1
|
Garrido-Palazuelos LI, Mukhtar M, Khan SA, Medrano-Félix JA, Ahmed-Khan H, M Alshabrmi F, López-Cuevas O, González-Torres B, Castro-Del Campo N, Chaidez C, Aguirre-Sánchez JR, Almohaimeed HM. Immunoinformatic approach for designing a multi-epitope vaccine against non-typhoidal salmonellosis using starvation-stress response proteins from Salmonella Oranienburg. J Biomol Struct Dyn 2025:1-19. [PMID: 40350747 DOI: 10.1080/07391102.2025.2500685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2025]
Abstract
Non-typhoidal Salmonella is responsible for gastrointestinal illnesses worldwide. Therefore, it is important to implement effective therapeutic interventions for preventing these diseases. Vaccines have proven highly efficacious in the treatment and prevention of several illnesses. Nevertheless, there is currently no authorized vaccine available for non-typhoidal salmonellosis. This study aimed to employ in silico techniques to develop a multi-epitope vaccine targeting non-typhoidal salmonellosis. Specifically, we focused on proteins associated with the starvation stress response (SSR) in Salmonella Oranienburg. The presence of these proteins is essential for the survival and disease of the host organism. The vaccine sequence was constructed utilizing B-cell and T-cell epitopes. Linkers, adjuvants and PADRE sequences were used to establish connections between epitopes. The vaccine exhibited no allergenicity, toxigenicity and a significantly high antigenicity score. Docking analysis conducted between the designed vaccine and the TLR-1, TLR-2 and TLR-4 receptors demonstrated favorable interactions and the potential to activate these receptors. In addition, it was found through immunological simulation testing that the vaccine elicits a robust immune response. The use of these proteins in the construction of a multi-epitope vaccine shows potential in terms of both safety and immunogenicity.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Mamuna Mukhtar
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México-Centro de Investigación en Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, Sinaloa, México
| | - Haris Ahmed-Khan
- Department of Biotechnology, University of Mianwali, Punjab, Pakistan
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Osvaldo López-Cuevas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Hailah M Almohaimeed
- Department of Biotechnology, University of Mianwali, Punjab, Pakistan
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Cao L, Chen C, Pi W, Zhang Y, Xue S, Yong VW, Xue M. Immune mechanisms in multiple sclerosis: CD3 levels on CD28+ CD4+ T cells link antibody responses to human herpesvirus 6. Cytokine 2025; 187:156866. [PMID: 39884183 DOI: 10.1016/j.cyto.2025.156866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Compelling evidence suggests a significant association between antibody-mediated immune responses and multiple sclerosis (MS). However, the exact causal relationships between these immune responses and MS remain unclear. In this study, we conducted a comprehensive examination of the link between antibody-mediated immune responses and MS via Mendelian randomization (MR) analysis to identify specific infectious pathogens potentially involved in the onset and progression of MS. We compared immune cell infiltration between MS patients and control subjects. Furthermore, single-cell sequencing was employed to conduct a comparative analysis of the marker genes associated with each cell subtype between individuals diagnosed with MS and the control cohort. We revealed connections between antibody-mediated immune responses and immune cells, as well as the associations between these immune cells and MS. We discovered that CD3 levels on CD28+ CD4+ T cells significantly influence MS progression by altering the ratio of human herpesvirus 6 (HHV-6). These findings provide novel insights into the biological mechanisms underlying HHV-6-mediated MS.
Collapse
Affiliation(s)
- Liang Cao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Chen Chen
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Sara Xue
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Naz A, Yousaf H, Zaman N, Rauff B, Obaid A, Awan FM. Comprehensive immunoinformatics and structural biology based design for novel peptide vaccines against Epstein-Barr virus. GENE REPORTS 2025; 38:102137. [DOI: 10.1016/j.genrep.2025.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
4
|
Mishra SK, Senathilake KS, Kumar N, Patel CN, Uddin MB, Alqahtani T, Alqahtani A, Alharbi HM, Georrge JJ. Exploratory algorithms to devise multi-epitope subunit vaccine by examining HIV-1 envelope glycoprotein: An immunoinformatics and viroinformatics approach. PLoS One 2025; 20:e0318523. [PMID: 40014623 PMCID: PMC11867397 DOI: 10.1371/journal.pone.0318523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025] Open
Abstract
Acquired immune deficiency syndrome (AIDS), a widespread pandemic and severe health issue, is triggered by the human immunodeficiency virus (HIV); there is no specific vaccine to cure this infection, and the situation is worsening. Therefore, this research sought to develop a vaccine with multiple epitopes against this infection targeting envelope glycoprotein (vital in host-cell interaction) through the immunoinformatics and viroinformatics approach. We identified one B-cell, eight MHC-I, and four MHC-II epitopes on its immunogen-assisted screening. In addition, these putative epitopes were conjoined concurrently using a specific linker (EAAAK, KK, GPGPG), including an adjuvant and a His-Tag at the N and C terminal, respectively, to augment its immune reaction. The final constructed entity consists of 284 amino acids; immunological evaluation demonstrated that the developed vaccine possesses antigenic features with a value of 0.6222, is non-allergenic, and has prospective physiochemical characteristics. The secondary and tertiary structures were anticipated, and their quality has been evaluated. Further, docking analysis between vaccines with TLR3 shows a strong molecular interaction with a -20.0 kcal/mol binding energy, and the stability was analysed through the MD simulation (100ns). Moreover, the designed vaccine expression and immune response were analysed, and a high vaccine expression level was found (pET28a (+)) and robust immune response followed by codon adaptation index value 0.94, 58.36% GC content, and the generation of IgM + IgG, cytokines and interleukin. Based on overall investigation, the developed vaccine stimulates a robust immune response. Nevertheless, laboratory analysis is needed to confirm the protective potency of the vaccine.
Collapse
Affiliation(s)
- Saurav Kumar Mishra
- Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Neeraj Kumar
- Department of Pharmaceutical Chemistry Bhupal Nobles, College of Pharmacy, Udaipur, Rajasthan, India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, India
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Mohammad Borhan Uddin
- Computational Biology Research Laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hanan M. Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - John J. Georrge
- Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
5
|
Sami MRS, Rani NA, Elahi MME, Hossain MS, Al Mueid MA, Rahim Z, Patil RB, Moin AT, Bithi IJ, Nahar S, Konika IJ, Roy S, Preya JA, Ahmed J. An immunoinformatics and extensive molecular dynamics study to develop a polyvalent multi-epitope vaccine against cryptococcosis. PLoS One 2024; 19:e0315105. [PMID: 39739919 PMCID: PMC11687922 DOI: 10.1371/journal.pone.0315105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Cryptococcosis is a lethal mycosis instigated by the pathogenic species Cryptococcus neoformans and Cryptococcus gattii, primarily affects the lungs, manifesting as pneumonia, and the brain, where it presents as meningitis. Mortality rate could reach 100% if infections remain untreated in cryptococcal meningitis. Treatment options for cryptococcosis are limited and and there are no licensed vaccines clinically available to treat or prevent cryptococcosis. Our study utilizes an integrated bioinformatics approaches to develop a polyvalent multiepitope subunit vaccine focusing on the key virulent proteins Heat shock transcription factor and Chaperone DnaK of both C. neoformans and C. gatti. Then in silico analysis was done to predict highly antigenic epitopes by assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. Following this analysis, we designed two vaccine constructs integrating a compatible adjuvant and suitable linkers. These constructs exhibited notable characteristics including high antigenicity, non-toxicity, solubility, stability, and compatibility with Toll-like receptors (TLRs). The interaction between both vaccine constructs and TLR2, TLR3, and TLR9 was assessed through molecular docking analysis. Molecular dynamics simulations and MM-PBSA calculations suggest the substantial stabilizing property and binding affinity of Vaccine Construct V1 against TLR9. Both the vaccines revealed to have a higher number of interchain hydrogen bond with TLR9. These findings serve as a crucial stepping stone towards a comprehensive solution for combating cryptococcus infections induced by both C. neoformans and C. gattii. Further validation through in vivo studies is crucial to confirm the effectiveness and potential of the vaccine to curb the spread of cryptococcosis. Subsequent validation through in vivo studies is paramount to confirm the effectiveness and potential of the vaccine in reducing the spread of cryptococcosis.
Collapse
Affiliation(s)
- Md. Razwan Sardar Sami
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Mohammad Sajjad Hossain
- Department of Theoretical and Computational Chemistry, Faculty of Science, University of Dhaka, Dhaka, Bangladesh
| | - Minhaz Abdullah Al Mueid
- Department of Pharmacy, Faculty of Biological Science, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Zahidur Rahim
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Rajesh B. Patil
- Sinhgad Technical Education Societys, Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Pune, Maharashtra, India
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science, University of Chittagong, Chattogram, Bangladesh
| | - Israt Jahan Bithi
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sabekun Nahar
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Israt Jahan Konika
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sneha Roy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jannatul Aleya Preya
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jamil Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Biochemistry and Chemistry, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
6
|
Alissa M, Alghamdi A, Alghamdi SA, Suleman M. Immunoinformatic based designing of highly immunogenic multi-epitope subunit vaccines to stimulate an adaptive immune response against Junin virus. Mol Divers 2024:10.1007/s11030-024-11082-6. [PMID: 39693032 DOI: 10.1007/s11030-024-11082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
The Junin virus causes Argentine hemorrhagic fever, leading to severe complications such as high fever, malaise, muscle pain, and bleeding disorders, including hemorrhages in the skin and mucous membranes. Neurological issues like confusion, seizures, and coma can also occur. Without prompt and effective treatment, the disease can be fatal, with mortality rates reaching up to 30%. Taking serious measures is essential to mitigate the spread of the disease. Vaccination is the most effective choice to neutralize the Junin virus in the current situation. Consequently, to design the highly immunogenic and non-allergenic multi-epitope subunit vaccine against the Junin virus, we employed the immunoinformatic approach to screen the glycoprotein, nucleoprotein, and RDRP protein for potential immunogenic CTL (Cytotoxic T Lymphocyte), HTL (Helper T Lymphocyte) and B (B Lymphocyte) cell epitopes. Afterward, the predicted epitopes were subjected to 3D modeling and validation. The strong binding affinity of the constructed vaccines with the human TLR3 was confirmed through molecular docking, with scores of - 333 kcal/mol for glycoprotein, - 297 kcal/mol for nucleoprotein, - 308 kcal/mol for RDRP, and - 305 kcal/mol for combined vaccines. Additionally, the binding free energies recorded were - 63.54 kcal/mol, - 64.16 kcal/mol, - 56.81 kcal/mol, and - 51.52 kcal/mol, respectively. Furthermore, the dynamic stability, residual fluctuation, and compactness of vaccine-TLR-3 complexes were confirmed by the molecular dynamic simulation. The codon adaptation index (CAI) values and high GC content confirmed the stable expression of constructed vaccines in the pET-28a ( +) expression vector. The immune simulation analysis demonstrated that administering booster doses of the developed vaccines resulted in a notable increase in IgG, IgM, interleukins, and cytokines levels, indicating effective antigen clearance over time. In conclusion, our study provides preclinical evidence for designing a highly effective Junin virus vaccine, necessitating further in-vitro and in-vivo experiments.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| |
Collapse
|
7
|
Pang F, Long Q, Liang S. Designing a multi-epitope subunit vaccine against Orf virus using molecular docking and molecular dynamics. Virulence 2024; 15:2398171. [PMID: 39258802 PMCID: PMC11404621 DOI: 10.1080/21505594.2024.2398171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Orf virus (ORFV) is an acute contact, epitheliotropic, zoonotic, and double-stranded DNA virus that causes significant economic losses in the livestock industry. The objective of this study is to design an immunoinformatics-based multi-epitope subunit vaccine against ORFV. Various immunodominant cytotoxic T lymphocytes (CTL), helper T lymphocytes (HTL), and B-cell epitopes from the B2L, F1L, and 080 protein of ORFV were selected and linked by short connectors to construct a multi-epitope subunit vaccine. Immunogenicity was enhanced by adding an adjuvant β-defensin to the N-terminal of the vaccine using the EAAAK linker. The vaccine exhibited a significant degree of antigenicity and solubility, without allergenicity or toxicity. The 3D formation of the vaccine was subsequently anticipated, improved, and verified. The optimized model exhibited a lower Z-score of -4.33, indicating higher quality. Molecular docking results demonstrated that the vaccine strongly binds to TLR2 and TLR4. Molecular dynamics results indicated that the docked vaccine-TLR complexes were stable. Immune simulation analyses further confirmed that the vaccine can induce a marked increase in IgG and IgM antibody titers, and elevated levels of IFN-γ and IL-2. Finally, the optimized DNA sequence of the vaccine was cloned into the vector pET28a (+) for high expression in the E.coli expression system. Overall, the designed multi-epitope subunit vaccine is highly stable and can induce robust humoral and cellular immunity, making it a promising vaccine candidate against ORFV.
Collapse
MESH Headings
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Molecular Docking Simulation
- Animals
- Orf virus/immunology
- Orf virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Molecular Dynamics Simulation
- Mice
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/chemistry
- Ecthyma, Contagious/prevention & control
- Ecthyma, Contagious/immunology
- Ecthyma, Contagious/virology
- Mice, Inbred BALB C
- Female
- T-Lymphocytes, Cytotoxic/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Arshad F, Sarfraz A, Rubab A, Shehroz M, Moura AA, Sheheryar S, Ullah R, Shahat AA, Ibrahim MA, Nishan U, Shah M. Rational design of novel peptide-based vaccine against the emerging OZ virus. Hum Immunol 2024; 85:111162. [PMID: 39447523 DOI: 10.1016/j.humimm.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Oz virus (OZV) belongs to the Orthomyxoviridae family which includes viruses with a negative-sense, single-stranded, and segmented RNA genome. OZV is a zoonotic pathogen, particularly since the virus can cause deadly illness when injected intracerebrally into nursing mice. OZV is an emerging pathogen with the potential to spark a pandemic as there is no preventive and licensed treatment against this virus. The goal of this study was to develop a novel multi-epitope vaccination against OZV proteins utilizing immunoinformatics and immunological simulation analysis. This work evaluated immunological epitopes (B cells, MHC-I, and MHC-II) to identify highly antigenic OZV target proteins. Shortlisted epitopes were joined together by using appropriate linkers and adjuvants to design multi-epitope vaccine constructs (MEVC). The vaccine models were designed, improved, validated, and the globular regions and post-translational modifications (PTMs) were also evaluated in the vaccine's structure. Molecular docking analysis with the Toll-like receptor (TLR4) showed strong interactions and appropriate binding energies. Molecular dynamics (MD) simulation confirmed stable interactions between the vaccines and TLR4. Bioinformatics tools helped optimize codons, resulting in successful cloning into appropriate host vectors. This study showed that the developed vaccines are stable and non-allergenic in the human body and successfully stimulated immunological responses against OZV. Finally, a mechanism of action for the designed vaccine construct was also proposed. Further experimental validations of the designed vaccine construct will pave the way to create a potentially effective vaccine against this emerging pathogen.
Collapse
Affiliation(s)
- Fizza Arshad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aleeza Rubab
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan.
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan; Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
9
|
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, Clement David-Olawade A. Leveraging artificial intelligence in vaccine development: A narrative review. J Microbiol Methods 2024; 224:106998. [PMID: 39019262 DOI: 10.1016/j.mimet.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Vaccine development stands as a cornerstone of public health efforts, pivotal in curbing infectious diseases and reducing global morbidity and mortality. However, traditional vaccine development methods are often time-consuming, costly, and inefficient. The advent of artificial intelligence (AI) has ushered in a new era in vaccine design, offering unprecedented opportunities to expedite the process. This narrative review explores the role of AI in vaccine development, focusing on antigen selection, epitope prediction, adjuvant identification, and optimization strategies. AI algorithms, including machine learning and deep learning, leverage genomic data, protein structures, and immune system interactions to predict antigenic epitopes, assess immunogenicity, and prioritize antigens for experimentation. Furthermore, AI-driven approaches facilitate the rational design of immunogens and the identification of novel adjuvant candidates with optimal safety and efficacy profiles. Challenges such as data heterogeneity, model interpretability, and regulatory considerations must be addressed to realize the full potential of AI in vaccine development. Integrating emerging technologies, such as single-cell omics and synthetic biology, promises to enhance vaccine design precision and scalability. This review underscores the transformative impact of AI on vaccine development and highlights the need for interdisciplinary collaborations and regulatory harmonization to accelerate the delivery of safe and effective vaccines against infectious diseases.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom.
| | - Jennifer Teke
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom
| | | | - Kusal Weerasinghe
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
| | - Sunday O Usman
- Department of Systems and Industrial Engineering, University of Arizona, USA
| | - Abimbola O Ige
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
10
|
Mursaleen S, Sarfraz A, Shehroz M, Zaman A, Rahman FU, Moura AA, Sheheryar S, Aziz S, Ullah R, Iqbal Z, Nishan U, Shah M, Sun W. Genome-level therapeutic targets identification and chimeric Vaccine designing against the Blastomyces dermatitidis. Heliyon 2024; 10:e36153. [PMID: 39224264 PMCID: PMC11367477 DOI: 10.1016/j.heliyon.2024.e36153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Blastomyces dermatitidis is a thermally dimorphic fungus that can cause serious and sometimes fatal infections, including blastomycosis. After spore inhalation, a pulmonary infection develops, which can be asymptomatic and have lethal effects, such as acute respiratory distress syndrome. Its most common extra-pulmonary sites are the central nervous system, bones, skin, and genito-urinary systems. Currently, no vaccine has been approved by the FDA to prevent this infection. In the study, a peptide-based vaccine was developed against blastomycosis by using subtractive proteomics and reverse vaccinology approaches. It focuses on mining the whole genome of B. dermatitidis, identifying potential therapeutic targets, and pinpointing potential epitopes for both B- and T-cells that are immunogenic, non-allergenic, non-toxic, and highly antigenic. Multi-epitope constructs were generated by incorporating appropriate linker sequences. A linker (EAAAK) was also added to incorporate an adjuvant sequence to increase immunological potential. The addition of adjuvants and linkers ultimately resulted in the formation of a vaccine construct in which the number of amino acids was 243 and the molecular weight was 26.18 kDa. The designed antigenic and non-allergenic vaccine constructs showed suitable physicochemical properties. The vaccine's structures were predicted, and further analysis verified their interactions with the human TLR-4 receptor through protein-protein docking. Additionally, MD simulation showed a potent interaction between prioritized vaccine-receptor complexes. Immune simulation predicted that the final vaccine injections resulted in significant immune responses for the T- and B-cell immune responses. Moreover, in silico cloning ensured a high expression possibility of the lead vaccine in the E. coli (K12) vector. This study offers an initiative for the development of effective vaccines against B. dermatitidis; however, it is necessary to validate the designed vaccine's immunogenicity experimentally.
Collapse
Affiliation(s)
- Sawvara Mursaleen
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree-47150, Pakistan
| | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Faiz U Rahman
- Department of Zoology, Shangla Campus, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Arlindo A. Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia, Kingdom of Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University P.O. Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Wenwen Sun
- Department of Intensive Care Unit, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 213004, China
| |
Collapse
|
11
|
Bai Y, Zhou M, Wang N, Yang Y, Wang D. Designing a Candidate Multi-Epitope Vaccine against Transmissible Gastroenteritis Virus Based on Immunoinformatic and Molecular Dynamics. Int J Mol Sci 2024; 25:8828. [PMID: 39201514 PMCID: PMC11354480 DOI: 10.3390/ijms25168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an etiological agent of enteric disease that results in high mortality rates in piglets. The economic impact of the virus is considerable, causing significant losses to the pig industry. The development of an efficacious subunit vaccine to provide promising protection against TGEV is of the utmost importance. The viral antigen, spike glycoprotein (S), is widely regarded as one of the most effective antigenic components for vaccine research. In this study, we employed immunoinformatics and molecular dynamics approaches to develop an 'ideal' multi-epitope vaccine. Firstly, the dominant, non-toxic, highly antigenic T (Th, CTL) and B cell epitopes predicted from the TGEV S protein were artificially engineered in tandem to design candidate subunit vaccines. Molecular docking and dynamic simulation results demonstrate that it exhibits robust interactions with toll-like receptor 4 (TLR4). Of particular significance was the finding that the vaccine was capable of triggering an immune response in mammals, as evidenced by the immune simulation results. The humoral aspect is typified by elevated levels of IgG and IgM, whereas the cellular immune aspect is capable of eliciting the robust production of interleukins and cytokines (IFN-γ and IL-2). Furthermore, the adoption of E. coli expression systems for the preparation of vaccines will also result in cost savings. This study offers logical guidelines for the development of a secure and efficacious subunit vaccine against TGEV, in addition to providing a novel theoretical foundation and strategy to prevent associated CoV infections.
Collapse
Affiliation(s)
- Yihan Bai
- College of Biology, Hunan University, Changsha 410082, China;
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Mingxia Zhou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| | - Dongliang Wang
- College of Biology, Hunan University, Changsha 410082, China;
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (M.Z.); (N.W.); (Y.Y.)
| |
Collapse
|
12
|
Long Q, Wei M, Wang Y, Pang F. Design of a multi-epitope vaccine against goatpox virus using an immunoinformatics approach. Front Cell Infect Microbiol 2024; 13:1309096. [PMID: 38487680 PMCID: PMC10937444 DOI: 10.3389/fcimb.2023.1309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Goatpox, a severe infectious disease caused by goatpox virus (GTPV), leads to enormous economic losses in the livestock industry. Traditional live attenuated vaccines cause serious side effects and exist a risk of dispersal. Therefore, it is urgent to develop efficient and safer vaccines to prevent and control of GTPV. Methods In the present study, we are aimed to design a multi-epitope subunit vaccine against GTPV using an immunoinformatics approach. Various immunodominant cytotoxic T lymphocytes (CTL) epitopes, helper T lymphocytes (HTL) epitopes, and B-cell epitopes from P32, L1R, and 095 proteins of GTPV were screened and liked by the AAY, GPGPG, and KK connectors, respectively. Furthermore, an adjuvant β-defensin was attached to the vaccine's N-terminal using the EAAAK linker to enhance immunogenicity. Results The constructed vaccine was soluble, non-allergenic and non-toxic and exhibited high levels of antigenicity and immunogenicity. The vaccine's 3D structure was subsequently predicted, refined and validated, resulting in an optimized model with a Z-value of -3.4. Molecular docking results demonstrated that the vaccine had strong binding affinity with TLR2(-27.25 kcal/mol), TLR3(-39.84 kcal/mol), and TLR4(-59.42 kcal/mol). Molecular dynamics simulation results indicated that docked vaccine-TLR complexes were stable. Immune simulation analysis suggested that the vaccine can induce remarkable increase in antibody titers of IgG and IgM, higher levels of IFN-γ and IL-2. Conclusion The designed GTPV multi-epitope vaccine is structurally stable and can induce robust humoral and cellular immune responses, which may be a promising vaccine candidate against GTPV.
Collapse
Affiliation(s)
| | | | | | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|