1
|
Wang D, Huang G, Yu C, Wang Y, Baek N, Zhu R. Biocatalytic degradation of environmental endocrine disruptor chlorobenzene via surfactant-optimized laccase-mediator system. Front Bioeng Biotechnol 2024; 12:1469029. [PMID: 39469519 PMCID: PMC11513312 DOI: 10.3389/fbioe.2024.1469029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
The emergence of environmental endocrine disruptor chlorobenzene (CB) in surface water and its potential environmental impacts have attracted serious global attention. It is still very difficult to achieve effective degradation of it by catalytic oxidation process under mild conditions. Here, an optimized method for degrading CB in aqueous solution using Trametes versicolor laccase and surfactant-assisted laccase-mediator (SALM) system was investigated. The use of a Tween 80 surfactant enhanced the solubility of CB and promoted its efficient degradation. Under favorable conditions, the SALM system yielded a degradation efficiency of 43.5% and a dechlorination efficiency of 41.55% for CB (25 mg/L) within 24 h. The possible degradation pathway of CB by this system was speculated by detecting the intermediates produced during the reaction. The outcome of the proliferation assays on MCF-7 human breast cancer cells demonstrated a reduction in the estrogenic activity of the CB solution following treatment with the SALM system. Furthermore, the influence of the quantity and positional variation of chlorine substituents on the degradation process was methodically investigated. Moreover, molecular analyses were employed to study the detailed interaction mechanism between laccase and CB, which revealed that the hydrophobic interaction contributed dominantly to binding process. These findings provide an efficient and environmentally friendly degradation system for the development of purification strategies for halogenated pollutants.
Collapse
Affiliation(s)
- Dan Wang
- College of Textile and Clothing, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Intelligent and Green Textile, Xinjiang University, Urumqi, China
| | - Guifang Huang
- College of Textile and Clothing, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Intelligent and Green Textile, Xinjiang University, Urumqi, China
| | - Chunming Yu
- College of Textile and Clothing, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Intelligent and Green Textile, Xinjiang University, Urumqi, China
| | - Yawen Wang
- College of Textile and Clothing, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Intelligent and Green Textile, Xinjiang University, Urumqi, China
| | - Nawon Baek
- Department of Clothing and Textiles, Kyungpook National University, Daegu, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu, Republic of Korea
| | - Ruofei Zhu
- College of Textile and Clothing, Xinjiang University, Urumqi, China
- Xinjiang Key Laboratory of Intelligent and Green Textile, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Li J, Yan F, Huang B, Zhang M, Wu X, Liu Y, Ruan R, Zheng H. Preparation, Structural Characterization, and Enzymatic Properties of Alginate Lyase Immobilized on Magnetic Chitosan Microspheres. Appl Biochem Biotechnol 2024; 196:5403-5418. [PMID: 38158490 DOI: 10.1007/s12010-023-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Alginate lyase is an enzyme that catalyses the hydrolysis of alginate into alginate oligoalginates. To enhance enzyme stability and recovery, a facile strategy for alginate lyase immobilization was developed. Novel magnetic chitosan microspheres were synthesized and used as carriers to immobilize alginate lyase. The immobilization of alginate lyase on magnetic chitosan microspheres was successful, as proven by Fourier transform infrared spectroscopy and X-ray diffraction spectra. Enzyme immobilization exhibited the best performance at an MCM dosage of 1.5 g/L, adsorption time of 2.0 h, glutaraldehyde concentration of 0.2%, and immobilization time of 2.0 h. The optimal pH of the free alginate lyase was 7.5, and this pH value was shifted to 8.0 after immobilization. No difference was observed at the optimal temperature (45 °C) for the immobilized and free enzymes. The immobilized alginate lyase displayed better thermal stability than the free alginate lyase. The Km values of the free and immobilized enzymes were 0.05 mol/L and 0.09 mol/L, respectively. The immobilized alginate lyase retained 72% of its original activity after 10 batch reactions. This strategy was found to be a promising method for immobilizing alginate lyase.
Collapse
Affiliation(s)
- Jinmeng Li
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Feng Yan
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Bingbing Huang
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Mengyan Zhang
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Xiaodan Wu
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Yuhuan Liu
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, St. Paul, MN, 55108, USA
| | - Hongli Zheng
- College of Food Science and Technology and International Institute of Food Innovation and State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
3
|
Ali N, Khan F, Song W, Khan I, Kareem A, Rahman S, Khan A, Ali F, Al Balushi RA, Al-Hinaai MM, Nawaz A. Robust polymer hybrid and assembly materials from structure tailoring to efficient catalytic remediation of emerging pollutants. CHEMOSPHERE 2024; 360:142408. [PMID: 38789056 DOI: 10.1016/j.chemosphere.2024.142408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
A massive amount of toxic substances and harmful chemicals are released every day into the outer environment, imposing serious environmental impacts on both land and aquatic animals. To date, research is constantly in progress to determine the best catalytic material for the effective remediation of these harmful pollutants. Hybrid nanomaterials prepared by combining functional polymers with inorganic nanostructures got attention as a promising area of research owing to their remarkable multifunctional properties deriving from their entire nanocomposite structure. The versatility of the existing nanomaterials' design in polymer-inorganic hybrids, with respect to their structure, composition, and architecture, opens new prospects for catalytic applications in environmental remediation. This review article provides comprehensive detail on catalytic polymer nanocomposites and highlights how they might act as a catalyst in the remediation of toxic pollutants. Additionally, it provides a detailed clarification of the processing of design and synthetic ways for manufacturing polymer nanocomposites and explores further into the concepts of precise design methodologies. Polymer nanocomposites are used for treating pollutants (electrocatalytic, biocatalytic, catalytic, and redox degradation). The three catalytic techniques that are frequently used are thoroughly illustrated. Furthermore, significant improvements in the method through which the aforementioned catalytic process and pollutants are extensively discussed. The final section summarizes challenges in research and the potential of catalytic polymer nanocomposites for environmental remediation.
Collapse
Affiliation(s)
- Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Fawad Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Wang Song
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ibrahim Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Abdul Kareem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Suhaib Rahman
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Arif Nawaz
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Bakar B, Akbulut M, Ulusal F, Ulu A, Özdemir N, Ateş B. Horseradish Peroxidase Immobilized onto Mesoporous Magnetic Hybrid Nanoflowers for Enzymatic Decolorization of Textile Dyes: A Highly Robust Bioreactor and Boosted Enzyme Stability. ACS OMEGA 2024; 9:24558-24573. [PMID: 38882139 PMCID: PMC11170722 DOI: 10.1021/acsomega.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Recently, hybrid nanoflowers (hNFs), which are accepted as popular carrier supports in the development of enzyme immobilization strategies, have attracted much attention. In this study, the horseradish peroxidase (HRP) was immobilized to mesoporous magnetic Fe3O4-NH2 by forming Schiff base compounds and the HRP@Fe3O4-NH2/hNFs were then synthesized. Under optimal conditions, 95.0% of the available HRP was immobilized on the Fe3O4-NH2/hNFs. Structural morphology and characterization of synthesized HRP@Fe3O4-NH2/hNFs were investigated. The results demonstrated that the average size of HRP@Fe3O4-NH2/hNFs was determined to be around 220 nm. The ζ-potential and magnetic saturation values of HRP@Fe3O4-NH2/hNFs were -33.58 mV and ∼30 emu/g, respectively. Additionally, the optimum pH, optimum temperature, thermal stability, kinetic parameters, reusability, and storage stability were examined. It was observed that the optimum pH value shifted from 5.0 to pH 8.0 after immobilization, while the optimum temperature shifted from 30 to 80 °C. K m values were calculated to be 15.5502 and 7.6707 mM for free HRP and the HRP@Fe3O4-NH2/hNFs, respectively, and V max values were calculated to be 0.0701 and 0.0038 mM min-1. The low K m value observed after immobilization indicated that the affinity of HRP for its substrate increased. The HRP@Fe3O4-NH2/hNFs showed higher thermal stability than free HRP, and its residual activity after six usage cycles was approximately 45%. While free HRP lost all of its activity within 120 min at 65 °C, the HRP@Fe3O4-NH2/hNFs retained almost all of its activity during the 6 h incubation period at 80 °C. Most importantly, the HRP@Fe3O4-NH2/hNFs demonstrated good potential efficiency for the biodegradation of methyl orange, phenol red, and methylene blue dyes. The HRP@Fe3O4-NH2/hNFs were used for a total of 8 cycles to degrade methyl orange, phenol red, and methylene blue, and degradation of around 81, 96, and 56% was obtained in 8 h, respectively. Overall, we believe that the HRP@Fe3O4-NH2/hNFs reported in this work can be potentially used in various industrial and environmental applications, particularly for the biodegradation of recalcitrant compounds, such as textile dyes.
Collapse
Affiliation(s)
- Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Mustafa Akbulut
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Fatma Ulusal
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Tarsus University, 33400, Mersin, Türkiye
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Nalan Özdemir
- Department of Chemistry, Faculty of Science, Erciyes University, 38280 Kayseri, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| |
Collapse
|
5
|
Perez AV, Gaitan-Oyola JA, Vargas-Delgadillo DP, Castillo JJ, Barbosa O, Fernandez-Lafuente R. Synthesis and Characterization of Cross-Linked Aggregates of Peroxidase from Megathyrsus maximus (Guinea Grass) and Their Application for Indigo Carmine Decolorization. Molecules 2024; 29:2696. [PMID: 38893568 PMCID: PMC11173754 DOI: 10.3390/molecules29112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.
Collapse
Affiliation(s)
- Angie V. Perez
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Jorge A. Gaitan-Oyola
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Diana P. Vargas-Delgadillo
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - John J. Castillo
- Grupo de Investigación en Bioquímica y Microbiología, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Oveimar Barbosa
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus Cantoblanco UAM-CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
6
|
Guillén-Pacheco A, Ardila Y, Peñaranda PA, Bejarano M, Rivas R, Osma JF, Akle V. Low toxicity of magnetite-based modified bionanocomposites with potential application for wastewater treatment: Evaluation in a zebrafish animal model. CHEMOSPHERE 2024; 358:142081. [PMID: 38677608 DOI: 10.1016/j.chemosphere.2024.142081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
In recent years, the escalating concerns surrounding environmental pollution and the need for sustainable wastewater treatment solutions have underscored the significance of developing technologies that can efficiently treat wastewater while also reducing negative ecological effects. In this context, our study aims to contribute to the advancement of sustainable technologies for wastewater treatment, by investigating the effects that bare magnetite nanoparticles and those functionalized with the enzyme laccase could have in an aquatic animal, zebrafish, at various life cycle stages. Exposure to magnetite nanoparticles shows some effects on embryo hatching, survival rates, or larval behavior at higher concentrations. For both treatments, the hatching percentages were close to 80% compared to 93% for the control group. At the end of the observations in larvae, survival in all the evaluated groups was higher than 90%. Additionally, we evaluated the accumulation of nanoparticles in various stages of zebrafish. We found that, although there was accumulation during embryonic stages, it did not affect normal development or subsequent hatching. Iron levels in different organs such as gills, muscles, gastrointestinal tract, and brain were also evaluated in adults. Animals treated with a mix of food and nanoparticles at 10 μg/mL (Food group) presented a higher concentration of iron accumulation in muscle, gastrointestinal tract, and gills compared to the untreated control group. Although iron levels increased depending on the dose and exposure method applied, they were not statistically significant from the control groups. Our findings suggest that bionanocomposites evaluated here can be considered safe for removal of contaminants in wastewater without toxic effects or detrimental accumulation fish's health.
Collapse
Affiliation(s)
- Amaimen Guillén-Pacheco
- CMUA. Department of Electrical and Electronic Engineering, Universidad de Los Andes, Bogota, 111711, Colombia; Laboratory of Neuroscience and Circadian Rhythms. School of Medicine, Universidad de Los Andes, Bogota, 111711, Colombia.
| | - Yeferzon Ardila
- Laboratory of Neuroscience and Circadian Rhythms. School of Medicine, Universidad de Los Andes, Bogota, 111711, Colombia.
| | - Paula Andrea Peñaranda
- CMUA. Department of Electrical and Electronic Engineering, Universidad de Los Andes, Bogota, 111711, Colombia.
| | - Miranda Bejarano
- Laboratory of Neuroscience and Circadian Rhythms. School of Medicine, Universidad de Los Andes, Bogota, 111711, Colombia.
| | - Ricardo Rivas
- Department of Chemistry, Science Faculty, Universidad de Los Andes, Bogota, 111711, Colombia.
| | - Johann F Osma
- CMUA. Department of Electrical and Electronic Engineering, Universidad de Los Andes, Bogota, 111711, Colombia; Department of Biomedical Engineering, Universidad de Los Andes, Bogota, 111711, Colombia.
| | - Veronica Akle
- Laboratory of Neuroscience and Circadian Rhythms. School of Medicine, Universidad de Los Andes, Bogota, 111711, Colombia.
| |
Collapse
|
7
|
Bouzayani B, Sanromán MÁ. Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules 2024; 29:2188. [PMID: 38792049 PMCID: PMC11124390 DOI: 10.3390/molecules29102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Materials based on polymer hydrogels have demonstrated potential as innovative Fenton catalysts for treating water. However, developing these polymer-supported catalysts with robust stability presents a significant challenge. This paper explores the development and application of polymer-supported heterogeneous Fenton catalysts for the environmental remediation of wastewater, emphasizing the enhancement of metal incorporation into catalysts for improved efficiency. The study begins with an introduction to the heterogeneous Fenton process and its relevance to wastewater treatment. It further delves into the specifics of polymer-supported heterogeneous Fenton catalysts, focusing on iron oxide, copper complexes/nanoparticles, and ruthenium as key components. The synthesis methods employed to prepare these catalysts are discussed, highlighting the innovative approaches to achieve substantial metal incorporation. Operational parameters such as catalyst dosage, pollutant concentration, and the effect of pH on the process efficiency are thoroughly examined. The catalytic performance is evaluated, providing insights into the effectiveness of these catalysts in degrading pollutants. Recent developments in the field are reviewed, showcasing advancements in catalyst design and application. The study also addresses the stability and reusability of polymer-supported heterogeneous Fenton catalysts, critical factors for their practical application in environmental remediation. Environmental applications are explored, demonstrating the potential of these catalysts in addressing various pollutants. The Conclusions offers future perspectives, underlining the ongoing challenges and opportunities in the field, and the importance of further research to enhance the efficacy and sustainability of polymer-supported heterogeneous Fenton catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Bakhta Bouzayani
- Laboratory of Physical Chemistry of the Solid State, Department of Chemical, University of Sfax, Sfax 3000, Tunisia;
- CINTECX, Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria Ángeles Sanromán
- CINTECX, Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
8
|
Xu X, Chen T, Xu L, Lin J. Immobilization of laccase on magnetic nanoparticles for enhanced polymerization of phenols. Enzyme Microb Technol 2024; 172:110331. [PMID: 37839253 DOI: 10.1016/j.enzmictec.2023.110331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Laccase is an efficient biocatalyst for oxidative polymerization of organic substrates. However, cost of enzyme preparation, low stability and residual protein diminish the efficiency of laccase mediated polymerization. In this work, a series of silicon dioxide coated ferroferric oxide magnetic nanoparticles were modified by different functional groups including γ-methacryloxypropyltrimethoxy, succinic anhydride, glutaraldehyde and polyethylene imine. Infrared spectra indicated the magnetic carriers have been successfully modified. Vibrating sample magnetometer (VSM) analysis revealed that all of these carriers showed high magnetic responsiveness after the surface functionalization. Laccase from Cerrena sp. HYB07 was then respectively immobilized covalently on these functionalized magnetic carriers. All the immobilized laccases displayed higher thermostability than free laccase and glutaraldehyde functionalized support (named FSNG) immobilized laccase showed better performance. These immobilized laccases all showed higher efficiency than free laccase for oxidative polymerization of catechol and hydroquinone. The immobilized laccases could be separated from the water insoluble polymerization products. The polymerization product of hydroquinone by FSNG immobilized laccase showed the average polymerization degree of the poly(hydroquinone) was six (DP=6). This work provided a comprehensive exploration of laccase immobilization on magnetic carrier for catalyzing polymerization of phenols.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Tianheng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
9
|
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, Qian J. Application of Immobilized Enzymes in Juice Clarification. Foods 2023; 12:4258. [PMID: 38231709 DOI: 10.3390/foods12234258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolei Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Guajardo N. Immobilization of Lipases Using Poly(vinyl) Alcohol. Polymers (Basel) 2023; 15:polym15092021. [PMID: 37177168 PMCID: PMC10181104 DOI: 10.3390/polym15092021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Lipases are very versatile enzymes because they catalyze various hydrolysis and synthesis reactions in a chemo-, regio-, and stereoselective manner. From a practical point of view, immobilization allows the recovery and stabilization of the biocatalyst for its application in different types of bioreactors. Among the various support options for immobilizing lipases is polyvinyl alcohol (PVA), which, when functionalized or combined with other materials, provides different characteristics and properties to the biocatalyst. This review analyzes the multiple possibilities that PVA offers as a material to immobilize lipases when combined with alginate, chitosan, and hydroxypropylmethylcellulose (HPMC), incorporating magnetic properties together with the formation of fibers and microspheres. The articles analyzed in this review were selected using the Scopus database in a range of years from 1999 to 2023, finding a total of 42 articles. The need to expand knowledge in this area is due to the great versatility and scaling possibilities that PVA has as a support for lipase immobilization and its application in different bioreactor configurations.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| |
Collapse
|
11
|
Kalsoom U, Khalid N, Ibrahim A, Ashraf SS, Bhatti HN, Ahsan Z, Zdarta J, Bilal M. Biocatalytic degradation of reactive blue 221 and direct blue 297 dyes by horseradish peroxidase immobilized on iron oxide nanoparticles with improved kinetic and thermodynamic characteristics. CHEMOSPHERE 2023; 312:137095. [PMID: 36334735 DOI: 10.1016/j.chemosphere.2022.137095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In present study, we describe the biodegradation of direct blue (DB) 297 and reactive blue (RB) 221 by immobilizing horseradish peroxidase (HRP) isolated from fresh leaves of Moringa Oliefera on iron oxide nanoparticles. Iron oxide nanoparticles were synthesized by co-precipitation method and showed a maximum immobilization efficiency of 87%. The surface topography of iron oxide nanoparticles was envisaged by scanning electron microscopy (SEM), results showed that magnetic nanoparticles (MNPs) were in the form of aggregates having size of 1 μm. Furthermore, immobilization was confirmed via functional group identification performed by Fourier transformed infrared spectroscopy (FTIR). Immobilization phenomena displaced the optimum temperature from 35 °C to 50 °C moreover, pH optima were altered from 5.0 to 7.0. Vmax and Km for free and immobilized HRP, were 303 U/mg and 1.66 mM and 312 U/mg and 1.94 mM, respectively. Enzymatic thermodynamic measurements (ΔH*, ΔS*, Ea, ΔG*) were also evaluated for immobilized HRP and its free counterpart. Optimum degradation of reactive blue (RB) and direct blue (DB) 297 with free and immobilized HRP was observed at pH 5 and at temperature 40 °C respectively. The removal efficiency of DB 297 and RB 221 with free HRP was 75% and 86% while with immobilized HRP was 81% and 92% respectively. Furthermore, biodegradation of reactive blue (RB) 221 and direct blue (DB) 297 with immobilized and free biocatalyst was also investigated by Fourier transform infrared spectroscopy (FTIR) by identification of groups involved in dye degradation. FTIR results confirmed the 100% degradation of dyes. Immobilized HRP retained significant catalytic activity after five consecutive cycles of dye degradation. In conclusion, Fe3O4 nanoparticles are promising and environmentally friendly media for enzyme immobilization. Moreover, immobilized HRP showed more thermal stability, pH stability and higher dye degradation efficiency as compared to free HRP. Furthermore, the immobilized HRP, economically more convenient and easily removable from reaction media. Owing to its thermal stability, ease of separation from reaction media and reusability, the magnetically separatable immobilized HRP can be exploited successfully for treatment of dye contaminated textile effluents.
Collapse
Affiliation(s)
- Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Pakistan.
| | - Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Affaf Ibrahim
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
12
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|
13
|
Shokri M, Tarighi S, Faramarzi MA, Sadjadi S, Mojtabavi S. Biodegradation of acid orange-7 dye by immobilized laccase on functionalized ZSM-5 zeolites: Investigation of the role of functionalization and SiO2/Al2O3 ratio of zeolite on the catalytic performance. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal. Molecules 2022; 27:molecules27238522. [PMID: 36500612 PMCID: PMC9738685 DOI: 10.3390/molecules27238522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, polyethyleneimine was combined with magnetic Fe3O4 nanoparticles through the bridging of carboxyl-functionalized ionic liquid, and laccase was loaded onto the carrier by Cu2+ chelation to achieve laccase immobilization (MCIL-PEI-Cu-lac). The carrier was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, X-ray diffraction analysis, magnetic hysteresis loop and so on. MCIL-PEI-Cu-lac has good immobilization ability; its loading and activity retention could reach 52.19 mg/g and 91.65%, respectively. Compared with free laccase, its thermal stability and storage stability have been significantly improved, as well. After 6 h of storage at 60 °C, 51.45% of the laccase activity could still be retained, and 81.13% of the laccase activity remained after 1 month of storage at 3 °C. In the pollutants removal test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MCIL-PEI-Cu-lac could reach 100% within 10 h, and the removal efficiency could still be maintained 60.21% after repeated use for 8 times. In addition, MCIL-PEI-Cu-lac also has a good removal effect on other phenolic pollutants (such as bisphenol A, phenol, 4-chlorophenol, etc.). Research results indicated that an efficient strategy for laccase immobilization to biodegrade phenolic pollutants was developed.
Collapse
|