and tunable emission colors in DMF/water mixtures. This dual emission behavior, arising from AIE and excimer formation, is unprecedented for pyrimidothienopyrimidine derivatives. Although compounds 9a and 9b exhibited AIEE behavior, compounds 15c and 18 demonstrated AIE behavior, with significantly enhanced fluorescence intensity upon water addition. Moreover, most synthesized compounds exhibited moderate to strong antimicrobial activity against various bacterial and fungal strains, suggesting their potential for biological applications.
Collapse
Affiliation(s)
- Mohammed G Sayed
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | | | - Esam A Ishak
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Adel M Kamal El-Dean
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Abdelreheem A Saddik
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
5
|
Terzapulo X, Dyussupova A, Ilyas A, Boranova A, Shevchenko Y, Mergenbayeva S, Filchakova O, Gaipov A, Bukasov R. Detection of Cancer Biomarkers: Review of Methods and Applications Reported from Analytical Perspective. Crit Rev Anal Chem 2025:1-46. [PMID: 40367278 DOI: 10.1080/10408347.2025.2497868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
One in five deaths in developed countries is related to cancer. The cancer prevalence is likely to grow with aging population. The affordable and accurate early diagnostics of cancer based on detection of cancer biomarkers at low concentration during its early stages is one of the most efficient way to decrease mortality and human suffering from cancer. The data from 201 analytical papers are tabulated in 9 tables, illustrated in 8 figures and used for comparative analysis of methods applied for cancer biomarker detection, including polymerase chain reaction, Loop-mediated isothermal amplification (LAMP), mass spectrometry, enzyme-linked immunosorbent assay, electroanalytical methods, immunoassays, surface enhanced Raman scattering, Fourier Transform Infrared and others in terms of above-mentioned performance parameters. Median and/or average limit of detection (LOD) are calculated and compared between different analytical methods. We also described and compared LOD of the methods used for detection of three frequently detected cancer biomarkers: carcinoembryonic antigen, prostate-specific antigen and alpha-fetoprotein. Among those methods of detection, the reported electrochemical sensors often demonstrate relatively high sensitivity/low LOD while they often have a moderate instrumental cost and fast time to results. The review tabulates, compares and discusses analytical papers, which report LOD of cancer biomarkers and comprehensive quantitative comparison of various analytical methods is made. The discussion of those techniques applied for cancer biomarker detection included brief summary of pro and cons for each of those methods.
Collapse
Affiliation(s)
- Xeniya Terzapulo
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Dyussupova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Boranova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Yegor Shevchenko
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Saule Mergenbayeva
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana, Republic of Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
6
|
Yang L, Jin Y, Xu Z, Ye P, Huo Y, Wang Z, Zhang Z, Zhang Y, Huang Q, Meng Q. Water-Responsive Fluorescence and Room-Temperature Phosphorescence Carbon Dots for Trace Water Detection in Ethylene Glycol and Multimodal Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11630-11637. [PMID: 40306951 DOI: 10.1021/acs.langmuir.5c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Identifying trace water in ethylene glycol is essential for maintaining stringent quality control in chemical processes and ensuring product purity. However, the development of highly sensitive detection methods for aqueous impurities within this viscous solvent presents significant challenges, primarily arising from the strong intermolecular hydrogen bonding network within ethylene glycol, which not only masks the presence of water but also interferes with conventional analytical techniques. This work introduces a novel fluorescence-based detection method that combines simplicity, efficiency, and rapid response by leveraging water-responsive carbon dots (CDs). Specifically, we synthesized water-responsive carbon dots (WCDs) that exhibit enhanced fluorescence in anhydrous ethylene glycol. Notably, the introduction of water induces a concentration-dependent fluorescence enhancement at 394 nm, establishing a linear correlation within the 0-0.284% (v/v) water content range (detection limit: 0.017%, 3σ/S) with a remarkably low. By exploiting the hydrogen bonding between WCDs and cellulose paper matrices, the triplet excited states are effectively stabilized, thereby enabling green room-temperature phosphorescence (RTP) emission. This enables precise modulation of the WCDs' aggregation-dispersion states through controlled water/ethanol addition, a mechanism that drives stimulus-responsive transitions between fluorescence and RTP. These tunable optical properties not only validate the detection mechanism but also create new opportunities for developing dual-mode dynamic anticounterfeiting technologies.
Collapse
Affiliation(s)
- Li Yang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Yong Jin
- Guangxi Huayi Energy Chemical Co. Ltd., Qinzhou, Guangxi 535011, China
| | - Zhihui Xu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Peiqi Ye
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Yanying Huo
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Zhiyu Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Zilin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Qiaoxian Huang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Qingjun Meng
- Guangxi Huayi Energy Chemical Co. Ltd., Qinzhou, Guangxi 535011, China
| |
Collapse
|
7
|
Nath P, Dey A, Kundu T, Chatterjee M, Roy P, Liu Z, Satapathi S. Development of a smartphone integrated 3D-printed point of care platform for sensitive detection of bilirubin. Talanta 2025; 286:127430. [PMID: 39742847 DOI: 10.1016/j.talanta.2024.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Strategic design and development of nanomaterials-based detection platforms specific to critical biomarkers like bilirubin holds immense promise for revolutionizing early disease detection. Bilirubin (BR) plays a pivotal role as a biomarker for liver function, making accurate and timely detection of BR crucial for diagnosing and monitoring of liver diseases. In this work, we synthesized blue light emitting graphene quantum dots (GQDs) via a single step pyrolysis method, which exhibited excellent photostability and biocompatibility. Under optimal conditions, the fluorescence of GQDs was significantly quenched with the successive addition of BR achieving an ultra-low detection limit (38.96 nM) over a concentration range of 0.18 μM-14.29 μM with high selectivity, and rapid response towards free BR. The sensing mechanism was identified as the inner filter effect after extensive investigations. Thereafter, the sensor system was directly applied to human serum and urine samples and was further compared with the conventional Jendrassik and Grof method, yielding satisfactory recoveries. To demonstrate the sensor system's potential for real world applications, we designed and fabricated a prototype point-of-care device (POC) through 3D printing, incorporating paper microfluidic devices and fluorescence image analysis-based android application through smartphone. The compact 3D-printed POC device achieved a detection limit of 114.66 nM for BR detection, proving to be a promising platform for affordable, efficient and rapid BR detection.
Collapse
Affiliation(s)
- Prathul Nath
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Ankan Dey
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Tathagata Kundu
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Manisha Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Partha Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Zhiyi Liu
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India.
| |
Collapse
|
8
|
Zhang P, Han Y, Xu Y, Gao L. Application of metal stable isotopes labeling and elemental mass spectrometry for biomacromolecule profiling. BIOPHYSICS REPORTS 2025; 11:112-128. [PMID: 40308936 PMCID: PMC12035746 DOI: 10.52601/bpr.2024.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 05/02/2025] Open
Abstract
Biomacromolecules including proteins and nucleic acids are widely recognized for their pivotal and irreplaceable role in maintaining the normal functions of biological systems. By combining metal stable isotope labeling with elemental mass spectrometry, researchers can quantify the amount and track the spatial distribution of specific biomacromolecules in complex biological systems. In this review, the probes classification and metal stable isotope labeling strategies are initially summarized. Secondly, the technical characteristics and working principle of the elemental mass spectrometry techniques including inductively coupled plasma mass spectrometry and secondary ion mass spectrometry are introduced to achieve highly sensitive detection of multiple biomacromolecules at molecular, cellular and tissue levels. Lastly, we underline the advantages and limitations of elemental mass spectrometry combined with metal stable isotope labeling strategies, and propose the perspectives for future developments.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ying Han
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yue Xu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
10
|
Routray S, Acharya S, Nayak L, Pattnaik S, Satapathy R. Advances in mercury ion sensing using BODIPY-based compounds: a sexennial update. RSC Adv 2025; 15:9910-9951. [PMID: 40171283 PMCID: PMC11959460 DOI: 10.1039/d5ra01232e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Pollution from mercury ions (Hg2+) continues to pose a significant threat to the environment and public health because of its extreme toxicity and bioaccumulative nature. BODIPY-based compounds are emerging as strong candidates for creating selective and sensitive chemosensors for mercury ion detection. Their structural tunability facilitates the introduction of various functional groups, improving their binding affinity and specificity toward mercury ions. This review elucidates various sensing mechanisms and provides comprehensive insights into the performance of these sensors, particularly with regard to selectivity, sensitivity, and detection limits. The synthetic routes for synthesizing the chemosensors are mentioned in detail. Given their reliability and flexibility, BODIPY-based sensors are poised to make significant contributions in the fields of both sensors and analytical chemistry.
Collapse
Affiliation(s)
- Supriya Routray
- Department of Chemistry, Ravenshaw University Cuttack-753003 Odisha India
| | - Subhadeep Acharya
- Department of Chemistry, Ravenshaw University Cuttack-753003 Odisha India
| | - Laxmipriya Nayak
- Department of Chemistry, Ravenshaw University Cuttack-753003 Odisha India
| | - Simran Pattnaik
- Department of Chemistry, Ravenshaw University Cuttack-753003 Odisha India
| | | |
Collapse
|
11
|
Sliesarenko V, Krstić M, Bren U, Lobnik A. Development of Fluorescence-Based Method for Dopamine Determination Using o-Phthaldialdehyde and 3-Mercaptopropyltriethoxysilane. SENSORS (BASEL, SWITZERLAND) 2025; 25:1729. [PMID: 40292813 PMCID: PMC11946605 DOI: 10.3390/s25061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Nanomaterials and sensors play an important role in modern technologies, including medical diagnostics and biochemical research. This work presents the possibility of using o-Phthaldialdehyde (OPA) in combination with 3-mercaptopropyltriethoxysilane (MPTES) to develop a dopamine-responsive sensor. During the experiment, these materials were used at different pH and ratios to determine the optimal parameters for obtaining high fluorescence intensity of the reaction product. The data obtained demonstrate a linear relationship between the fluorescence response (λex/λem = 340/460 nm) of OPA/MPTES and dopamine concentration in the range of 0.1-3.0 µM at a pH of 8, and the detection limit was 8.7 nM. The obtained results confirm the potential of OPA/MPTES as a sensing component for the detection of dopamine.
Collapse
Affiliation(s)
- Valeriia Sliesarenko
- Institute for Environmental Protection and Sensors, IOS Ltd., 7 Beloruska Str., SI-2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 17 Smetanova Str., SI-2000 Maribor, Slovenia (U.B.)
| | - Marijana Krstić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 17 Smetanova Str., SI-2000 Maribor, Slovenia (U.B.)
| | - Urban Bren
- Institute for Environmental Protection and Sensors, IOS Ltd., 7 Beloruska Str., SI-2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 17 Smetanova Str., SI-2000 Maribor, Slovenia (U.B.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 8 Glagoljaška Str., SI-6000 Koper, Slovenia
| | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors, IOS Ltd., 7 Beloruska Str., SI-2000 Maribor, Slovenia
- Faculty of Mechanical Engineering, University of Maribor, 17 Smetanova Str., SI-2000 Maribor, Slovenia;
| |
Collapse
|
12
|
Shan W, Sun J, Liu R, Wang J, Shao B. Establishing Detection Methods for Okadaic Acid Aptamer-Target Interactions: Insights from Computational and Experimental Approaches. Foods 2025; 14:854. [PMID: 40077556 PMCID: PMC11898563 DOI: 10.3390/foods14050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The binding interactions between okadaic acid (OA) aptamers and OA molecules are crucial for developing effective detection methods. This study aims to identify the recognition site and establish a reliable detection protocol through computational simulations and experimental validations. After determining the target sequence (OA-2), molecular docking simulations using Sybyl-X and H-dock were conducted to predict the binding affinity and interaction sites of OA aptamers with their targets. These predictions were subsequently validated through experiments based on the Förster resonance energy transfer (FRET) principle. The combined approach not only confirmed the computational predictions, identifying the "major region" as the recognition basis of OA-2, but also provided deeper insights into the binding mechanisms. Subsequently, a classical AuNPs-aptamer colorimetric detection method was established based on the OA-2 sequence and applied to the detection of real shellfish samples, achieving a limit of quantification (LOQ) of 5.0 μg kg-1. The recoveries of OA in spiked samples ranged from 79.0% to 122.9%, with a relative standard deviation (RSD) of less than 14.7%. The results of this study contribute to the development of robust detection methods for OA aptamer-target interactions, enhancing the potential for practical applications in toxin detection and monitoring.
Collapse
Affiliation(s)
- Wenchong Shan
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture of China, Beijing 100081, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (J.S.); (R.L.)
| | - Runqing Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (J.S.); (R.L.)
| | - Jing Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture of China, Beijing 100081, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (J.S.); (R.L.)
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
13
|
Sushma, Sharma S, Ghosh KS. Applications of Functionalized Carbon-Based Quantum Dots in Fluorescence Sensing of Iron(III). J Fluoresc 2025; 35:1255-1272. [PMID: 38411860 DOI: 10.1007/s10895-024-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Iron, an essential trace element exhibits detrimental effects on human health when present at higher or lower concentration than the required. Therefore, there is a pressing demand for sensitive and selective detection of Fe3+ in water, food etc. Unfortunately, in several instances, the traditional approaches suffer from a number of shortcomings like complicated procedures, limited sensitivity, poor selectivity and more expensive and time consuming. The scope of optical tuning and excellent photophysical properties of carbon- based nanomaterials like carbon dots (C-dots) and graphene dots (g-dots) have made them promising optical sensors of metal ions. Moreover, high surface area, superior stability of such materials contributes towards the fruitful development of sensors. The present review offered critical information on the fabrication and fluorimetric applications of these functional nanomaterials for sensitive and selective detection of Fe3+. An in-depth discussion on fluorescent C-dots made from naturally occurring materials and chemical techniques were presented. Effect of doping in C-dots was also highlighted in terms of improved fluorescence response and selectivity. In a similar approach g-dots were also discussed. Many of these sensors exhibited great selectivity, superior sensitivity, high quantum yield, robust chemical and photochemical stability and real-time applicability. Further improvement in these factors can be targeted to develop new sensors.
Collapse
Affiliation(s)
- Sushma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, H.P. 177005, India
| | - Shivani Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, H.P. 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, H.P. 177005, India.
| |
Collapse
|
14
|
K M N, Karmakar S, Sahoo B, Mishrra N, Moitra P. Use of Quantum Dots as Nanotheranostic Agents: Emerging Applications in Rare Genetic Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407353. [PMID: 39828615 DOI: 10.1002/smll.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Rare genetic diseases (RGDs) affect a small percentage of the global population but collectively have a substantial impact due to their diverse manifestations. Although the precise reasons behind these diseases remain unclear, roughly 80% of cases are genetically linked. Recent efforts focus on understanding pathology and developing new diagnostic and therapeutic approaches for RGDs. However, there persists a gap between fundamental research and clinical therapeutic approaches, where advancements in nanotechnology offer promising improvements. In this context, nanosized light-emitting quantum dots (QDs), ranging from 2-10 nm, are promising materials for diverse applications. Their size-tunable light emission, high quantum yield, and photostability allow for precise tracking of cargo. Additionally, QDs can be functionalized with therapeutic agents, antibodies, or peptides to target specific cellular pathways, enhancing treatment efficacy while minimizing side effects. By combining diagnostic and therapeutic capabilities in a single platform, QDs thus offer a versatile and powerful approach to tackle rare genetic disorders. Despite several reviews on various therapeutic applications of QDs, their utilization in the specific domain of RGDs is not well documented. This review highlight QDs' potential in diagnosing and treating certain RGDs and addresses the challenges limiting their application.
Collapse
Affiliation(s)
- Neethu K M
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Shyamal Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Baishakhi Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Navniet Mishrra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| |
Collapse
|
15
|
Kholafazad Kordasht H, Bahavarnia P, Bahavarnia F, Hasanzadeh M, Shadjou N. Exploring the frontiers of emerging sensing of silver nanoprisms: recent progress and challenges. RSC Adv 2025; 15:5105-5116. [PMID: 39963469 PMCID: PMC11831252 DOI: 10.1039/d4ra08469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
In recent years, the development and use of nanomaterials have transformed numerous aspects of biomedical science. Nanomaterials have played a pivotal role in advancing disease diagnosis and treatment across a wide range of applications. Within this scope, silver nanoprisms (AgNPrs) stand out due to their remarkable properties, such as extensive surface area, chemical robustness, and tunable electrical conductivity, making them excellent candidates for biomedical purposes. By tailoring these nanomaterials through functionalization or coating surface, their multifunctionality can be enhanced, unlocking new opportunities for their application in areas such as diagnosis, imaging, and therapeutic intervention. This review begins with an overview of AgNPrs' synthesis techniques and their unique physicochemical characteristics. Recent advancements in analytical methods utilizing AgNPrs, categorized by sensing mechanisms such as optical and electrochemical approaches, are highlighted in the context of diagnostics. Lastly, the challenges and future prospects of bringing AgNPr-based technologies to commercialization and integrating them into disease diagnostics and medical treatment are explored. The integration of AgNPrs in disease therapy holds promise for the development of advanced chemotherapy agents that effectively address the challenges of efficient cancer treatment looking ahead, the ongoing advancement of nanocarrier systems comprising AgNPrs-based molecules holds great promise for improving the quality of life for patients worldwide.
Collapse
Affiliation(s)
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
16
|
Ju Z, Wang M, Chen Y, Wang Z, Yang M, Meng F, Lv R. An Optoelectronic Sensing Real-Time Glucose Detection Film Using Photonic Crystal Enhanced Rare Earth Fluorescence and Additive Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409725. [PMID: 39744761 DOI: 10.1002/smll.202409725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/29/2024] [Indexed: 02/26/2025]
Abstract
In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO2 nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO2-modified NaYF4:Yb,Tm@NaYF4. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed. This array can serve as a substrate that specifically reflected blue light while allowing other colors of light to pass through, which effectively reduced background signal interference and improved detection sensitivity (1.2 µm) with a wider linear range (20-800 µm). Finally, a portable fluorescence intensity detection device is designed to enhance the portability of the platform. Numerous experimental results demonstrated that this research significantly improved the sensitivity of glucose detection, providing new research directions for the field of fluid biomarker detectio.
Collapse
Affiliation(s)
- Ziyue Ju
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Min Wang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Yitong Chen
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Ziqi Wang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Mingming Yang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Fanbo Meng
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Ruichan Lv
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| |
Collapse
|
17
|
Derichsweiler C, Herbertz S, Kruss S. Optical Bionanosensors for Sepsis Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409042. [PMID: 39745136 PMCID: PMC11855245 DOI: 10.1002/smll.202409042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Indexed: 02/26/2025]
Abstract
Sepsis is a global health challenge, characterized by a dysregulated immune response, leading to organ dysfunction and death. Despite advances in medical care, sepsis continues to claim a significant toll on human lives, with mortality rates from 10-25% for sepsis and 30-50% for septic shock, making it a leading cause of death worldwide. Current diagnostic methods rely on clinical signs, laboratory parameters, or microbial cultures and suffer from delays and inaccuracies. Therefore, there is a pressing need for novel diagnostic tools that can rapidly and accurately identify sepsis. This review highlights advances in biosensor development that could ultimately lead to faster and more accurate sepsis diagnostics. The focus is on nanomaterial-based optical approaches that promise rapid diagnostics without the need for large equipment or trained personnel. An overview of sepsis is provided, highlighting potential molecular targets and the challenges they present for assay development. The requirements for an ideal point-of-care test (POC) are discussed, including speed, simplicity, and cost-effectiveness. Different nanomaterials suitable for various optical detection methods are reviewed and innovative nanosensors are discussed for sepsis diagnostics, focusing on chemical design and approaches to increase selectivity by multiplexing.
Collapse
Affiliation(s)
- Christina Derichsweiler
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 6147057DuisburgGermany
- Physical ChemistryRuhr‐University Bochum Universitätsstrasse 15044801BochumGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 6147057DuisburgGermany
- Physical ChemistryRuhr‐University Bochum Universitätsstrasse 15044801BochumGermany
| |
Collapse
|
18
|
Ghorbian M, Ghobaei-Arani M, Babaei MR, Ghorbian S. Nanotechnology and nanosensors in personalized healthcare: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2025; 47:100740. [DOI: 10.1016/j.sbsr.2025.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
|
19
|
Jia M, Mi W, Guo X, Zhang M. A ratiometric fluorescent sensor based on dual-emitting carbon dots for the rapid detection of sulfite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125132. [PMID: 39303336 DOI: 10.1016/j.saa.2024.125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Sulfur dioxide (SO2) derivatives are typically employed as antioxidants in food and pharmaceutical processing. However, excessive sulfite intake could trigger serious health problems. Hence, it is urgent to establish a rapid and effective system for monitoring SO2. This study adopted a one-step hydrothermal method to synthesize dual-emitting nitrogen-doped carbon quantum dots (CECDs) and developed a ratiometric sensor for sulfite using CECDs-Cr (VI) composites. The emission intensity ratio (I440/I500) of the CECDs-Cr (VI) composites increased considerably with the addition of HSO3-. A method based on the ratiometric sensor was established for SO2 derivatives with advanced efficiency and excellent linearity over a broad concentration range of 0-500 μM (R2 = 0.9946). Four medicine-food homology materials (MFHMs) fumigated with sulfur have been accurately detected using this approach. Furthermore, a portable test tube was prepared to achieve rapid and semi-quantitative detection of SO2 residues and applied to real samples. This work presents an effective approach to develop a rapid on-site detection platform for sulfite residues in food and pharmaceuticals.
Collapse
Affiliation(s)
- Mingyan Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wenxing Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
20
|
Liao W, Wang C, Wang R, Wu M, Li L, Chao P, Hu J, Chen WH. An activatable "AIE + ESIPT" fluorescent probe for dual-imaging of lipid droplets and hydrogen peroxide in drug-induced liver injury model. Anal Chim Acta 2025; 1335:343442. [PMID: 39643298 DOI: 10.1016/j.aca.2024.343442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is one of the most common liver diseases. The crucial role of lipid droplets (LDs) and hydrogen peroxide (H2O2), two important biomarkers in the pathophysiology of DILI, has spurred considerable efforts to accurately visualize H2O2 and LDs for elucidating their functions in the progression of DILI. However, construction of a single fluorescent probe that is able to simultaneously image H2O2 and LDs dynamics remains to be a challenging task. Therefore, it is of great demand to develop a novel fluorescent probe for tracking the LDs status and H2O2 fluctuation in drug-induced liver injury. RESULTS We developed an "AIE + ESIPT" fluorescent probe TPEHBT for dual-imaging of LDs and H2O2 during DILI process. TPEHBT displayed greatly enhanced fluorescent response to H2O2 by generating an excited state intramolecular proton transfer (ESIPT) fluorophore TPEHBT-OH with aggregation induced emission (AIE) properties. TPEHBT exhibits high selectivity, sensitivity (LOD = 4.73 nM) and large Stokes shift (320 nm) to H2O2. Interestingly, TPEHBT can light up LDs with high specificity. The probe was favorably applied in the detection of endogenous and exogenous H2O2 in living cells, and notably in the simultaneous real-time visualization of H2O2 generation and LDs accumulation during DILI process. Moreover, TPEHBT was able to image H2O2 generation in zebrafish animal model with APAP-induced liver injury. SIGNIFICANCE For the first time, probe TPEHBT was applied in the dual-imaging of H2O2 fluctuation and LDs status in APAP-induced liver injury model in vitro and in vivo. The present findings strongly suggest that TPEHBT is a promising tool for monitoring H2O2 and LDs dynamics in DILI progression.
Collapse
Affiliation(s)
- Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Chunzheng Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Mengzhao Wu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| | - Pengjie Chao
- School of Applied Physics and Materials, Wuyi University, 529020, Jiangmen, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| |
Collapse
|
21
|
Weng L, Ren H, Xu R, Xu J, Lin J, Shen JW, Zheng Y. Translocation mechanism of anticancer drugs through membrane with the assistance of graphene quantum dot. Colloids Surf B Biointerfaces 2025; 245:114340. [PMID: 39476655 DOI: 10.1016/j.colsurfb.2024.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/05/2025]
Abstract
In recent years, as a new type of quasi-zero-dimensional nanomaterials, graphene quantum dots (GQDs) have shown excellent performance in advanced drug targeted delivery and controlled release. In this work, the delivery process of model drugs translocating into POPC lipid membrane with the assistance of GQDs was investigated via molecular dynamics (MD) simulation. Our simulation results demonstrated that a single doxorubicin (DOX) or deoxyadenine (DA) molecule is difficult to penetrate into the cell membrane. GQD7 could form sandwich-like structure with DOX and assist DOX to enter into the POPC membrane. However, due to the weak interaction with DA, both GQD7 and GQD19 can not assist DA translocating the POPC membrane in the limited MD simulation time. The drug delivery process for DOX could be divided into two steps: 1. GQDs and DOX aggregated into a cluster; 2. the aggregates enter into the POPC membrane. In all our simulation systems, if GQDs loaded with model drugs and entered the cell membrane, it had little effect on the cell membrane structure, and the cell membrane could maintain high integrity and stability. These results may promote the molecular design and application of GQD-based drug delivery systems.
Collapse
Affiliation(s)
- Luxi Weng
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hao Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiahao Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yongke Zheng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, Zhejiang 310006, China; Department of Intensive Care Unit, Hangzhou Geriatric Hospital, Hangzhou 310022, China.
| |
Collapse
|
22
|
Guo C, Tang Q, Yuan J, Li S, Yang X, Li Y, Zhou X, Ji H, Qin Y, Wu L. Multiplexed bacterial recognition based on "All-in-One" semiconducting polymer dots sensor and machine learning. Talanta 2025; 282:126917. [PMID: 39341060 DOI: 10.1016/j.talanta.2024.126917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The accurate discrimination of bacterial infection is imperative for precise clinical diagnosis and treatment. Here, this work presents a simplified sensor array utilizing "All-in-One" Pdots for efficient discrimination of diverse bacterial samples. The "All-in-One" Pdots sensor (AOPS) were synthesized using three components that exhibit fluorescence resonance energy transfer (FRET) effect, facilitating the efficient integration of multiple discrimination channels to generate specific fluorescence response patterns through a single detection under single-wavelength excitation. Additionally, machine learning techniques were employed to visually represent the fluorescence response patterns of AOPS upon exposure to bacterial metabolites derived from diverse bacterial species. The as-prepared sensor platform demonstrated excellent performance in analyzing eight common bacteria, drug-resistant strains, mixed bacterial samples, bacterial biofilms and real samples, presenting significant potential in the identification of complex samples for bacterial analysis.
Collapse
Affiliation(s)
- Conglin Guo
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jige Yuan
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xiaoxiao Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yuechen Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
23
|
Song XJ, Ye F, Zhang Y, Sun J, Shentu X, Yu X, Li W, Wu YF. A clenbuterol detection method based on magnetic separation up-conversion fluorescent probe. Food Chem X 2024; 24:101911. [PMID: 39525055 PMCID: PMC11547955 DOI: 10.1016/j.fochx.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, a fluorescence detection method combining aptamer-modified up-conversion nanoparticles (UCNPs) and magnetic nanoparticles (MNPs) was developed for detection of Clenbuterol (CLB). The aptamer-modified magnetic NPs captured CLB, which reacted with the aptamer-modified UCNPs and generated a sandwich complex. The aptamer-modified UCNPs acted as a fluorescence source. The MNP-CLB-UCNP complex was retrieved from the solution using an magnetic field, and the fluorescence intensity was detected by fluorescence spectrophotometry with excitation and emission spectra at 980 nm and in the 400-800 nm region, respectively. The results showed that the fluorescence intensity gradually increased with increasing concentrations of CLB with a good specify. The method was highly sensitive for the quantification of CLB, with a limit of detection of 0.304 ng mL-1. The recovery rate of CLB from pork samples ranged from 84 % to 94.87 %. This fluorescence method enables the sensitive, precise, and accurate quantification of CLB residues in pork samples.
Collapse
Affiliation(s)
- Xin-Jie Song
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology for Agricultural Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Liuxia Street Number 318, Hangzhou 310023, PR China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology for Agricultural Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Liuxia Street Number 318, Hangzhou 310023, PR China
| | - Yao Zhang
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology for Agricultural Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Liuxia Street Number 318, Hangzhou 310023, PR China
| | - Juan Sun
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology for Agricultural Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Liuxia Street Number 318, Hangzhou 310023, PR China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yuan-Feng Wu
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology for Agricultural Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Liuxia Street Number 318, Hangzhou 310023, PR China
| |
Collapse
|
24
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
25
|
Patra S, Sahoo D, Swain SK. Carbon quantum dots in N,N'-Dicyclohexylcarbodiimide assisted cellulose: A fluorescence sensitive approach for ex vivo glucose monitoring in human serum. Int J Biol Macromol 2024; 283:137761. [PMID: 39551307 DOI: 10.1016/j.ijbiomac.2024.137761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Bioactive functional materials have been focused recently because of their superior properties due to structural orientations. Herein, carbon quantum dots (CQDs) encapsulated chemically modified carboxymethyl cellulose (CMC) nanocomposites are designed for non-enzymatic ex vivo glucose sensing by a low-cost green technique. The N,N'-Dicyclohexylcarbodiimide (DCC) assisted Steglich esterification between CMC and glucose is responsible for the fluorescence "Turn ON-OFF" mechanism behind glucose detection. The in vitro sensing study derived a limit of detection (LOD) of 7 nM for glucose covering two linear ranges from 0 to 0.06 mM (R2 = 0.9346) and 1.28 to 61.44 mM (R2 = 0.9704). The sensing system maintained excellent stability under extreme ionic strength and pH conditions and the high selectivity is successfully studied against interferents such as homologous sugars, amino acids, cations, and anions. Clinical potential of the proposed sensor is validated through direct testing in human blood samples against commercial glucometer. The sensor proved its reliability with recovery rates of 100 ± 5 % confirming its promising application in glucose monitoring towards effective diabetes management.
Collapse
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Debasis Sahoo
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
26
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
27
|
Dhahi TS, Yousif Dafhalla AK, Al-Mufti AW, Elobaid ME, Adam T, Gopinath SC. Application of Nanobiosensor engineering in the diagnosis of neurodegenerative disorders. RESULTS IN ENGINEERING 2024; 24:102790. [DOI: 10.1016/j.rineng.2024.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Abarova S, Grancharova T, Zagorchev P, Tenchov B, Pilicheva B. Novel Spectroscopic Studies of the Interaction of Three Different Types of Iron Oxide Nanoparticles with Albumin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1861. [PMID: 39683250 DOI: 10.3390/nano14231861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
In the present work, we studied the interactions of three types of iron oxide nanoparticles (IONPs) with human serum albumin (HSA) by fluorescence and UV-Vis spectroscopy. The determined binding parameters of the reactions and the thermodynamic parameters, including ΔHo, ΔSo, and ΔGo indicated that electrostatic forces play a major role in the interaction of IONPs with HSA. These measurements indicate a fluorescent quenching mechanism based on IONPs-HSA static complex formation. Our study shows that the interaction between HSA and IONPs depends on the nanoparticle structure. The interaction between IONPs and HSA was found to be spontaneous, exothermic, and entropy-driven. HSA was shown to interact moderately with IONPs obtained with plant extracts of Uncaria tomentosa L. (IONP@UT) and Clinopodium vulgare L. (IONP@CV), and firmly with IONPs prepared with Ganoderma lingzhi (Reishi) extract (IONP@GL), via ground-state association. Analysis by modified Stern-Volmer approximation indicates that the quenching mechanism is static. Our study significantly improves our understanding of the mechanisms of interaction, distribution, and transport involved in the interaction between proteins and IONPs. It provides crucial insights into the functional perturbations of albumin binding capacity and the effects of IONPs on the stability and structural modifications of plasma carrier proteins.
Collapse
Affiliation(s)
- Silviya Abarova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Tsenka Grancharova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Boris Tenchov
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Bissera Pilicheva
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
29
|
Bhatt P, Kukkar D, Yadav AK. Carbon dot-graphene oxide-based luminescent nanosensor for creatinine detection in human urine. Mikrochim Acta 2024; 191:745. [PMID: 39548025 DOI: 10.1007/s00604-024-06838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
A fluorescence (FL)-based nanosensor has been devised for creatinine (CR) detection in human urine specimens. The proposed nanosensor utilized a nanocomposite (NC) of carbon dots (CDs) and graphene oxide (GO). The formation of CDs/GO NC reduced the CD FL emission (λexcitation = 390 nm, λemission = 461 nm) by ~ 75%. With the introduction of CR to the NC, the CD emission intensity was reinstated by approximately 70%. The linear detection range for CR was 10-5 to 0.1 mg dL-1 (R2 = 0.998), with a limit of detection of 4.3 × 10-2 mg dL-1. Additionally, CDs/GO NC exhibited outstanding consistency and specificity in recognizing CR within urine specimens from both healthy individuals and patients suffering from chronic kidney disease (CKD). The Bland-Altman assessment (utilizing 25 human urine specimens) displayed remarkable consensus (R2 = 0.995) among the FL approach and the benchmark Jaffe technique. This observation indicates the hands-on usefulness of the nanosensor for identifying CR in biological specimens.
Collapse
Affiliation(s)
- Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Ashok Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| |
Collapse
|
30
|
Karami S, Shamsipur M, Barati A, Mohammadi S, Abedi Kichi Z. Reductive carbon dots for reduction, ratiometric fluorescence determination, and intracellular imaging of Au 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124724. [PMID: 38941755 DOI: 10.1016/j.saa.2024.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Many studies show that ortho-phenylenediamine (OPD) produces an oxidized fluorescent product when exposed to an oxidizing agent that enables the direct or indirect fluorescence detection of a range chemical and biochemical analytes. However, there is no report on this unique optical behavior for other two isomers of phenylenediamine. This study demonstrates that a simple hydrothermal treatment of para-phenylenediamine (PPD) in the presence of sulfuric acid results in the formation of fluorescent N, S-doped carbon dots (CDs) with triple functionalities including the reduction of Au3+ into gold nanoparticles (AuNPs), the stabilization of the produced AuNPs, and the determination of Au3+ concentration through an intrinsic ratiometric fluorescence signal. In the presence of Au3+, the blue emission of CDs at 437 nm quenched, and a green emission at 540 nm emerged. The linear concentration range for the determination of Au3+ was 20 nM-16 µM with a detection limit of 16 nM. Additionally, the dual emissive CDs-AuNPs hybrid probe showed potential for the indirect fluorescence ratiometric determination of cysteine and sulfide ions. The linear concentration range for cysteine and sulfide ions were 0.25-8 μM and 0.1-6 μΜ, with detection limits of 0.095 μM and 0.041 μM, respectively. Accordingly, CDs were applied to detect Au3+ and S2- in real water samples. Moreover, the synthesized CDs showed no cytotoxicity for HeLa cells up to 300 µg mL-1, as determined by the MTT assay. Therefore, their potential for intracellular imaging of Au3+ in living cells was also investigated.
Collapse
Affiliation(s)
- Sara Karami
- Department of Chemistry, Razi University, Kermanshah, Iran
| | | | - Ali Barati
- Department of Chemistry, Razi University, Kermanshah, Iran.
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians University, 80336 Munich, Germany
| |
Collapse
|
31
|
Li S, Hu Z, Shao Y, Zhang G, Wang Z, Guo Y, Wang Y, Cui W, Wang Y, Ren L. Influence of Drugs and Toxins on Decomposition Dynamics: Forensic Implications. Molecules 2024; 29:5221. [PMID: 39598612 PMCID: PMC11596977 DOI: 10.3390/molecules29225221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Drug and toxin-related deaths are common worldwide, making it essential to detect the postmortem concentration of various toxic substances at different stages of decomposition in a corpse. Indeed, determining the postmortem interval (PMI) and cause of death in an advanced stage of decomposed corpses has been a significant challenge in forensic investigations. Notably, the presence of drugs or toxins can have a significant impact on the microbial profile, potentially altering the succession of microbial communities and subsequent production of volatile organic compounds (VOCs), which, in turn, affect insect colonization patterns. This review aims to highlight the importance of investigating the interactions between drugs or toxins, microbial succession, VOC profiles, and insect behavior, which can provide valuable insights into forensic investigations as well as the ecological consequences of toxins occurring in decomposition. Overall, the detection of drugs and other toxins at different stages of decomposition can yield more precise forensic evidence, thereby enhancing the accuracy of PMI estimation and determination of the cause of death in decomposed remains.
Collapse
Affiliation(s)
- Shuyue Li
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China
| | - Zhonghao Hu
- Center of Forensic Science Research, Jining Medical University, Jining 272067, China;
| | - Yuming Shao
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
| | - Guoan Zhang
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
| | - Zheng Wang
- School of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China;
| | - Wen Cui
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Jining 272067, China
| | - Yequan Wang
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Jining 272067, China
| | - Lipin Ren
- School of Forensic Medicine, Jining Medical University, Jining 272067, China; (S.L.); (Y.S.); (G.Z.); (W.C.)
| |
Collapse
|
32
|
Tan K, Ma H, Mu X, Wang Z, Wang Q, Wang H, Zhang XD. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal Bioanal Chem 2024; 416:5871-5891. [PMID: 38436693 DOI: 10.1007/s00216-024-05220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Gold nanoclusters (Au NCs) exhibit broad fluorescent spectra from visible to near-infrared regions and good enzyme-mimicking catalytic activities. Combined with excellent stability and exceptional biocompatibility, the Au NCs have been widely exploited in biomedicine such as biocatalysis and bioimaging. Especially, the long fluorescence lifetime and large Stokes shift attribute Au NCs to good probes for fluorescence sensing and biological detection. In this review, we systematically summarized the molecular structure and fluorescence properties of Au NCs and highlighted the advances in fluorescence sensing and biological detection. The Au NCs display high sensitivity and specificity in detecting iodine ions, metal ions, and reactive oxygen species, as well as certain diseases based on the fluorescence activities of Au NCs. We also proposed several points to improve the practicability and accelerate the clinical translation of the Au NCs.
Collapse
Affiliation(s)
- Kexin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
33
|
Akbari A, Bahram M, Dadashi R, Ehsanimehr S. Sensitive and Selective Determination of Benzidine by Synthesized tragacanth-poly (Acrylic acid-co-acrylamide-GQD) Hydrogel Nanocomposite as a Highly Stable Fluorescent Probe. J Fluoresc 2024:10.1007/s10895-024-03996-z. [PMID: 39441255 DOI: 10.1007/s10895-024-03996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Benzidine is known as a toxic and highly carcinogenic substance, so its determination is an essential issue. Until now, no effective and stable fluorescent probe based on hydrogel nanocomposite has been reported for the determination of this substance. In this work, for the first time, the synthesis and use of tragacanth-poly (acrylic acid-co-acrylamide-GQD) hydrogel nanocomposite (H-GQD) as a novel, high-stable, and selective fluorescence hydrogel nanocomposite for the identification of benzidine is reported. To achieve the maximum responsiveness of this hydrogel nanocomposite to determine benzidine, various parameters such as pH, ionic strength, hydrogel nanocomposite concentration, sensitivity, and selectivity were investigated. The results of the investigations showed that the synthesized H-GQD has excellent stability, selectivity, and linearity range of 0.3 - 12 ppm with a limit of detection of 0.098 ppm. The results of the investigation of real water samples showed that the H-GQD has excellent recovery in the range of 93.3 - 106.6%. Finally, we believe that this H-GQD as a new and highly stable fluorescent probe can be a starting point for its application in various fields and industries to identify benzidine in water samples.
Collapse
Affiliation(s)
- Azra Akbari
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Morteza Bahram
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Reza Dadashi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Sedigheh Ehsanimehr
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
34
|
He J, Wen G, Peng Q, Hou X. The design, synthesis and application of metal-organic framework-based fluorescence sensors. Chem Commun (Camb) 2024; 60:11237-11252. [PMID: 39258376 DOI: 10.1039/d4cc03453h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Fluorescence-based chemical sensors have garnered significant attention due to their rapid response, high sensitivity, cost-effectiveness and ease of operation. Recently, metal-organic frameworks (MOFs) have been extensively utilized as platforms for constructing fluorescence sensors, owing to their ultra-high porosity, flexible tunability, and excellent luminescent properties. This feature article summarizes the progress made mainly by our research group in recent years in the construction strategies, principles, and types of MOF sensors, as well as their applications in quantitative sensing, qualitative identification analysis, and multimodal/multifunctional analysis. In addition, the challenges and an outlook on the future progression of MOF-based sensors are discussed, highlighting how these studies can contribute to addressing these issues. Hopefully, this feature article can provide some valuable guidance for the construction and application of MOFs in fluorescence sensing, thereby broadening their practical applications.
Collapse
Affiliation(s)
- Juan He
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Guijiao Wen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qianqian Peng
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
35
|
Samanta S, Paul P, Mahapatra C, Chatterjee A, Mondal B, Roy UK, Majumdar T, Mallick A. Supramolecular-platform-assisted selective recognition of uric acid with high sensitivity via microenvironment modulation of a self-assembled probe. J Mater Chem B 2024; 12:9545-9549. [PMID: 39315664 DOI: 10.1039/d4tb01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This report demonstrates a unique route for translating a non-responsive fluorophore into a responsive one to optically recognize uric acid (UA) in physiological-mimicking conditions. The explicit 'turn ON-turn OFF' fluorescence switching upon sequential disaggregation-reaggregation of the self-aggregated 3,3'-bisindolyl(phenyl)methane molecules materializes a straightforward, trouble-free supramolecular UA sensing platform.
Collapse
Affiliation(s)
- Saikat Samanta
- Department of Chemistry, University of Kalyani, Nadia, West Bengal-741235, India.
| | - Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal-741235, India.
| | - Chinmoy Mahapatra
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| | - Arunavo Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal-741246, India
| | - Bibhas Mondal
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal-741235, India.
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| |
Collapse
|
36
|
Wen Y, Li J, Gong W, Yu Z, Wang H, Lu S, Li H, Wang J, Sun B. A Smartphone-Integrated Ratiometric Fluorescence Sensor for the Ultrasensitive and Selective Detection of 5-Heneicosylresorcinol in Whole Wheat Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21276-21286. [PMID: 39284571 DOI: 10.1021/acs.jafc.4c05220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Precise on-site monitoring of alkylresorcinols, a vital biomarker, is crucial for verifying whole wheat foods and accurately quantifying the whole wheat content in various consumer and industrial products. Herein, for the first time, we introduce a novel ratiometric fluorescence sensor (CDs@ZIF-8/CdTe@MIP) for ultrasensitive and selective detection of alkylresorcinols. 5-Heneicosylresorcinol (C21:0 AR), the primary alkylresorcinol homologue in whole wheat grains, was selected as the target analyte. This analyte was specifically and selectively recognized by the incorporation of a molecularly imprinted polymer (MIP) layer. Within this nanoreactor, blue-emitting carbon dots embedded in zeolitic imidazolate framework-8 (CDs@ZIF-8) and orange-emitting CdTe quantum dots served as the self-calibration signal and response signal, respectively. Exploiting a photoinduced electron transfer effect between CdTe and C21:0 AR, the established fluorescence sensor exhibited remarkable sensing performance, offering wide linear responses in 0.005-1 μg·mL-1 and 1-80 μg·mL-1 concentration ranges, and achieving a low detection limit of 1.14 ng·mL-1. The proposed assay effectively detected C21:0 AR in real samples, including 8 whole wheat foods and 19 whole wheat grains, demonstrating good recoveries and relative standard deviation. Furthermore, an intelligent sensing platform was established by integrating CDs@ZIF-8/CdTe@MIP with a smartphone-assisted device, thus validating the feasibility of visual and on-site monitoring of C21:0 AR. Because of its rapid response, portability, cost-effectiveness, superior sensitivity, and high selectivity, the proposed sensor serves as a reliable method for the analysis of C21:0 AR, thus having substantial potential for on-site monitoring of whole wheat foods.
Collapse
Affiliation(s)
- Yangyang Wen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jie Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Weiwei Gong
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Zhenjia Yu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hailin Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Shiyi Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
37
|
Kumar A, Kumar K, Kaur K, Arya K, Mehta SK, Singh S, Kataria R. Zn-MOF@rGO nanocomposite: a versatile tool for highly selective and sensitive detection of Pb 2+ and Cu 2+ ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6020-6029. [PMID: 39175357 DOI: 10.1039/d4ay00987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In this work, a hybrid nanocomposite material (PUC2@rGO) was prepared by integrating our previously developed Zn-MOF (PUC2) with reduced graphene oxide (rGO) through the wet impregnation method. The characterization of PUC2@rGO was performed using various analytical techniques, including FTIR, PXRD, FE-SEM, HR-TEM, XPS, zeta potential, and time-resolved FL spectroscopy. Our investigation primarily focused on assessing the composite's capability to detect water pollutants. Notably, PUC2@rGO demonstrated remarkable selectivity and sensitivity towards Pb2+ and Cu2+ ions via fluorescence quenching, exhibiting low detection limits and high quenching constant values. Spectroscopic analysis revealed that electron transfer from PUC2@rGO (donor) to the metal ions (acceptor) resulted in the observed quenching effect induced by Pb2+ and Cu2+ ions. Time-resolved fluorescence studies of PUC2@rGO before and after adding Pb2+ and Cu2+ ions confirmed dynamic quenching, further affirming strong interactions between PUC2@rGO and the targeted metal ions. These findings highlight PUC2@rGO's potential for efficiently detecting heavy metal pollutants in water.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140301, India
| | - Kuldeep Kumar
- Dr. S. S. Bhatnagar University, Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140301, India
| | - Kushal Arya
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Surinder Singh
- Dr. S. S. Bhatnagar University, Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160014, India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
38
|
Song M, Yu R, Shang Y, Tashpulatov K, Sun H, Zeng J. Lanthanide metal-organic frameworks as ratiometric fluorescent probes for real-time monitoring of PFOA photocatalytic degradation process. CHEMOSPHERE 2024; 363:142946. [PMID: 39059635 DOI: 10.1016/j.chemosphere.2024.142946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The assessment of perfluorooctanoic acid (PFOA) photocatalytic degradation usually involves tedious pre-treatment and sophisticated instrumentation, making it impractical to evaluate the degradation process in real-time. Herein, we synthesized a series of lanthanide metal-organic frameworks (Ln-MOFs) with outstanding fluorescent sensing properties and applied them as luminescent probes in the photocatalytic degradation reaction of PFOA for real-time evaluation. As the catalytic reaction proceeds, the fluorescence color changes significantly from green to orange-red due to the different interaction mechanisms between the electron-deficient PFOA and smaller radius F- with the ratiometric fluorescent probe MOF-76 (Tb: Eu = 29:1). The limit of detection (LOD) was calculated to be 0.0127 mM for PFOA and 0.00746 mM for F-. In addition, the conversion rate of the catalytic reaction can be read directly based on the chromaticity value by establishing a three-dimensional relationship graph of G/R value-conversion rate-time (G/R indicates the ratio between green and red luminance values in the image.), allowing for real-time and rapid tracking of the PFOA degradation. The recoveries of PFOA and F- in the actual water samples were 99.3-102.7% (RSD = 2.2-4.4%) and 100.7-105.3% (RSD = 3.9-6.8%), respectively. Both theoretical calculations and experiments reveal that the detection mechanism was attributed to the photoinduced electron transfer and energy transfer between the analytes and the probe. This method simplifies the sample analysis process and avoids the use of bulky instruments, and thus has great potential on the design and development of quantitative time-resolved visualization methods to assess catalytic performance and reveal mechanisms.
Collapse
Affiliation(s)
- Mingzhe Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | - Ruyue Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | - Yanxue Shang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China
| | | | - Hongman Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China.
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum, Qingdao, 266580, China.
| |
Collapse
|
39
|
Cheng R, Jiang X, Xu J, Li Q, Cen J, Hu Z, Zhao Y, Ou S. Aminophenylboronic acid-modified nitrogen-doped graphene quantum dots and their applications in lysine sensing based on interplaying fluorescent mechanisms. Mikrochim Acta 2024; 191:562. [PMID: 39186082 DOI: 10.1007/s00604-024-06634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Using nitrogen-doped graphene quantum dots (N-GQDs) and 3-aminophenylboronic acid (APBA), a novel fluorescence nanosensor was developed. This nanosensor exhibits high selectivity and sensitivity for lysine detection. Its sensing mechanism involves the suppression of electron transfer from APBA to the N-GQDs unit, thereby inhibiting photoinduced electron transfer and initiating internal charge transfer. At an optimal pH of 7, the protonated α-amine and ε-amine groups of lysine interact with the amide and boronic acid moieties, respectively. This interaction results in a redshift of fluorescence, substantially enhancing the response signal. A linear response was observed within a concentration range 0.40-3.01 μM, with the detection limit being 0.005 μM. A similar linear range was also achieved for the determination of lysine in human serum. Density functional theory calculations correlating molecular orbits and geometries support UV-vis and fluorescence findings. Additionally, the nanosensor was successfully applied to detect lysine in living cells and real samples, including milk and honey. For practical application, we construct a lysine-specific sensing platform using a commercial chip (TCS34725) that collects red, blue, and green signals, thereby facilitating the convenient use of the nanosensor. Overall, this study offers new perspectives on the development and application of fluorescent nanosensors for detecting individual amino acids.
Collapse
Affiliation(s)
- Rumei Cheng
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xiaohui Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingyuan Xu
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiyuan Li
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiaying Cen
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhixuan Hu
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yune Zhao
- The Eye Hospital, School of Ophthalmology & Optometry, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Shengju Ou
- Hangzhou Femtosecond Test Co. Ltd., Zhejiang University National Park, Zhejiang University, Hangzhou, 310013, China
| |
Collapse
|
40
|
Pan M, Hu X, Gao R, Zhou B, Sun J, Zhang D, Liu X, Wang Y, Wang S. Fluorescent solid-state strips based on SiO 2 shell-stabilized perovskite nanocrystals applying for magnetic aptasensing detection of aflatoxin B 1 toxin in food. Food Chem 2024; 449:139316. [PMID: 38615633 DOI: 10.1016/j.foodchem.2024.139316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
In this work, the perovskite fluorescent nanocrystals (CsPbBr3) were successfully synthesized and wrapped with SiO2 shell, utilized for the assembly of solid-state detection strip capable of conveniently and specifically detection of aflatoxin B1 (AFB1). The SiO2 coating aimed to enhance the stability of CsPbBr3 nanocrystals. The resulting CsPbBr3@SiO2 material exhibited remarkable fluorescence properties, and further self-assembled onto solid-state plate, generating AFB1-specific quenched fluorescence at a specific wavelength of 515 nm. When combined with the capture of AFB1 by magnetic nanoparticles conjugated with aptamers (MNPs-Apt), it was achieved the good separation and specific detection of AFB1 toxin in food matrices. The constructed fluorescent solid-state detection strip based on CsPbBr3@SiO2 exhibited good response to AFB1 toxin within a linear range of 0.1-100 ng mL-1 and an impressive detection limit as low as 0.053 ng mL-1. This presents a new strategy for the rapid screening and convenient detection of highly toxic AFB1.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaochun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Boxi Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingming Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
41
|
Pant D, Sitha S. Enhanced molecular first hyperpolarizabilities with Reichardt's type of zwitterions: a computational study on roles of various monocyclic aromatic bridges. J Mol Model 2024; 30:284. [PMID: 39060804 PMCID: PMC11282158 DOI: 10.1007/s00894-024-06055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
CONTEXT This work reports structure-property correlations of 27 zwitterions Reichardt's types of zwitterions. Focuses are twofold, to see the (1) impacts of metamerism with Reichardt's vs Brooker's types of zwitterions and (2) impacts of monocyclic aromatic rings as bridges. All the molecules considered here have pyridinium (common acceptor: A) and p-phenylene-dicyanomethanide (common donor: D). Fundamental molecular properties like dipole moments (μ), polarizabilities (α), hyperpolarizabilities (β), and adiabatic absorptions were computed only for the Reichardt types and compared with the literature reported respective Brooker's types of zwitterions. As an impact of metamerism, in general 2-3 times enhanced hyperpolarizabilities (β) were observed for Reichardt's compared to Brooker's types. Exceptions were observed with some triazine bridges and furan bridge, where Brooker's types were found to be more efficient. As impacts of aromatic bridges, in general, 6-sevenfold enhanced β compared to well-known traditional bridges and enhanced β were observed compared to D-A directly connected zwitterion (benzene bridge: sixfold enhanced β). Current findings show that the aromatic bridge control with Reichardt's types of zwitterions is more efficient and thus may be employed as an effective strategy for the designing of functional molecular chromophores for various other fundamental areas. METHODS All computations were performed with Gaussian 09. Geometry optimizations and computations of fundamental properties were carried out with HF, B3LYP, CAM-B3LYP, and ωB97xD methodologies, with 6-31G(d,p) and aug-cc-pVDZ basis sets. For adiabatic excitations, computations were carried out using TDDFT and TDHF approaches. For the computations of the response properties (like the nonlinear optical responses), CPHF approach was used.
Collapse
Affiliation(s)
- Divya Pant
- Department of Chemical Sciences, Auckland Park Kingsway (APK) Campus, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Sanyasi Sitha
- Department of Chemical Sciences, Auckland Park Kingsway (APK) Campus, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
42
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
43
|
Torrez M, Brajanovska A, Slowinska K. Selective Excitation of the 1L α State of Tryptophan in Collagen-like Peptides Can Reveal the Formation of a Heterotrimer. ACS OMEGA 2024; 9:29848-29856. [PMID: 39005791 PMCID: PMC11238237 DOI: 10.1021/acsomega.4c03600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Fluorescence emission from tryptophan residues has been often used to probe the protein structure due to its transition dipole moment sensitivity to the local environment. We report the fluorescence study of a collagen-like peptide heterotrimer modified with the tryptophan in the X position (X-Y-Gly) n that shows the diminished fluorescence in a homotrimer versus a heterotrimer when the 1Lα state is selectively excited. This behavior is only observed in folded peptides, below the helix-to-coil transition temperature, and can be explained by long-range interactions between the tryptophans located on different strands within the triple helix, not by the change in the local environment. Our results suggest that tryptophan homotransfer is possible at distances much longer than the R 0 (0.5-0.7 nm) previously estimated. These observations imply that the energy transfer between the 1Lα states of proximal tryptophans can be facilitated by constraining their rotation by the helix and, thus, can be employed as a reporter of heterotrimer formation in biosensors.
Collapse
Affiliation(s)
- Miriam Torrez
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, California 90840, United States
| | - Aleksandra Brajanovska
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, California 90840, United States
| | - Katarzyna Slowinska
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, California 90840, United States
| |
Collapse
|
44
|
Shipovskaya AB, Ushakova OS, Volchkov SS, Shipenok XM, Shmakov SL, Gegel NO, Burov AM. Chiral Nanostructured Glycerohydrogel Sol-Gel Plates of Chitosan L- and D-Aspartate: Supramolecular Ordering and Optical Properties. Gels 2024; 10:427. [PMID: 39057450 PMCID: PMC11275427 DOI: 10.3390/gels10070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
A comprehensive study was performed on the supramolecular ordering and optical properties of thin nanostructured glycerohydrogel sol-gel plates based on chitosan L- and D-aspartate and their individual components in the X-ray, UV, visible, and IR ranges. Our comparative analysis of chiroptical characteristics, optical collimated transmittance, the average cosine of the scattering angle, microrelief and surface asymmetry, and the level of structuring shows a significant influence of the wavelength range of electromagnetic radiation and the enantiomeric form of aspartic acid on the functional characteristics of the sol-gel materials. At the macrolevel of the supramolecular organization, a complex topography of the surface layer and a dense amorphous-crystalline ordering of polymeric substances were revealed, while at the nanolevel, there were two forms of voluminous scattering domains: nanospheres with diameters of 60-120 nm (L-) and 45-55 nm (D-), anisometric particles of lengths within ~100-160 (L-) and ~85-125 nm (D-), and widths within ~10-20 (L-) and ~20-30 nm (D-). The effect of optical clearing on glass coated with a thin layer of chitosan L-(D-)aspartate in the near-UV region was discovered (observed for the first time for chitosan-based materials). The resulting nanocomposite shape-stable glycerohydrogels seem promising for sensorics and photonics.
Collapse
Affiliation(s)
- Anna B. Shipovskaya
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Olga S. Ushakova
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Sergei S. Volchkov
- Department of Physics, Yuri Gagarin Saratov State Technical University, Saratov 410054, Russia;
- Saratov Branch, Institute of Radio Engineering and Electronics of Russian Academy of Sciences, 38 Zelyonaya St., Saratov 410019, Russia
| | - Xenia M. Shipenok
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Sergei L. Shmakov
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Natalia O. Gegel
- Institute of Chemistry, Saratov State University, Saratov 410012, Russia; (A.B.S.); (O.S.U.); (X.M.S.); (N.O.G.)
| | - Andrey M. Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov 410049, Russia;
| |
Collapse
|
45
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
46
|
Ozdemir A, Lin JL, Gulfen M, Chen CH. Advancing mass spectrometry-based chemical imaging: A noncontact continuous flow surface probe in mass spectrometry for enhanced signal detection and spatial resolution. Talanta 2024; 273:125858. [PMID: 38442563 DOI: 10.1016/j.talanta.2024.125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
A new method has been developed for mass spectrometric imaging of small molecules and proteins on tissue or in thinly sliced materials. A laser desorption Venturi electrospray ionization-mass spectrometer was developed for molecular imaging. This method combines laser desorption (LD) and electrospray ionization (ESI) systems before a mass spectrometer (MS). To carry out laser desorption, samples are excited with a laser from the back side of a glass substrate. The desorbed molecules or particles are then captured by a solvent flow. In the ESI system, these desorbed particles and molecules are ionized. The spray part of the solvent system consists of two capillaries: one delivers solvent to the sample plate sides to capture desorbed molecules and particles, and the other carries the solution to the mass spectrometry side using the Venturi effect. A 2D stage facilitates sampling. The system is designed to minimize the sample size after desorption using a 355 nm diode laser, and it is optimized for molecules of various sizes, including organic molecules, amino acids, and proteins. Despite challenging atmospheric conditions for protein desorption, this specialized design enables the collection of protein spectra. The amino acids and other small molecules showed high sensitivity in the MSI measurements. This innovative MS imaging system can be directly applied to real tissue systems and other plant samples to visualize the molecular level distributions.
Collapse
Affiliation(s)
- Abdil Ozdemir
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Esentepe, Sakarya, Turkey.
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mustafa Gulfen
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Esentepe, Sakarya, Turkey
| | | |
Collapse
|
47
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
48
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
49
|
Safarkhani M, Kim H, Han S, Taghavimandi F, Park Y, Umapathi R, Jeong YS, Shin K, Huh YS. Advances in sprayable sensors for nerve agent detection. Coord Chem Rev 2024; 509:215804. [DOI: 10.1016/j.ccr.2024.215804] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Sharma D, Wangoo N, Sharma RK. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu 2+-PPi interaction using bimetallic Au-Ag nanoclusters. Anal Chim Acta 2024; 1305:342584. [PMID: 38677840 DOI: 10.1016/j.aca.2024.342584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Inorganic pyrophosphatase (PPase) is key enzyme playing a key role in biochemical transformations such as biosynthesis of DNA and RNA, bone formation, metabolic pathways associated with lipid, carbohydrate and phosphorous. It has been reported that lung adenocarcinomas, colorectal cancer, and hyperthyroidism disorders can result from abnormal level of PPase. Therefore, it is of notable significance to develop simple and effective real time assay for PPase enzyme activity monitoring for screening of many metabolic pathways as well as for early disease diagnosis. RESULT The fluorometric detection of PPase enzyme in near infrared region-1 (NIR-1) has been carried out using bimetallic nanoclusters (LA@AuAg NCs). The developed sensing strategy was based on quenching of fluorescence intensity of LA@AuAg NCs upon interaction with copper (Cu2+) ions. The off state of LA@AuAg_Cu2+ ensemble was turned on upon addition of pyrophosphate anion (PPi) due to strong binding interaction between PPi and Cu2+. The catalytic conversion of PPi into phosphate anion (Pi) in the presence of PPase led to liberation of Cu2+ ions, and again quenched off state was retrieved due to interaction of free Cu2+ with LA@AuAg NCs. The ultrasensitive detection of PPase was observed in the linear range of 0.06-250 mU/mL with LOD as 0.0025 mU/mL. The designed scheme showed good selectivity towards PPase enzyme in comparison to other bio-substrates, along with good percentage recovery for PPase detection in real human serum samples. SIGNIFICANCE The developed NIR based assay is ultrasensitive, highly selective and robust for PPase enzyme and can be safely employed for other enzymes detection. This highly sensitive nature of biosensor was result of involvement of fluorescence-based technique and synergistic effect of dual metal in NIR based bimetallic NCs. Moreover, owing to the emission in NIR domain, in future, these nanoclusters can be safely employed for many biomedical applications for In vivo studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|