1
|
Ouyang B, Wang G, Hu Z, Liu Q, Zhao W, Zhao X. A novel directed evolution approach for co-evolution of β-glucosidase activity and organic acid tolerance. J Biotechnol 2025; 401:1-10. [PMID: 39983995 DOI: 10.1016/j.jbiotec.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Directed evolution is a potent tool for protein engineering; however, Error-prone PCR and DNA Shuffling often lead to a high frequency of negative and reverse mutations, especially in the case of large genes. This study introduces two innovative techniques to tackle these challenges: Segmental error-prone PCR (SEP) and Directed DNA shuffling (DDS). SEP involves averagely dividing large genes into small fragments, independently and randomly mutagenizing them in vitro, and reassembling them as well as other unmutated fragments in Saccharomyces cerevisiae. DDS selectively amplifies mutated fragments of positive variants from SEP and reassembles them in S. cerevisiae to produce complete genes with cumulative positive mutations. We have used these two techniques to simultaneously improve the activity of β-glucosidase and its tolerance to organic acids, which validates the effectiveness and feasibility of the approach.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Shenzhen Longgang Buji High School, Shenzhen 518123, China
| | - Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Wenwen Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
2
|
Iqbal MW, Shi Y, Nawaz MZ, Xu B, Haider SZ, Sun X, Yuan Q. Engineering the pH optimum of tyrosine ammonia lyase from Rhodobacter sphaeroides via computationally guided rational strategy. Int J Biol Macromol 2025; 308:142261. [PMID: 40122430 DOI: 10.1016/j.ijbiomac.2025.142261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Tyrosine Ammonia Lyase (TAL) is a key enzyme used for the commercial production of p-coumaric acid. The currently known TAL enzymes encoded by diverse microbial species showed optimal activity at alkaline pH 9.0-10.5. However, efficient TAL variants that function at neutral pH are required to meet biorefinery demands. In this study, a computationally guided rational strategy was used to perform site-directed mutagenesis by decreasing negative charges on the surface residues and enhancing the positive charges near the active site of the TAL enzyme from the bacterium Rhodobacter sphaeroides. In total, 21 residues, including six near the active site and 15 on the enzyme's surface, were selected and subjected to site-directed mutagenesis. The mutants P68H, P9D, and P484E, demonstrated a pH optimal shift from 9.0 to 8.0 and increased activity by 0.8-, 4.8-, and 4.0-fold, respectively. These single optimal mutants were combined in different combinations (P9D/P68H, P9D/P484E, and P68H/P484E), and double mutants were designed. The double mutant P9D/P484E showed a shift in the pH from 9.0 to 7.0, with a 6-fold increase in the enzyme's activity at neutral pH. The double mutant (P9D/P484E) of the TAL enzyme from R. sphaeroides demonstrates potential for application in the industrial-scale production of p-coumaric acid.
Collapse
Affiliation(s)
- Muhammad Waleed Iqbal
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyang Shi
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Beisong Xu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Syed Zeeshan Haider
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Feng W, Kong Q, Wang X, Zhao K, Lv C, Yu Z. Modulating the pH-activity profile of the glucose isomerase from Thermotoga marimita by introducing positively and negatively charged residues. Biophys Chem 2025; 318:107382. [PMID: 39721420 DOI: 10.1016/j.bpc.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI). Thirteen residues, eight surface amino acids and five near the vicinity of active sites, were selected by introducing positively charged residues near the active site (mutant E237R/N298K/N337R) and negatively charged residues at the enzyme surface (mutant R112E/K220E) and were site-mutated on the basis of computational analysis. In mutants E237R/N298K/N337R and R112E/K220E, there was a decrease in the optimal pH of the glucose isomerase from 7.0 to 6.0 and 5.5, respectively, and an increase in the optimal temperature of E237R/N298K/N337R from 95 °C to 100 °C. At pH 5.5 and pH 6.0, the specific activities of R112E/K220E and E237R/N298K/N337R were 2.81 and 1.79 times greater than that of the wild-type enzyme, respectively, and their thermostabilities were greater than that of TMGI. Therefore, these two mutants (E237R/N298K/N337R and R112E/K220E) have great potential for use in the industrial production of high-fructose corn syrup. Moreover, glucose isomerase was expressed in Pichia pastoris, which demonstrated that the high expression and secretion capacity of Pichia pastoris could be used to reduce the production cost of high-fructose corn syrup.
Collapse
Affiliation(s)
- Weihuan Feng
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China.
| | - Xihui Wang
- Qingdao Pubai Biotechnology Co., Ltd., Qingdao, Shandong 266520, China
| | - Ke Zhao
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Chao Lv
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Zengyu Yu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| |
Collapse
|
4
|
Wang F, Li Y, Wang Y, Xu X, Cao X, Cao T, Zhang W, Liu W. Engineering lipase TLL to improve its acid tolerance and its biosynthesis in Trichoderma reesei for biodiesel production from acidified oil. BIORESOURCE TECHNOLOGY 2024; 413:131521. [PMID: 39326534 DOI: 10.1016/j.biortech.2024.131521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Lipases catalyze the synthesis of biodiesel, which is an important renewable alternative energy source. Cost-efficient conversion of waste acidified oil to biodiesel entails acid-tolerant lipases which have not been extensively studied. This study showed that the commonly used Thermomyces lanuginosus lipase TLL displayed a weak acid tolerance and an unsatisfactory performance in biodiesel production from acidified oil. Directed evolution of TLL identified one TLL-T3 variant with three residue substitutions (A69S/V150P/N222G). TLL-T3 displayed significantly enhanced acid tolerance, and its application in acidified oil treatment led to a biodiesel yield up to 90 % (w/w). A scaled-up production of TLL-T3 in Trichoderma reesei was further achieved and the highest extracellular lipase activity reached 16,123 U/mL after fermentation optimization. These results provide new insights into structural adaptation to acid tolerance by lipases and show that TLL-T3 holds great potential in commercial biodiesel production from waste acidified oil.
Collapse
Affiliation(s)
- Fengchao Wang
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China; Weifang KDN Biotech Co., Ltd., Weifang 261500, PR China
| | - Yuqiang Li
- Weifang KDN Biotech Co., Ltd., Weifang 261500, PR China
| | - Yali Wang
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Xiaodong Xu
- Weifang KDN Biotech Co., Ltd., Weifang 261500, PR China
| | - Xingnan Cao
- Weifang KDN Biotech Co., Ltd., Weifang 261500, PR China
| | - Tishuang Cao
- Weifang KDN Biotech Co., Ltd., Weifang 261500, PR China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| |
Collapse
|
5
|
Hou R, Zhang Q, Wu W, Ma Y, Zhang R, Liu M, Chen J, Wen W, Zhang J, Peng Z. Acid Resistance Engineering of Endoglucanase for the Degradation of Wine Lees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26316-26327. [PMID: 39545837 DOI: 10.1021/acs.jafc.4c08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Wine lees is a low value biomass resource rich in cellulose, with great potential for producing organic fertilizers and chemicals. However, the high acidity of wine lees limits the catalytic efficiency of the conversion tool endoglucanase. Here, we expressed endoglucanase tCel5A from Trichoderma reesei in Pichia pastoris, and the combination of promoter AOX1 and signal peptide SUC2 resulted in a highly active expression of 4632.81 U/mg. Subsequently, the catalytic center design and surface charge modification strategy resulted in mutants T88H/W255H and S45D/T55D/T59D exhibiting catalytic activity twice and three times higher than WT at pH 3.0, respectively. Finally, when the solid-liquid ratio was 1:15 (w/v), the degradation rate of wine lees was nearly double that of WT. The degradation products contained a variety of industrial and pharmaceutical raw components, including the antioxidant and anticonvulsant isopiperolein B. This study accelerates the green and sustainable management of wine lees.
Collapse
Affiliation(s)
- Ruiyang Hou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qianli Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenmiao Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaping Ma
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Rongya Zhang
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Minchang Liu
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wu Wen
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610051, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
6
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
7
|
Xie T, Zhou L, Han L, Liu Z, Cui W, Cheng Z, Guo J, Shen Y, Zhou Z. Simultaneously improving the activity and thermostability of hyperthermophillic pullulanase by modifying the active-site tunnel and surface lysine. Int J Biol Macromol 2024; 276:133642. [PMID: 38964696 DOI: 10.1016/j.ijbiomac.2024.133642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Pullulanases are important starch-debranching enzymes that mainly hydrolyze the α-1,6-glycosidic linkages in pullulan, starch, and oligosaccharides. Nevertheless, their practical applications are constrained because of their poor activity and low thermostability. Moreover, the trade-off between activity and thermostability makes it challenging to simultaneously improve them. In this study, an engineered pullulanase was developed through reshaping the active-site tunnel and engineering the surface lysine residues using the pullulanase from Pyrococcus yayanosii CH1 (PulPY2). The specific activity of the engineered pullulanase was increased 3.1-fold, and thermostability was enhanced 1.8-fold. Moreover, the engineered pullulanase exhibited 11.4-fold improvement in catalytic efficiency (kcat/Km). Molecular dynamics simulations demonstrated an anti-correlated movement around the entrance of active-site tunnel and stronger interactions between the surface residues in the engineered pullulanase, which would be beneficial to the activity and thermostability improvement, respectively. The strategies used in this study and dynamic evidence for insight into enzyme performance improvement may provide guidance for the activity and thermostability engineering of other enzymes.
Collapse
Affiliation(s)
- Ting Xie
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Junling Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yaqin Shen
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214101, People's Republic of China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
8
|
Xie T, Zhou L, Han L, You C, Liu Z, Cui W, Cheng Z, Guo J, Zhou Z. Engineering hyperthermophilic pullulanase to efficiently utilize corn starch for production of maltooligosaccharides and glucose. Food Chem 2024; 446:138652. [PMID: 38402758 DOI: 10.1016/j.foodchem.2024.138652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Pullulanase is a starch-debranching enzyme that hydrolyzes side chain of starch, oligosaccharides and pullulan. Nevertheless, the limited activities of pullulanases constrain their practical application. Herein, the hyperthermophilic type II pullulanase from Pyrococcus yayanosii CH1 (PulPY2) was evolved by synergistically engineering the substrate-binding pocket and active-site lids. The resulting mutant PulPY2-M2 exhibited 5-fold improvement in catalytic efficiency (kcat/Km) compared to that of PulPY2. PulPY2-M2 was utilized to develop a one-pot reaction system for efficient production of maltooligosaccharides. The maltooligosaccharides conversion rate of PulPY2-M2 reached 96.1%, which was increased by 5.4% compared to that of PulPY2. Furthermore, when employed for glucose production, the glucose productivity of PulPY2-M2 was 25.4% and 43.5% higher than that of PulPY2 and the traditional method, respectively. These significant improvements in maltooligosaccharides and glucose production and the efficient utilization of corn starch demonstrated the potential of the engineered PulPY2-M2 in starch sugar industry.
Collapse
Affiliation(s)
- Ting Xie
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Cuiping You
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Junling Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
9
|
Xu L, Nawaz MZ, Khalid HR, Waqar-Ul-Haq, Alghamdi HA, Sun J, Zhu D. Modulating the pH profile of vanillin dehydrogenase enzyme from extremophile Bacillus ligniniphilus L1 through computational guided site-directed mutagenesis. Int J Biol Macromol 2024; 263:130359. [PMID: 38387643 DOI: 10.1016/j.ijbiomac.2024.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Vanillin dehydrogenase (VDH) has recently come forward as an important enzyme for the commercial production of vanillic acid from vanillin in a one-step enzymatic process. However, VDH with high alkaline tolerance and efficiency is desirable to meet the biorefinery requirements. In this study, computationally guided site-directed mutagenesis was performed by increasing the positive and negative charges on the surface and near the active site of the VDH from the alkaliphilic marine bacterium Bacillus ligniniphilus L1, respectively. In total, 20 residues including 15 from surface amino acids and 5 near active sites were selected based on computational analysis and were subjected to site-directed mutations. The optimum pH of the two screened mutants including I132R, and T235E from surface residue and near active site mutant was shifted to 9, and 8.6, with a 2.82- and 2.95-fold increase in their activity compared to wild enzyme at pH 9, respectively. A double mutant containing both these mutations i.e., I132R/T235E was produced which showed a shift in optimum pH of VDH from 7.4 to 9, with an increase of 74.91 % in enzyme activity. Therefore, the double mutant of VDH from the L1 strain (I132R/T235E) produced in this study represents a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Lingxia Xu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Zohaib Nawaz
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hafiz Rameez Khalid
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Waqar-Ul-Haq
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
10
|
Zhou Y, Sun X, Hu J, Miao Y, Zi X, Luo X, Fu Y. Enhanced catalytic activity and stability of lactate dehydrogenase for cascade catalysis of D-PLA by rational design. J Biotechnol 2024; 382:1-7. [PMID: 38185431 DOI: 10.1016/j.jbiotec.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Serving as a vital medical intermediate and an environmentally-friendly preservative, D-PLA exhibits substantial potential across various industries. In this report, the urgent need for efficient production motivated us to achieve the rational design of lactate dehydrogenase and enhance catalytic efficiency. Surprisingly, the enzymatic properties revealed that a mutant enzyme, LrLDHT247I/D249A/F306W/A214Y (LrLDH-M1), had a viable catalytic advantage. It demonstrated a 3.3-fold increase in specific enzyme activity and approximately a 2.08-fold improvement of Kcat. Correspondingly, molecular docking analysis provided a supporting explanation for the lower Km and higher Kcat/Km of the mutant enzyme. Thermostability analysis exhibited increased half-lives and the deactivation rate constants decreased at different temperatures (1.47-2.26-fold). In addition, the mutant showed excellent resistance abilities in harsh environments, particularly under acidic conditions. Then, a two-bacterium (E. coli/pET28a-lrldh-M1 and E. coli/pET28a-ladd) coupled catalytic system was developed and realized a significant conversion rate (77.7%) of D-phenyllactic acid, using 10 g/L L-phenylalanine as the substrate in a two-step cascade reaction.
Collapse
Affiliation(s)
- Yufeng Zhou
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiaolong Sun
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Jiahuan Hu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yingjie Miao
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Xiangyu Zi
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xi Luo
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China.
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang, Zhejiang 318000, China.
| |
Collapse
|
11
|
Shen W, Dalby PA, Guo Z, Li W, Zhu C, Fan D. Residue Effect-Guided Design: Engineering of S. Solfataricus β-Glycosidase to Enhance Its Thermostability and Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16669-16680. [PMID: 37812684 DOI: 10.1021/acs.jafc.3c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
β-Glycosidase from Sulfolobus solfataricus (SS-BGL) is a highly effective biocatalyst for the synthesis of compound K (CK) from glycosylated protopanaxadiol ginsenosides. In order to improve the thermal stability of SS-BGL, molecular dynamics simulations were used to determine the residue-level binding energetics of ginsenoside Rd in the SS-BGL-Rd docked complex and to identify the top ten critical contributors. Target sites for mutations were determined using dynamic cross-correlation mapping of residues via the Ohm server to identify networks of distal residues that interact with the key binding residues. Target mutations were determined rationally based on site characteristics. Single mutants and then recombination of top hits led to the two most promising variants SS-BGL-Q96E/N97D/N302D and SS-BGL-Q96E/N97D/N128D/N302D with 2.5-fold and 3.3-fold increased half-lives at 95 °C, respectively. The enzyme activities relative to those of wild-type for ginsenoside conversion were 161 and 116%, respectively..
Collapse
Affiliation(s)
- Wenfeng Shen
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Paul A Dalby
- Department of Biochemical Engineering, UCL, London WCIE 6BT, U.K
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wied Vej 10, Aarhus 8000, Denmark
| | - Weina Li
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
12
|
Zhang Z, Zhao Z, Huang K, Liang Z. Acid-resistant enzymes: the acquisition strategies and applications. Appl Microbiol Biotechnol 2023; 107:6163-6178. [PMID: 37615723 DOI: 10.1007/s00253-023-12702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Enzymes have promising applications in chemicals, food, pharmaceuticals, and other variety products because of their high efficiency, specificity, and environmentally friendly properties. However, due to the complexity of raw materials, pH, temperature, solvents, etc., the application range of enzymes is greatly limited in the industry. Protein engineering and enzyme immobilization are classical strategies to overcome the limitations of industrial applications. Although the pH tendency of enzymes has been extensively researched, the mechanism underlying enzyme acid resistance is unclear, and a less practical strategy for altering the pH propensity of enzymes has been suggested. This review proposes that the optimum pH of enzyme is determined by the pKa values of active center ionizable amino acid residues. Three levels of acquiring acid-resistant enzymes are summarized: mining from extreme environments and enzyme databases, modification with protein engineering and enzyme microenvironment engineering, and de novo synthesis. The industrial applications of acid-resistant enzymes in chemicals, food, and pharmaceuticals are also summarized. KEY POINTS: • The mechanism of enzyme acid resistance is fundamentally determined. • The three aspects of the method for acquiring acid-resistant enzymes are summarized. • Computer-aided strategies and artificial intelligence are used to obtain acid-resistant enzymes.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China.
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China.
| |
Collapse
|