1
|
Wu T, Sugiarto S, Yang R, Sathasivam T, Weerasinghe UA, Chee PL, Yap O, Nyström G, Kai D. From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. MATERIALS HORIZONS 2025; 12:2789-2819. [PMID: 39895545 DOI: 10.1039/d4mh01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lignin is the second most abundant renewable and sustainable biomass resource. Developing advanced manufacturing to process lignin/lignocellulose into functional materials could reduce the consumption of petroleum-based materials. 3D printing provides a promising strategy to realize complex and customized geometries of lignin materials. The heterogeneity and complexity of lignin hinder its processing via additive manufacturing, but the recent advancement in lignin modification and polymerization provides new opportunities. Here, we summarize the recent state-of-the-art 3D printing of lignin materials, including the selection and formulation of lignin materials based on different printing techniques, the chemical modification of lignin for enhanced printability, and the related application fields. Additionally, we highlight the significant role of the 3D printing of lignocellulose biomass materials, such as wood powder and agricultural wastes. It was concluded that the most challenging part is to enhance the printability of lignin materials through modification and pretreatment of lignin while keeping the whole process green and sustainable. Beyond 3D printing, we further discuss the development of smart lignin materials and their potential for 4D printing. Ultimately, we discuss the current challenges and potential opportunities for the additive manufacturing of lignin materials. We believe this review can raise awareness among researchers about the potential of lignin materials as whole materials for constructing blocks and can promote the development of 3D/4D printing of lignin towards sustainability.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Ruochen Yang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Udyani Aloka Weerasinghe
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Odelia Yap
- School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
- Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, CH-8092, Zürich, Switzerland
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
2
|
Cao Y, Su J, Xiao Y, Ren J, Algadi H, Yeszhanova E, Sartayeva A, Huang J, Guo Z, Tynybekov B, Min Y. Functional biomass/biological macromolecular phase change composites and their applications in different scenarios: A review. Int J Biol Macromol 2025; 306:141377. [PMID: 39988159 DOI: 10.1016/j.ijbiomac.2025.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
With the growth of energy demand and the depletion of fossil fuels, the need for new energy storage materials is urgent. Phase change materials (PCMs) play a key role in thermal energy storage and can effectively balance energy supply and demand. There is increasing interest in biological macromolecules derived from nature, which have good biocompatibility, non-toxicity, easy biodegradability and tunable mechanical properties. The integration of PCMs with biological macromolecules is highly promising as it combines the advantages of both to meet the requirements of eco-friendly energy solutions. This paper reviews the recent research on this topic, covering biomass source selection, the functionalization process, various phase change composites based on biological macromolecules and biomass, as well as biomass-derived PCMs. Furthermore, the paper explores their performance across various application domains, including degradable materials, solar energy storage and utilization, building energy conservation, multifunctional wearable devices, electromagnetic interference shielding, flame retardant materials, and thermally stimulated drug delivery. Finally, the paper outlines prospective avenues for future research.
Collapse
Affiliation(s)
- Yan Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingtao Su
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongshuang Xiao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Juanna Ren
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK; College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hassan Algadi
- Department of electrical engineering, college of engineering, Najran university, Najran 11001, Saudi Arabia
| | - Elmira Yeszhanova
- Faculty of biology and biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Akmaral Sartayeva
- The Department of Biology, Institute of natural science, Kazakh National Women's Teacher Training University, Almaty 050040, Kazakhstan
| | - Jintao Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Bekzat Tynybekov
- Faculty of biology and biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
| | - Yonggang Min
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Dinu R, Cibotaru S, Swanson DD, Mija A. Sustainable Development of High-performance Poly(ester-imine) Biobased Thermosets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503483. [PMID: 40279547 DOI: 10.1002/advs.202503483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Indexed: 04/27/2025]
Abstract
The massive production of materials based on petroleum derivatives and often toxic compounds generates significant environmental pollution. In this context, the development of environmentally friendly alternatives becomes crucial. This study investigates the synthesis of eco-friendly and high-performance poly(ester-imine) thermosets by sustainable approaches. Starting with vanillin or syringaldehyde, the synthesis involves the introduction of imine linkages within the epoxy monomer's structure. A new strategy is used through the cross-linking of the designed epoxy monomers using anhydrides, without initiators. This approach conducts to novel poly(ester-imine) thermosets with high performances that exceed those reported in previous studies. The thermo-mechanical investigations show that the novel-designed thermosets have performant properties with storage moduli at room temperature ranging between 0.3‒1.74 GPa and glass transition values between 90 and 170 °C. The Limit Oxygen Index (LOI) in the range of 24‒36%, confirms the excellent flame-retardant properties without the addition of supplementary additives. Their low-density values (1.05‒1.36 g cm-3) and the very low WA% ≈0.09-1.15 % after 24 h make them well-suited for a range of uses where weight and hydrophobicity considerations are critical. The obtained results place these poly(ester-imine) materials as promising sustainable candidates for a wide range of high-end applications.
Collapse
Affiliation(s)
| | | | - David D Swanson
- Air Force Office of Scientific Research (AFOSR) European Office of Aerospace Research and Development (EOARD), 86 Blenheim Crescent, Ruislip HA4 7HD, UK
| | | |
Collapse
|
4
|
Cavalcante LAO, de Oliveira Moraes Miranda JF, Silva MGC, Pereira MJF, Marques DSC, do Nascimento Junior AJ, de Oliveira IM, Maia RT, de Lima MCA, de Lima Aires A, da Cruz Filho IJ. Alkaline lignin from Clarisia racemosa wood: antioxidant, immunomodulatory, and schistosomicidal activities, and its use as an excipient in praziquantel release. Int J Biol Macromol 2025; 310:143372. [PMID: 40258560 DOI: 10.1016/j.ijbiomac.2025.143372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Lignins are versatile macromolecules with a wide range of applications across various industrial sectors. In this groundbreaking study, alkaline lignin was successfully isolated and characterized from the wood of Clarisia racemosa, a tree of significant economic value in the Amazon timber industry. Lignin extraction was performed through acid extraction followed by delignification. Characterization of the isolated lignin revealed its GSH-type structure, along with thermal stability and low molecular weight. Subsequent investigations focused on the lignin's biological properties. In vitro, the assays demonstrated its potent antioxidant activity, effectively scavenging free radicals. Lignin also exhibited low toxicity and notable immunomodulatory properties, promoting the proliferation and activation of immune cells. Furthermore, it's in vitro schistosomicidal activity against Schistosoma mansoni was confirmed, with scanning electron microscopy revealing significant effects on the parasite. Finally, the study verified that lignin from Clarisia racemosa is a promising excipient for the controlled release of praziquantel, highlighting its potential in the formulation of ecologically and economically sustainable tablets. This research contributes to the innovative utilization of lignin in the development of environmentally friendly and cost-effective pharmaceutical products.
Collapse
Affiliation(s)
- Lucas Andrade Oliveira Cavalcante
- Department of Tropical Medicine Federal University of Pernambuco, 50670-901, Brazil; Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil
| | | | - Maria Gabriela Cavalcanti Silva
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil
| | | | - Diego Santa Clara Marques
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil.
| | | | - Ila Maranhão de Oliveira
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil
| | - Rafael Trindade Maia
- Center for Sustainable Development of the Semiarid Region, Federal University of Campina, Brazil. Postgraduate Program in Natural Sciences and Biotechnology at UFCG and the Postgraduate Program in Cellular and Molecular Biology at UFPB
| | - Maria Carmo Alves de Lima
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil.
| | - André de Lima Aires
- Department of Tropical Medicine Federal University of Pernambuco, 50670-901, Brazil.
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Laboratory of Chemistry and Therapeutic Innovation, Federal University of Pernambuco, 50670-901, Brazil.
| |
Collapse
|
5
|
Marrocchi A. A review of lignin as a precursor for macromonomers: Challenges and opportunities in utilizing agri-food waste. Int J Biol Macromol 2025; 300:140332. [PMID: 39870264 DOI: 10.1016/j.ijbiomac.2025.140332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Lignocellulosic biomass, rich in cellulose, hemicellulose, and lignin, represents a promising renewable resource. However, lignin, a complex polyphenolic material, remains underutilized despite its surplus production. This review focuses on the conversion of lignin into macromonomers for polymer production. While lignin's potential in polymer science is gaining recognition, studies focusing specifically on lignin-based macromonomers remain limited. This review addresses this gap by discussing the synthesis of lignin macromonomers and their role in polymer synthesis. It also highlights the potential and challenges of sourcing lignin from agri-food waste, with the goal of inspiring advancements and fostering innovation in the development of more sustainable and circular polymer systems.
Collapse
Affiliation(s)
- Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
6
|
Li X, Xu Y, An XY, Gong L, Wang R, Liu ZM. Eco-friendly and efficient flame retardant rigid polyurethane foam reinforced with lignin and silica aerogel. Int J Biol Macromol 2025; 304:140947. [PMID: 39954901 DOI: 10.1016/j.ijbiomac.2025.140947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
With the continuous improvement of living standards, the development of eco-friendly rigid polyurethane foam (RPUF) materials with excellent flame retardancy, thermal insulation, and outstanding mechanical strength has become an urgent challenge. This study presented an innovative strategy using lignin as a mechanical reinforcement and flame-retardant synergist, combined with DMMP and EG as highly efficient flame retardants. Furthermore, the incorporation of a silica aerogel coating via surface post-treatment significantly enhanced the flame retardancy of the composite. Compared to neat RPUF, the Ct-RPUF/L/FR composites exhibited an increased LOI of 25.3 %, a delayed ignition time of 6.0 s, and reductions in total heat release (THR) and total smoke production (TSP) to 8.6 MJ/m2 and 2.11 m2, respectively, while achieving the UL-94 V-0 rating, thereby minimizing fire hazards. Additionally, the compressive strength of the composite improved from 132.4 kPa for neat RPUF to 178.3 kPa, with a thermal conductivity of only 30.11 mW/(m·K), maintaining comparable thermal insulation performance to neat RPUF. Moreover, the evidence provided by the Life Cycle Assessment (LCA) indicated that the fire-retardant strategy used in this study resulted in lower environmental impact (EI) compared to traditional fire-retardant methods. This study highlighted the synergistic effects of lignin, flame retardants, and silica aerogel, providing new opportunities for the development of advanced RPUF materials with enhanced fire safety and durability, suitable for practical applications.
Collapse
Affiliation(s)
- Xu Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, China; Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Yue Xu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xin-Yu An
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ling Gong
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Rui Wang
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Zhi-Ming Liu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
7
|
Lou X, Liu H, Li P, Liang J, Liang C. Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface. Int J Biol Macromol 2025; 299:140268. [PMID: 39863198 DOI: 10.1016/j.ijbiomac.2025.140268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance. Moreover, MSN-L was incorporated into the epoxy coating to form an excellent barrier against the penetration of corrosive media. The coating was characterized using electrochemical impedance spectroscopy (EIS), contact angle analysis (WCA), confocal laser scanning microscopy (CLSM) and other testing methods. The results show that the epoxy coating doped with 2 wt% MSN-L exhibits good corrosion resistance and excellent surface stability before and after the accelerated aging experiments. The impedance value of the coating was 106 Ω•cm2 and the corrosion current was 10-4 mA/cm2. After UV aging, the surface roughness was 71.3 % lower and the degree of reduction in the water contact angle was reduced by 61.2 % compared to the blank coating. This corrosion and weather-resistant coating significantly extends the service life of outdoor coatings and provides effective protection for metals used outdoors.
Collapse
Affiliation(s)
- Xinya Lou
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Huamin Liu
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Peiyan Li
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Jicai Liang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
8
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
9
|
Jia Q, Wang X, Lu C, Zhang D, Gao S, Yu J, Wang C, Wang J, Yong Q, Chu F. Lignin-enabled ultra-stretchable eutectic gels for multifunctional sensors. Int J Biol Macromol 2025; 294:139429. [PMID: 39756767 DOI: 10.1016/j.ijbiomac.2024.139429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Eutectic gels as important conductive polymers have promising practical applications in wearable electronic devices. However, the development of the ultra-stretchable and self-adhesive eutectic gel for multifunctional flexible sensors remains a challenge. Here, a lignin-enabled ultra-stretchable eutectic gel (LEG) integrating with excellent self-adhesion and high conductivity is prepared through polymerizable deep eutectic solvents (PDES) treated lignin followed by in-situ polymerization. In this LEG, the lignin macromolecules are utilized as important mediators to build dynamic crosslinking points in the polyacrylic acid (PAA) networks via hydrogen bond interactions. The dynamic disruption and reconstruction of the hydrogen bonds between the mobile PAA chain and dynamic crosslinking points ensure the high integrity of the crosslinking network to realize the ultra-stretchability (about 4845 %). Additionally, the abundant phenol groups of lignin endow the LEG with robust self-adhesion, which allows the LEG to seamlessly adhere to the different substrates. Based on these features, the LEGs are assembled as wearable strain sensors with high sensitivity, fast response time, and long-term sensing stability, and this wearable strain sensor demonstrates promising applications in human motion monitoring and information encryption systems. This work develops an effective pathway to design lignin-enabled ultra-stretchable eutectic gels for multifunctional sensors.
Collapse
Affiliation(s)
- Qianqian Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Wang
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), No 8 Taohongjing,Jiangsu Province, Taizhou 225316, China
| | - Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Shishuai Gao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| |
Collapse
|
10
|
Tan J, He Y, Wang T, Tang Y, Zhang T, Cui X. Study on the green extraction of lignin and its crosslinking and solidification properties by geopolymer pretreatment. Int J Biol Macromol 2024; 282:137172. [PMID: 39489231 DOI: 10.1016/j.ijbiomac.2024.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Different delignification processes lead to significant differences in the structure and activity of lignin. Consequently, complex modifications are necessary before lignin to be applied. In this paper, a green process for the selective catalytic extraction of lignin by geopolymer is proposed based on biomass refining. This process can obtain lignin with ideal performance on activity, crosslink ability and curability. Taking eucalyptus, fir and bagasse as examples, the optimal lignin yields reach 46.5 %, 34.8 % and 48.7 % respectively (mFiber/mGeopolymer = 3, 120 min, and 130 °C). Moreover, lignin isolated with geopolymer (GL) shows a similar narrow molecular weight distribution range to that of Milled Wood Lignin (MWL). Studies on crosslinking solidification mechanisms have demonstrated that the phenolic hydroxyl groups of GL participate in the formation of a multi-stage amine crosslinking and solidification network structure. GL does not rely on flexible chains in the crosslinking and solidification of wood adhesives. Since highly active lignin can condense with phenolic hydroxyl groups on the surface of wood, it provides the adhesive with higher bonding strength (3.8 MPa). This study presents a novel approach to fabricating lignin-based formaldehyde-free wood adhesives.
Collapse
Affiliation(s)
- Jianli Tan
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yan He
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Tao Wang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yexuan Tang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Ting Zhang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Xuemin Cui
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Wang D, Gu Y, Cheng L, Sun S, Yang W, He S, Jiang S, Dai H, Wu Q, Xiao H, Han J. High-mass loaded redox-active lignin functionalized carbonized wood collector to construct sustainable and high-performance supercapacitors. Int J Biol Macromol 2024; 281:136242. [PMID: 39389492 DOI: 10.1016/j.ijbiomac.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Traditional electrode materials for supercapacitors often face issues like high toxicity, cost, and non-renewability. To address these drawbacks, biomass-based alternatives are being explored, aligning with green development trends. Herein, carbonized wood (CW) with rich pore structure and redox-active lignin are combined to fabricate an all-wood-based sustainable supercapacitor electrode material. Due to its inherent porous structure, CW provides a larger surface area for accommodating active materials ion, enabling the electrode to achieve a higher lignin loading capacity of 2.82-11.68 mg/cm2. Furthermore, the utilization of lignin as a substitute for conventional transition metal-based pseudocapacitor material functionalized CW endows the electrode with exemplary electrochemical performance while guaranteeing the comprehensive sustainability of the electrode. This synergy confers the electrode with exceptional electrical performance, yielding an areal capacitance of 960.7 mF/cm2 at a current density of 1 mA/cm2. The symmetric supercapacitors (SSC) manufactured by this composite electrode can achieve a notable areal energy density of 0.14 mWh/cm2 and a power density of 15.98 mW/cm2, while maintaining an outstanding capacitance retention rate of 81 % after 50,000 cycles at 20 mA/cm2. The manufacture of CW-lignin electrode underscores the potential of utilizing renewable biomass resources as alternatives for developing high-performance energy storage applications, thereby reducing negative environmental impacts.
Collapse
Affiliation(s)
- Danning Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuanjie Gu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Long Cheng
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shijing Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weisheng Yang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuijian He
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shaohua Jiang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hongqi Dai
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Huining Xiao
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingquan Han
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
12
|
Tu Z, Ou H, Ran Y, Xue H, Zhu F. Chitosan-based biopolyelectrolyte complexes intercalated montmorillonite: A strategy for green flame retardant and mechanical reinforcement of polypropylene composites. Int J Biol Macromol 2024; 277:134316. [PMID: 39094859 DOI: 10.1016/j.ijbiomac.2024.134316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.
Collapse
Affiliation(s)
- Zhe Tu
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Hongxiang Ou
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China.
| | - Yining Ran
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Honglai Xue
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Fang Zhu
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| |
Collapse
|
13
|
Faggio N, Olivieri F, Bonadies I, Gentile G, Ambrogi V, Cerruti P. Bio-based epoxy resin/carbon nanotube coatings applied on cotton fabrics for smart wearable systems. J Colloid Interface Sci 2024; 670:337-347. [PMID: 38763029 DOI: 10.1016/j.jcis.2024.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Electroactive coatings for smart wearable textiles based on a furan bio-epoxy monomer (BOMF) crosslinked with isophorone diamine (IPD) and additivated with carbon nanotubes (CNTs) are reported herein. The effect of BOMF/IPD molar ratio on the curing reaction, as well as on the properties of the crosslinked resins was first assessed, and it was found that 1.5:1 BOMF/IPD molar ratio provided higher heat of reaction, glass transition temperature, and mechanical performance. The resin was then modified with CNT to prepare electrically conductive nanocomposite films, which exhibited conductivity values increased by eight orders of magnitude upon addition of 5 phr of CNTs. The epoxy/CNT nanocomposites were finally applied as coatings onto a cotton fabric to develop electrically conductive, hydrophobic and breathable textiles. Notably, the integration of CNTs imparted efficient and reversible electrothermal behavior to the cotton fabric, showcasing its potential application in smart and comfortable wearable electronic devices.
Collapse
Affiliation(s)
- Noemi Faggio
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Napoli, Italy; Institute of Polymers, Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| | - Federico Olivieri
- Institute of Polymers, Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| | - Gennaro Gentile
- Institute of Polymers, Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy.
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Napoli, Italy.
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
14
|
McGraw M, Addison B, Clarke RW, Allen RD, Rorrer NA. Synergistic Dual-Cure Reactions for the Fabrication of Thermosets by Chemical Heating. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11913-11927. [PMID: 39148515 PMCID: PMC11323266 DOI: 10.1021/acssuschemeng.4c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Large composite structures, such as those used in wind energy applications, rely on the bulk polymerization of thermosets on an impressively large scale. To accomplish this, traditional thermoset polymerizations require both elevated temperatures (>100 °C) and extended cure durations (>5 h) for complete conversion, necessitating the use of oversize ovens or heated molds. In turn, these requirements lead to energy-intensive polymerizations, incurring high manufacturing costs and process emissions. In this study, we develop thermoset polymerizations that can be initiated at room temperature through a transformative "chemical heating" concept, in which the exothermic energy of a secondary reaction is used to facilitate the heating of a primary thermoset polymerization. By leveraging a redox-initiated methacrylate free radical polymerization as a source of exothermic chemical energy, we can achieve peak reaction temperatures >140 °C to initiate the polymerization of epoxy-anhydride thermosets without external heating. Furthermore, by employing Trojan horse methacrylate monomers to induce mixing between methacrylate and epoxy-anhydride domains, we achieve the synthesis of homogeneous hybrid polymeric materials with competitive thermomechanical properties and tunability. Herein, we establish a proof-of-concept for our innovative chemical heating method and advocate for its industrial integration for more energy-efficient and streamlined manufacturing of wind blades and large composite parts more broadly.
Collapse
Affiliation(s)
- Michael
L. McGraw
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Bennett Addison
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Ryan W. Clarke
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Robert D. Allen
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Lai M, Wang Y, Li F, Zhao J. Synthesis and Characterization of Sodium Lignosulfonate-Based Phosphorus-Containing Intermediates and Its Composite Si-P-C Silicone-Acrylic Emulsion Coating for Flame-Retardant Plywood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12573-12593. [PMID: 38843172 DOI: 10.1021/acs.langmuir.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Through the substitution reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and sodium lignosulfonate (LS), a novel phosphorus-containing sodium lignosulfonate (DAL) was successfully synthesized via the solvothermal method and used as a multifunctional flame retardant to prepare a novel silicone-acrylic emulsion (SAE) composite Si-P-C coating. The structure of DAL was determined by X-ray diffraction (XRD), attenuated total reflection infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (solid-state 13C NMR and 31P NMR). The results demonstrated that incorporating an appropriate dosage of DAL (0.9 g, 1.5 wt %) into SAE-based composite coatings enhances flame retardancy and reduces heat release and smoke production during burning. The peak heat release rate (p-HRR) decreases from 236.7 to 120.3 kW·m-2, total smoke production (TSP) decreases by 71.1%, and the flame-retardant index increases from 1.00 to 4.58. Meanwhile, the coating is transformed into a dense and nonflammable vitreous polyphosphate barrier layer during the firing process to prevent heat or mass transfer. Furthermore, the pyrolysis kinetics identify that the 3D Z-L-T model governs the coatings' pyrolysis, and the appropriate DAL makes the pyrolysis Eα climb from 300.98 to 331.30 kJ·mol-1 at 358-439 °C. Hence, this study presents a new synthesis method of multifunctional flame retardant DAL, studies the excellent properties and cross-linking mechanism of DAL-doped SAE-composite Si-P-C coatings, and explores a halogen-free, low-carbon, and clean eco-technology strategy.
Collapse
Affiliation(s)
- MengYao Lai
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - YaChao Wang
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Mianyang 621010, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Fan Li
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - JiangPing Zhao
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| |
Collapse
|
16
|
Pan C, Zhang M, Chen J, Lu H, Zhao X, Chen X, Wang L, Guo P, Liu S. miR397 regulates cadmium stress response by coordinating lignin polymerization in the root exodermis in Kandelia obovata. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134313. [PMID: 38669927 DOI: 10.1016/j.jhazmat.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.
Collapse
Affiliation(s)
- Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| | - Mingxiong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xuemei Zhao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Pingping Guo
- Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350001, China
| | - Shuyu Liu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Necolau MI, Radu IN, Bălănucă B, Frone AN, Damian CM. Broadening the coating applications of sustainable materials by reinforcing epoxidized corn oil with single-walled carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37465-37479. [PMID: 38776024 PMCID: PMC11182871 DOI: 10.1007/s11356-024-33702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
In the global context of environmental awareness, the present research proposes a sustainable alternative to the widely used petroleum-based epoxy coatings. Epoxidized corn oil (ECO) was tested as potential matrix for advanced nanocomposite coating materials reinforced with 0.25 to 1 wt.% single-walled carbon nanotubes (SW) with carboxyl and amide functionalities. The elemental composition of the epoxy networks was monitored by XPS, showing the increase of O/C ratio to 0.387 when carboxyl-functionalized SW are added. To achieve sustainable composite materials, citric acid was used as curing agent, as a substitute for conventional counterparts. The influence of both surface functional groups and concentration of SW was evaluated through structural and thermo-mechanical analysis. The progressive increase of the DSC enthalpy for SW formulated systems indicates a possible pattern for specific interactions within the bio-based epoxy translated by adjusted activation energy. For 1% neat SW addition, the Ea values decreased to 46 kJ/mol in comparison with 53 kJ/mol calculated for neat epoxy. Furthermore, the -COOH groups from SW nanostructures exerted a strong influence over the mechanical performance of bio-epoxy networks, improving the crosslinking density with ~ 60% and twofold the storage modulus value. Accordingly, by gradual addition of SW-COOH filler within the ECO-based formulations, a very consistent behaviour in seawater was noted, with a 28% decreased value for the absorption degree.
Collapse
Affiliation(s)
- Mădălina Ioana Necolau
- Advanced Polymer Materials Group, National University of Science and Technology, Politehnica Bucharest 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Iulia Nicoleta Radu
- Advanced Polymer Materials Group, National University of Science and Technology, Politehnica Bucharest 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Brînduşa Bălănucă
- Advanced Polymer Materials Group, National University of Science and Technology, Politehnica Bucharest 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
- Department of Organic Chemistry "C. Nenitescu, National University of Science and Technology, Politehnica Bucharest 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Celina Maria Damian
- Advanced Polymer Materials Group, National University of Science and Technology, Politehnica Bucharest 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.
| |
Collapse
|
18
|
Pappa CP, Cailotto S, Gigli M, Crestini C, Triantafyllidis KS. Kraft (Nano)Lignin as Reactive Additive in Epoxy Polymer Bio-Composites. Polymers (Basel) 2024; 16:553. [PMID: 38399931 PMCID: PMC10893208 DOI: 10.3390/polym16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The demand for high-performance bio-based materials towards achieving more sustainable manufacturing and circular economy models is growing significantly. Kraft lignin (KL) is an abundant and highly functional aromatic/phenolic biopolymer, being the main side product of the pulp and paper industry, as well as of the more recent 2nd generation biorefineries. In this study, KL was incorporated into a glassy epoxy system based on the diglycidyl ether of bisphenol A (DGEBA) and an amine curing agent (Jeffamine D-230), being utilized as partial replacement of the curing agent and the DGEBA prepolymer or as a reactive additive. A D-230 replacement by pristine (unmodified) KL of up to 14 wt.% was achieved while KL-epoxy composites with up to 30 wt.% KL exhibited similar thermo-mechanical properties and substantially enhanced antioxidant properties compared to the neat epoxy polymer. Additionally, the effect of the KL particle size was investigated. Ball-milled kraft lignin (BMKL, 10 μm) and nano-lignin (NLH, 220 nm) were, respectively, obtained after ball milling and ultrasonication and were studied as additives in the same epoxy system. Significantly improved dispersion and thermo-mechanical properties were obtained, mainly with nano-lignin, which exhibited fully transparent lignin-epoxy composites with higher tensile strength, storage modulus and glass transition temperature, even at 30 wt.% loadings. Lastly, KL lignin was glycidylized (GKL) and utilized as a bio-based epoxy prepolymer, achieving up to 38 wt.% replacement of fossil-based DGEBA. The GKL composites exhibited improved thermo-mechanical properties and transparency. All lignins were extensively characterized using NMR, TGA, GPC, and DLS techniques to correlate and justify the epoxy polymer characterization results.
Collapse
Affiliation(s)
- Christina P. Pappa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Simone Cailotto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Konstantinos S. Triantafyllidis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
19
|
Nisar S, Raza ZA. Corn straw lignin - A sustainable bioinspired finish for superhydrophobic and UV-protective cellulose fabric. Int J Biol Macromol 2024; 257:128393. [PMID: 38013073 DOI: 10.1016/j.ijbiomac.2023.128393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Hydrophobic textiles have been considered extensively for self-cleaning, phase-separating, and biomedical curing applications. We focused on preparing an eco-friendly lignin-based bio-finish to develop superhydrophobic cellulose fabric under mild conditions. The mass spectroscopic analysis expressed that the lignin comprised the major constituents of p-coumaryl alcohol, ferulic acid, coniferyl alcohol, and sinapyl alcohol. The surface morphological analysis indicated the formation of a regular lignin coating on the cellulose fabric. The bio-finished cellulose fabric prepared (at 2 %, w/v, lignin) expressed the maximum water contact angle (WCA) of 157.2° and remained in the hydrophobic range (119°) after ten standard washes. The treated fabric expressed the WCA values of 135.0 and 133.0° after exposure to pH 2 and 12 aqueous media, respectively. The infrared spectroscopic analysis indicated the functional chemistry of the precursors involved and possible alteration in their chemical interactions during processing. The lignin-treated cellulose was observed to be less crystalline as compared to the untreated one. Such fabric expressed acceptable comfort, sensorial properties, and thermal stability up to 333 °C. The treated fabrics could block up to 92.24 % UV-A and 98.62 % UV-B radiations. Consequently, the lignin-based finish sourced from wasted corn straw was found cost-effective and efficient for producing superhydrophobic cellulose fabric.
Collapse
Affiliation(s)
- Sabeen Nisar
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| |
Collapse
|
20
|
Tanis MH, Wallberg O, Galbe M, Al-Rudainy B. Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules 2023; 29:98. [PMID: 38202680 PMCID: PMC10779531 DOI: 10.3390/molecules29010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lignocellulosic biomass represents the most abundant renewable carbon source on earth and is already used for energy and biofuel production. The pivotal step in the conversion process involving lignocellulosic biomass is pretreatment, which aims to disrupt the lignocellulose matrix. For effective pretreatment, a comprehensive understanding of the intricate structure of lignocellulose and its compositional properties during component disintegration and subsequent conversion is essential. The presence of lignin-carbohydrate complexes and covalent interactions between them within the lignocellulosic matrix confers a distinctively labile nature to hemicellulose. Meanwhile, the recalcitrant characteristics of lignin pose challenges in the fractionation process, particularly during delignification. Delignification is a critical step that directly impacts the purity of lignin and facilitates the breakdown of bonds involving lignin and lignin-carbohydrate complexes surrounding cellulose. This article discusses a two-step fractionation approach for efficient lignin extraction, providing viable paths for lignin-based valorization described in the literature. This approach allows for the creation of individual process streams for each component, tailored to extract their corresponding compounds.
Collapse
Affiliation(s)
| | | | | | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (M.H.T.); (O.W.); (M.G.)
| |
Collapse
|
21
|
Capretti M, Giammaria V, Santulli C, Boria S, Del Bianco G. Use of Bio-Epoxies and Their Effect on the Performance of Polymer Composites: A Critical Review. Polymers (Basel) 2023; 15:4733. [PMID: 38139984 PMCID: PMC10747679 DOI: 10.3390/polym15244733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study comprehensively examines recent developments in bio-epoxy resins and their applications in composites. Despite the reliability of traditional epoxy systems, the increasing demand for sustainability has driven researchers and industries to explore new bio-based alternatives. Additionally, natural fibers have the potential to serve as environmentally friendly substitutes for synthetic ones, contributing to the production of lightweight and biodegradable composites. Enhancing the mechanical properties of these bio-composites also involves improving the compatibility between the matrix and fibers. The use of bio-epoxy resins facilitates better adhesion of natural composite constituents, addressing sustainability and environmental concerns. The principles and methods proposed for both available commercial and especially non-commercial bio-epoxy solutions are investigated, with a focus on promising renewable sources like wood, food waste, and vegetable oils. Bio-epoxy systems with a minimum bio-content of 20% are analyzed from a thermomechanical perspective. This review also discusses the effect of incorporating synthetic and natural fibers into bio-epoxy resins both on their own and in hybrid form. A comparative analysis is conducted against traditional epoxy-based references, with the aim of emphasizing viable alternatives. The focus is on addressing their benefits and challenges in applications fields such as aviation and the automotive industry.
Collapse
Affiliation(s)
- Monica Capretti
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Valentina Giammaria
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Carlo Santulli
- School of Science and Technology, Geology Division, University of Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy
| | - Simonetta Boria
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Giulia Del Bianco
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| |
Collapse
|
22
|
Ciolacu DE, Nicu R, Suflet DM, Rusu D, Darie-Nita RN, Simionescu N, Cazacu G, Ciolacu F. Multifunctional Hydrogels Based on Cellulose and Modified Lignin for Advanced Wounds Management. Pharmaceutics 2023; 15:2588. [PMID: 38004566 PMCID: PMC10674243 DOI: 10.3390/pharmaceutics15112588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Considering the complex process of wound healing, it is expected that an optimal wound dressing should be able to overcome the multiple obstacles that can be encountered in the wound healing process. An ideal dressing should be biocompatible, biodegradable and able to maintain moisture, as well as allow the removal of exudate, have antibacterial properties, protect the wound from pathogens and promote wound healing. Starting from this desideratum, we intended to design a multifunctional hydrogel that would present good biocompatibility, the ability to provide a favorable environment for wound healing, antibacterial properties, and also, the capacity to release drugs in a controlled manner. In the preparation of hydrogels, two natural polymers were used, cellulose (C) and chemically modified lignin (LE), which were chemically cross-linked in the presence of epichlorohydrin. The structural and morphological characterization of CLE hydrogels was performed by ATR-FTIR spectroscopy and scanning electron microscopy (SEM), respectively. In addition, the degree of swelling of CLE hydrogels, the incorporation/release kinetics of procaine hydrochloride (PrHy), and their cytotoxicity and antibacterial properties were investigated. The rheological characterization, mechanical properties and mucoadhesion assessment completed the study of CLE hydrogels. The obtained results show that CLE hydrogels have an increased degree of swelling compared to cellulose-based hydrogel, a better capacity to encapsulate PrHy and to control the release of the drug, as well as antibacterial properties and improved mucoadhesion. All these characteristics highlight that the addition of LE to the cellulose matrix has a positive impact on the properties of CLE hydrogels, confirming that these hydrogels can be considered as potential candidates for applications as oral wound dressings.
Collapse
Affiliation(s)
- Diana Elena Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (R.N.); (D.M.S.)
| | - Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (R.N.); (D.M.S.)
| | - Dana Mihaela Suflet
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (R.N.); (D.M.S.)
| | - Daniela Rusu
- Department of Physics of Polymers and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Raluca Nicoleta Darie-Nita
- Department of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (R.N.D.-N.); (G.C.)
| | - Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Georgeta Cazacu
- Department of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (R.N.D.-N.); (G.C.)
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
23
|
Zhang B, Fang S, Ke J. High efficient adsorption of W(VI) with a novel lignin-based biosorbent functionalized with Zn 2+ and polyamine. Int J Biol Macromol 2023; 250:126083. [PMID: 37532187 DOI: 10.1016/j.ijbiomac.2023.126083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Functionalized lignin-based biosorbent has become popular in wastewater treatment and extraction of valuable metals. Amination and metallization modification can effectively improve the adsorption performance of adsorbent. Zn2+/polyamine lignin for adsorption of W(VI) was synthesized by quaternization, amination and metallization from lignin with 3-chloro-2-hydroxypropyl trimethylammonium chloride, tetraethylenepentamine and ZnCl2. The adsorbent was characterized by SEM-EDS, FTIR and XRD. The adsorption performance of Zn2+/polyamine lignin for W(VI) was investigated in batch system. The adsorption mechanism was revealed by zeta potential, SEM-EDS and FTIR and XPS. It was shown that Zn2+/polyamine lignin exhibited great adsorption capacity at pH of 2, 25 °C, oscillation rate of 400 r/min, initial tungsten concentration of 700 mg·L-1 and adsorption time of 720 min. The maximum adsorption capacity of 0.5 g·L-1 Zn2+/polyamine lignin for W(VI) reached 488.28 mg·g-1. The adsorption followed Langmuir model and quasi-second-order kinetic model, indicating that the adsorption was monolayer homogeneous chemisorption. W(VI) was adsorbed through electrostatic attraction of hydrogen bond and Zn2+, ion exchange with Cl- and coordination with -NH2. The adsorption capacity reduced by only 6.47 % after seven cycles of adsorption-desorption, which indicated that Zn2+/polyamine lignin had a great application prospect.
Collapse
Affiliation(s)
- Baoping Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| | - Shiyuan Fang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Jing Ke
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| |
Collapse
|
24
|
Thoresen PP, Lange H, Rova U, Christakopoulos P, Matsakas L. Covalently bound humin-lignin hybrids as important novel substructures in organosolv spruce lignins. Int J Biol Macromol 2023; 233:123471. [PMID: 36736515 DOI: 10.1016/j.ijbiomac.2023.123471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Organosolv lignins (OSLs) are important byproducts of the cellulose-centred biorefinery that need to be converted in high value-added products for economic viability. Yet, OSLs occasionally display characteristics that are unexpected looking at the lignin motifs present. Applying advanced NMR, GPC, and thermal analyses, isolated spruce lignins were analysed to correlate organosolv process severity to the structural details for delineating potential valorisations. Very mild conditions were found to not fractionate the biomass, causing a mix of sugars, lignin-carbohydrate complexes (LCCs), and corresponding dehydration/degradation products and including pseudo-lignins. Employing only slightly harsher conditions promote fractionation, but also formation of sugar degradation structures that covalently incorporate into the oligomeric and polymeric lignin structures, causing the isolated organosolv lignins to contain lignin-humin hybrid (HLH) structures not yet evidenced as such in organosolv lignins. These structures effortlessly explain observed unexpected solubility issues and unusual thermal responses, and their presence might have to be acknowledged in downstream lignin valorisation.
Collapse
Affiliation(s)
- Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Heiko Lange
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; NBFC - National Biodiversity Future Center, 90133 Palermo, Italy.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87, Sweden.
| |
Collapse
|