1
|
Yang X, Liang J, Bao Q, Pan W, Wang Y, Wang K, Gong Y, Wu H, Liu Q. Preparation and characterization of polyvinyl alcohol and chitosan composite film with cassia oil encapsulated in β-cyclodextrin and its application in fresh banana. Int J Biol Macromol 2025; 301:140246. [PMID: 39870266 DOI: 10.1016/j.ijbiomac.2025.140246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films. FTIR, XRD, and SEM analyses demonstrated that cassia oil microcapsules (COM) were uniformly dispersed throughout the film and exhibited excellent compatibility with the matrix. The inclusion of 30 % COM improved the film's UV-blocking properties from 86.15 % to 91.03 %. Additionally, due to its hydrophobic nature, CO significantly reduced the water content to 9.02 % and 10.67 %. Furthermore, the COM enhanced the film's tensile strength from 21.18 MPa to 43.21 MPa, and increased its antioxidant capacity to 36.87 %. The results also indicated that 30 % COM significantly enhanced the film's antimicrobial activity against Escherichia coli and Staphylococcus aureus with inhibition zone diameters of 12.5 mm and 11.5 mm, while maintaining biosafety, as evidenced by unaltered cell survival rates in BEAS-2B and L02 cells. The film containing 30 % COM exhibited excellent preservation capacity for bananas, effectively extending their shelf life. These findings suggest that films containing COM have the potential to replace traditional plastic packaging in practical applications.
Collapse
Affiliation(s)
- Xiangjun Yang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Junjun Liang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Qingnan Bao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Weixuan Pan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Yue Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Kehui Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China
| | - Yinming Gong
- Shuren School of Yangzhou Middle School Education Group, Yangzhou 225001, PR China
| | - Huiwen Wu
- Science and Technology Center of Fenyang College, Shanxi Medical University, Fenyang 032200, PR China; Cultivation Key Laboratory of Metabolic Cardiovascular Diseases Research, Fenyang 032200, PR China; Department of Oncology, Shanxi Province Fenyang Hospital, Fenyang 032200, PR China.
| | - Qi Liu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China.
| |
Collapse
|
2
|
Chen X, Ding X, Huang Y, Zhao Y, Chen G, Xu X, Xu D, Jiao B, Zhao X, Liu G. Recent Advances in Polysaccharide-Based Nanocomposite Films for Fruit Preservation: Construction, Applications, and Challenges. Foods 2025; 14:1012. [PMID: 40232022 PMCID: PMC11941983 DOI: 10.3390/foods14061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
With the constantly escalating demand for safe food packaging, the utilization of biodegradable polysaccharide-based nanocomposite films is being explored as an alternative to traditional petrochemical polymer films (polyvinyl alcohol, polybutylene succinate, etc.). Polysaccharide-based films have excellent mechanical properties, water vapor transmission rates, and other physical characteristics. Films can fulfill numerous demands for fruit packaging in daily life. Additionally, they can be loaded with various types of non-toxic and non-biocidal materials such as bioactive substances and metal nanomaterials. These materials enhance bacterial inhibition and reduce oxidation in fruits while maintaining fundamental packaging functionality. The article discusses the design and preparation strategies of polysaccharide-based nanocomposite films and their application in fruit preservation. The types of films, the addition of materials, and their mechanisms of action are further discussed. In addition, this research is crucial for fruit preservation efforts and for the preparation of polysaccharide-based films in both scientific research and industrial applications.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xin Ding
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanyan Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China (X.Z.)
| | - Xijuan Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China (X.Z.)
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| |
Collapse
|
3
|
Luan QY, Wang YS, Chen Y, Chen HH. Review on improvement of physicochemical properties of sodium alginate-based edible films. J Food Sci 2025; 90:e70016. [PMID: 39902914 DOI: 10.1111/1750-3841.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Sodium alginate (SA) is favored for its film-forming ability, biodegradability, and non-toxicity, often serving as a substrate for edible films. However, the application of SA-based edible films in the food industry is limited due to their inherent strong hydrophilicity and high brittleness. To enhance their physical and chemical properties, various exogenous compounds are frequently incorporated. This review summarizes the advancements in the physicochemical properties (mechanical, optical, thermal, hydrophobic, and barrier properties) of SA-based edible films over the past decade. It discusses the types of exogenous additives used and their effects on the properties of these films. Additionally, it highlights the applications of SA-based edible films enriched with functional compounds in areas such as food freshness detection, antioxidation, and antibacterial activity. It has been observed that the characteristics of SA-based edible films vary depending on the properties and structures of the exogenous compounds used, as well as their interactions with the SA matrix. SA-based edible films with functional additives demonstrate significant potential for extending food shelf life and enhancing freshness detection. However, challenges such as scalability, high production costs, and limited application scope still need to be addressed in future research.
Collapse
Affiliation(s)
- Qian-Yu Luan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yan Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P. R. China
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
4
|
Li H, Wang Z, Zhu F, Li G. Alginate-based active and intelligent packaging: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135441. [PMID: 39260631 DOI: 10.1016/j.ijbiomac.2024.135441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Alginate-based packaging materials have emerged as promising alternatives to conventional petroleum-based plastics due to their biodegradability, renewability, and versatile functionalities. This review provides a comprehensive analysis of the recent advances in the development and application of alginate-based films and coatings for food packaging. The composition and fabrication methods of alginate-based packaging materials are discussed, highlighting the incorporation of various functional compounds to enhance their physicochemical properties. The mechanisms of action and the factors influencing the release and migration of active compounds from the alginate matrix are explored. The application of alginate-based packaging materials for the preservation of various food products, including meat, fish, dairy, fruits, and vegetables, is reviewed, demonstrating their effectiveness in extending shelf-life and maintaining quality. The development of alginate-based pH-sensitive indicators for intelligent food packaging is also discussed, focusing on the colorimetric response of natural pigments to spoilage-related pH changes. Furthermore, the review highlights the challenges and future perspectives of alginate-based packaging materials, emphasizing the need for novel strategies to improve their performance, sustainability, and industrial adoption.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Zongji Wang
- Regenerative Medicine Institute, Linyi University, Linyi 276000, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
5
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
6
|
Manaila E, Craciun G. Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation-Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media. Gels 2024; 10:609. [PMID: 39330211 PMCID: PMC11431746 DOI: 10.3390/gels10090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Hybrid hydrogels with superabsorbent properties based on acrylic acid (20%), sodium alginate (0.5%) and poly(ethylene oxide) (0.1%) were obtained by electron-beam irradiation between 5 and 20 kGy, and are characterized by different physical and chemical methods; the first results reported showed gel fractions over 87%, cross-link densities under 9.9 × 103 mol/cm3 and swelling degrees of 400 g/g. Two types of hydrogels (without and with 0.1% initiator potassium persulfate) have been subjected to swelling and deswelling experiments in different swelling media with different pHs, chosen in accordance with the purpose for which these superabsorbent materials were obtained, i.e., water and nutrients carriers for agricultural purposes: 6.05 (distilled water), 7.66 (tap water), 5.40 (synthetic nutrient solution) and 7.45 (organic nutrient solution). Swelling kinetics and swelling dynamics have been also studied in order to investigate the influence of swelling media type and pH on the absorption phenomenon. The swelling and deswelling behaviors were influenced by the hydrogel characteristics and pH of the swelling media. Both the polymeric chain relaxation (non-Fickian diffusion) and macromolecular relaxation (super case II) phenomenon were highlighted as a function of swelling media type.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
7
|
Li M, Yang Z, Zhai X, Li Z, Huang X, Shi J, Zou X, Lv G. Incorporation of Lactococcus lactis and Chia Mucilage for Improving the Physical and Biological Properties of Gelatin-Based Coating: Application for Strawberry Preservation. Foods 2024; 13:1102. [PMID: 38611406 PMCID: PMC11011328 DOI: 10.3390/foods13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.
Collapse
Affiliation(s)
- Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaobo Zou
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| |
Collapse
|
8
|
Yang Z, Li M, Li Y, Huang X, Li Z, Zhai X, Shi J, Zou X, Xiao J, Sun Y, Povey M, Gong Y, Holmes M. Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chem 2024; 437:137891. [PMID: 37922795 DOI: 10.1016/j.foodchem.2023.137891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The poor biological, mechanical and water-resistance properties of sodium alginate/guar gum film (SG) limit its application in food preservation. To overcome this disadvantage, we added β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion (BOPE) to enhance the mechanical and water resistance properties of SG film, and added green synthesized silver nanoparticles (AgNPS) and Lycium ruthenicum extract (LA) to improve the biological properties of the film. The properties of BOPE was optimized using Box-Behnken design (BBD). Scanning electron microscope and Fourier transform infrared results revealed the change of structure and molecular interaction in the SG film after the addition of AgNPS, LA, and optimized BOPE. The 2.0%BOPE-loaded film containing AgNPS/LA with the enhanced mechanical, barrier, BO retention, and biological properties not only improved the preservation effect on mushroom (A. bisporus), but also maintained structural stability. Thus, the 2.0%BOPE-loaded SG/LA/AgNPS film has considerable potential in active packaging applications.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
9
|
Wang X, Zhang H, Zhang X, Shen C, Liu M, Liu S, Han Y, He T. A comparison study on effects of polyglycerols on physical properties of alginate films. Int J Biol Macromol 2024; 254:127879. [PMID: 37944722 DOI: 10.1016/j.ijbiomac.2023.127879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The water solubility and brittleness of unplasticized sodium alginate (SA) films hinder their widely application. Glycerol (GLY), the most commonly used plasticizer, is compatible with alginate due to the formation of hydrogen bonding owing to the hydroxyl functional groups. However, GLY is a small water-soluble molecule, and the resulting leaching problem may lead to decline in mechanical properties of SA films. Aimed at better plasticizers for alginate (ALG) films, this work focuses on the effects of polymerization degree of polyglycerol on physical properties of ALG films. The cross-sectional morphology, crystallinity, mechanical and thermal properties, water solubility, water content and barrier property of ALG films plasticized with GLY, triglycerol (TG) and decaglycerol (DG) were characterized and discussed. Results illustrated that owing to the long molecular chains of TG and DG and their strong interactions with ALG matrix, the plasticized films possessed better mechanical properties, higher water content and lower water solubility. Moreover, it was worth mentioning that even after water treatment, the mechanical properties of ALG-TG and ALG-DG films were superior than that plasticized with GLY. The results of this study were believed to provide particular insights into the plasticization mechanism and the improvement in performance of SA films in packaging applications.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Huiling Zhang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Xinyue Zhang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Chang Shen
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Man Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Shanshan Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Yanyang Han
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China.
| |
Collapse
|
10
|
Abbasi A, Sabahi S, Bazzaz S, Tajani AG, Lahouty M, Aslani R, Hosseini H. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat. Int J Biol Macromol 2023; 246:125660. [PMID: 37399877 DOI: 10.1016/j.ijbiomac.2023.125660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/06/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Currently, microbial bioactive substances (postbiotics) are considered a promising tool for achieving customer demand for natural preservatives. This study aimed to investigate the effectiveness of an edible coating developed by Malva sylvestris seed polysaccharide mucilage (MSM) and postbiotics from Saccharomyces cerevisiae var. boulardii ATCC MYA-796 (PSB) for the preservation of lamb meat. PSB were synthesized, and a gas chromatograph connected to a mass spectrometer and a Fourier transform infrared spectrometer were used to determine their chemical components and main functional groups, respectively. The Folin-Ciocalteu and aluminium chloride techniques were utilized to assess the total flavonoid and phenolic levels of PSB. Following that, PSB has been incorporated into the coating mixture, which contains MSM, and its potential radical scavenging and antibacterial activities on lamb meat samples were determined after 10 days of 4 °C storage. PSB contains 2-Methyldecane, 2-Methylpiperidine, phenol, 2,4-bis (1,1-dimethyl ethyl), 5,10-Diethoxy-2,3,7,8- tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d] pyrazine, and Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmethyl)-, (5'alpha) as well as various organic acids with significant radical scavenging activity (84.60 ± 0.62 %) and antibacterial action toward Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and Listeria innocua as foodborne pathogens. The edible PSB-MSM coating effectively reduced microbial growth and increased meat shelf life (> 10 days). When PSB solutions were added to the edible coating, the moisture content, pH value, and hardness of the samples were also more successfully maintained (P < 0.05). The PSB-MSM coating inhibited lipid oxidation in meat samples considerably and diminished the formation of primary as well as secondary oxidation intermediates (P < 0.05). Additionally, when MSM + 10 % PSB edible coating was utilized, the sensory properties of the samples were maintained more well during preservation. As a significance, the use of edible coatings based on PSB and MSM is efficient in decreasing microbiological and chemical degradation in lamb meat during preservation.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Stachowiak N, Kowalonek J, Kozlowska J, Burkowska-But A. Stability Studies, Biodegradation Tests, and Mechanical Properties of Sodium Alginate and Gellan Gum Beads Containing Surfactant. Polymers (Basel) 2023; 15:polym15112568. [PMID: 37299365 DOI: 10.3390/polym15112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The excessive presence of single-use plastics is rapidly degrading our natural environment on a global scale due to their inherent resistance to decomposition. Wet wipes used for personal or household purposes contribute significantly to the accumulation of plastic waste. One potential solution to address this problem involves developing eco-friendly materials that possess the ability to degrade naturally while retaining their washing capabilities. For this purpose, the beads from sodium alginate, gellan gum, and a mixture of these natural polymers containing surfactant were produced using the ionotropic gelation method. Stability studies of the beads by observing their appearance and diameter were performed after incubation in solutions of different pH values. The images showed that macroparticles were reduced in size in an acidic medium and swelled in solution of pH-neutral phosphate-buffered saline. Moreover, all the beads first swelled and then degraded in alkaline conditions. The beads based on gellan gum and combining both polymers were the least sensitive to pH changes. The compression tests revealed that the stiffness of all macroparticles decreased with the increasing pH of the solutions in which they were immersed. The studied beads were more rigid in an acidic solution than in alkaline conditions. The biodegradation of macroparticles was assessed using a respirometric method in soil and seawater. It is important to note that the macroparticles degraded more rapidly in soil than in seawater.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Jolanta Kowalonek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Aleksandra Burkowska-But
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska St. 1, 87-100 Torun, Poland
| |
Collapse
|
12
|
Yang Z, Li C, Wang T, Li Z, Zou X, Huang X, Zhai X, Shi J, Shen T, Gong Y, Holmes M, Povey M. Novel gellan gum-based probiotic film with enhanced biological activity and probiotic viability: Application for fresh-cut apples and potatoes. Int J Biol Macromol 2023; 239:124128. [PMID: 36963535 DOI: 10.1016/j.ijbiomac.2023.124128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
A novel probiotic film based on gellan gum (GN), cranberry extract (CE), and Lactococcus lactis (LA) was developed in the present study. The fluorescence and SEM image results showed that GN/CE film containing LA was successfully fabricated. The incorporation of LA significantly enhanced the antibacterial activity of the film. The presence of CE strengthened the antioxidant activity and LA survivability in the film. The combination of LA (0-1.0 %) and CE (0.5-1.0 %) improved the mechanical property of the film through the formation of density structure. The best comprehensive properties were obtained with the film containing 2.0 %LA and 0.5 %CE. The GN/2.0 %LA/0.5 %CE film also showed the optimal preservation effect on fresh-cut potatoes and apples. Hence, GN/2.0 %LA/0.5 %CE probiotic film has proved to be suitable for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuang Li
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|