1
|
Wu H, Diao J, Li X, Yue D, He G, Jiang X, Li P. Hydrogel-based 3D printing technology: From interfacial engineering to precision medicine. Adv Colloid Interface Sci 2025; 341:103481. [PMID: 40132296 DOI: 10.1016/j.cis.2025.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Advances in 3D printing technology and the development of hydrogel-based inks have significantly enhanced the potential of precision medicine, promoting progress in medical diagnosis and treatment. The development of 3D printing enables the fabrication of complex gradient structures that emulate natural tissue environments, while advancements in interface engineering facilitate the precise control of interface properties, thereby enhancing the performance of hydrogels in biomedical applications. This review focuses on the latest advancements in three critical 3D printing application areas: efficient real-time detection, drug delivery systems, and regenerative medicine. The application of 3D printing technology enhances nucleic acid-based molecular diagnostic platforms and wearable biosensors for real-time monitoring of physiological parameters, thereby providing robust support for early disease diagnosis. Additionally, it facilitates the development of targeted and controlled drug delivery systems, which offer promising methods for efficient drug utilization, and enables the construction of complex tissue and organ structures with bioactivity and functionality, providing new solutions for regenerative medicine. Collectively, these advancements propel the ongoing progress and development of precision medicine. Furthermore, the challenges associated with 3D printing technology in these three major applications are discussed along with an outlook on prospects.
Collapse
Affiliation(s)
- Haojie Wu
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jibo Diao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinrong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
2
|
Ibeas Moreno E, Alonso MJ, Abbadessa A. Intraocular injectable hydrogels for the delivery of cells and nanoparticles. Mater Today Bio 2025; 32:101767. [PMID: 40290894 PMCID: PMC12033996 DOI: 10.1016/j.mtbio.2025.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The rising global life expectancy has led to a growing prevalence of ophthalmic diseases, while current treatments face important limitations in terms of efficacy, costs, and patient compliance. The use of injectable hydrogels as drug and cell carriers is a promising approach, compared to the injection of drug solutions or cell suspensions. This is because the hydrogel matrix may offer protection against clearance or degradation, may modulate drug/cell release, and provide a biomimetic substrate for differentiating cells while being minimally invasive. On one hand, injectable hydrogels for ocular drug delivery have been traditionally designed to host and release small drugs or proteins. However, limitations such as high burst release and difficulty of entrapping hydrophobic molecules led to the emergence of nanocomposite hydrogels, where the drug is entrapped in nanoparticles prior hydrogel incorporation. Composite systems offer great advantages over the injection of particle suspensions, improving particle fate and drug release kinetics. On the other hand, injectable hydrogels offer a cell-friendly environment to seek tissue regeneration, providing biomechanical and biochemical cues for cellular cross-talk, differentiation, and formation of new extracellular matrix. This review critically discusses recent advancements in the development of novel injectable hydrogels as delivery vehicles for drug-loaded nanoparticles and cells, with a major focus on the formulation components, administration routes, and other factors affecting performance, highlighting promising aspects and challenges to address in the future.
Collapse
Affiliation(s)
- Elena Ibeas Moreno
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA), 28049, Madrid, Spain
| | - Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Yang T, Li R, Ding M, Yu H, Zhang L, Xie H. Aldehyde-functionalization of chitin nanocrystals via SI-ARGET ATRP of lignin-derived monomers. Carbohydr Polym 2025; 348:122892. [PMID: 39567129 DOI: 10.1016/j.carbpol.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Chitin nanocrystals (ChNCs), prepared from a down-sizing process from chitin, have recently captured great attention to access sustainable nanomaterials. The surface modification of ChNCs is crucial to regulate the surface physicochemical properties and introduce specific functions, thus satisfying their diverse applications. In this study, aldehyde-functionalized ChNCs (ChNCs-PVMA) with enhanced hydrophobicity were developed via surface-initiated activators regenerated by electron transfer for atom transfer radical polymerization (SI-ARGET ATRP) of a lignin-derived polymerizable aldehyde monomer, vanillin methacrylate (VMA). The monomer conversion was determined by 1H NMR spectroscopy of the reaction mixture based on the change of the relative ratio of VMA and solvent signals. The prepared ChNCs-PVMA were systematically characterized by FTIR, CP/MAS 13C NMR, XPS, XRD, DSC, TGA, and TEM. The dispersibility of ChNCs and ChNCs-PVMA in water and DMF was evaluated by dynamic light scattering and visual observation, indicating good dispersion of ChNCs-PVMA in organic solvents. Furthermore, based on the available aldehyde groups, the ChNCs-PVMA was reacted with amino acids via Schiff base reaction, demonstrating a rich follow-up chemistry towards diverse functions by the reactive aldehyde groups.
Collapse
Affiliation(s)
- Tongjun Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Rongli Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Mingtao Ding
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Hong Yu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lihua Zhang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Mashaqbeh H, Obaidat R, Rezigue M, Omari D, Shakhatreh G. Ferric ions crosslinked hyaluronic acid beads: potentials for drug delivery use. Drug Dev Ind Pharm 2024:1-13. [PMID: 39466829 DOI: 10.1080/03639045.2024.2422497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION AND PURPOSE Despite the attractive properties of hyaluronic acid (HA), The preparation of HA beads is still challenging. This article reports the preparation of pH-sensitive gel HA beads. The ionic gelation method was used to prepare the HA gel beads using ferric ions. This cross-linking type is based on forming coordination bonds, which enhance the mechanical properties of the prepared beads. METHODS The developed beads were characterized using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) examined the bead's morphology. Furthermore, the potential of HA gel beads as an oral drug delivery system was investigated using metformin as a hydrophilic model drug. The entrapment efficiency and in vitro, release, and release kinetics were evaluated. The crosslinking density and HA concentration effect on drug release and bead swelling capacity under pH 1.2 and 7.4 were also investigated. RESULTS The entrapment efficiency of metformin in HA beads was found to be 79.56 ± 3.89%. FTIR analysis indicated the ionic interaction between ferric ions and the carboxylic groups on the HA molecule. At the same time, there was no substantial interaction between metformin and the polymeric bead. Morphological evaluation and DSC analysis suggested the successful incorporation of metformin within the beads. The in vitro drug release evaluation showed pH-dependent extended release where the release kinetics followed the first-order mathematical model. CONCLUSIONS This study provides a value-added formulation with the potential for drug delivery use, which can be further investigated for biomedical applications.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Rana Obaidat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Derar Omari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ghyda'a Shakhatreh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
5
|
Feng J, Deng X, Hao P, Zhu Z, Li T, Yuan X, Hu J, Wang Y. Intra-articular injection of platinum nanozyme-loaded silk fibroin/pullulan hydrogels relieves osteoarthritis through ROS scavenging and ferroptosis suppression. Int J Biol Macromol 2024; 280:135863. [PMID: 39307511 DOI: 10.1016/j.ijbiomac.2024.135863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Reactive oxygen species (ROS)-mediated ferroptosis plays a critical role in the development of osteoarthritis (OA). Consequently, it is speculated that anti-ferroptosis agents could represent a novel therapeutic strategy for managing OA. In this study, a hydrogel incorporating platinum (Pt) nanozyme was synthesized by dispersing Pt nanoparticles (NPs) within a matrix of silk fibroin (SF) and oxidized pullulan (oxPL). This hydrogel allows for a substantial and sustained release of up to 30 days. The gelation time (from 140.3 ± 42.3 s to 460.0 ± 40.0 s), swelling capacity (from 57.7 ± 3.8 % to 24.0 ± 7.0 %), and degradation rate (from 60.3 ± 4.7 % to 32.0 ± 4.6 %) of the hydrogels can be modulated by adjusting the Pt NP content. The Pt@SF/oxPL hydrogel effectively eliminates ROS due to its catalase-like and superoxide dismutase-like enzymatic properties. In vitro studies demonstrated that Pt@SF/oxPL efficiently mitigated the process of ferroptotic cell death in chondrocytes. More critically, intra-articular administration of Pt@SF/oxPL showcased therapeutic advantages by both protecting and stimulating the regeneration of cartilage throughout the progression of OA. Collectively, this study suggests that Pt@SF/oxPL hydrogels could potentially serve as an effective treatment for OA, presenting a novel nanozyme-based therapeutic approach for this condition.
Collapse
Affiliation(s)
- JunWei Feng
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Xia Deng
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Peng Hao
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - ZongDong Zhu
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China
| | - XinWei Yuan
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiang Hu
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Yue Wang
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
6
|
Xiao X, Zhu A, He G, Tokula S, Yang Y, Qing Y, Liu Y, Hu H, Song Q. A polysaccharide from Periplaneta americana promotes macrophage M2 polarization, exhibiting anti-inflammatory and wound-healing activities. Int J Biol Macromol 2024; 281:135836. [PMID: 39383896 DOI: 10.1016/j.ijbiomac.2024.135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
A miscellaneous polysaccharide, PAP55-3-1, with a molecular weight of 23.03 kDa, was isolated from Periplaneta americana through extraction with dilute alkali solution, ethanol precipitation, and column chromatography purification. Structural analysis shows that PAP55-3-1 is mainly composed of five monosaccharides: galactosamine hydrochloride, glucosamine hydrochloride, galactose, glucose and mannose. Its main glycosidic bonds are: Manp-(1→, Galp-(1→, →3)-Galp-(1→, →3,6)-Manp-(1→, →2,6)-Manp-(1→, →6)-Manp-(1→, →4)-Galp-(1→, →6-Glcp-(1→, →6)-Galp-(1→, →2)-Manp-(1 →, →3,4)-Glcp-(1→, →3,6)-Galp-(1→. In vitro experiments demonstrated that PAP55-3-1 can effectively inhibit reactive oxygen species (ROS) and O2- production following H2O2-induction. After H2O2-induction, HIF-1α (hypoxia-inducible factor) was translocated in mitochondria PAP55-3-1 increased localization of HIF-1α was located on mitochondria to maintain the stability of mitochondrial function stability, thereby effectively inhibiting H2O2-induced mitochondrial oxidative damage. Additionally, PAP55-3-1 inhibited the M1 polarization of macrophages stimulated by H2O2 and promoted the phenotype polarization of macrophages from M1 to M2, displaying anti-inflammatory and pro-repair properties. In vivo experimental results indicated that PAP55-3-1 promoted wound healing in mice. Immunohistochemical experiments revealed a reduction in CD68 expression and increase in CD206 expression in both positive and the high-dose polysaccharide group control group. This further demonstrated that PAP55-3-1 promotes the phenotype polarization of macrophages from M1 to M2, exerting anti-inflammatory and wound-healing activities.
Collapse
Affiliation(s)
- Xin Xiao
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Ailian Zhu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Gang He
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Seiichi Tokula
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 063-0000, Japan
| | - YiTing Yang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yang Qing
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yali Liu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - HanWen Hu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qin Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China.
| |
Collapse
|
7
|
Behroozi Kohlan T, Wen Y, Mini C, Finne-Wistrand A. Schiff base crosslinked hyaluronic acid hydrogels with tunable and cell instructive time-dependent mechanical properties. Carbohydr Polym 2024; 338:122173. [PMID: 38763720 DOI: 10.1016/j.carbpol.2024.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
The dynamic interplay between cells and their native extracellular matrix (ECM) influences cellular behavior, imposing a challenge in biomaterial design. Dynamic covalent hydrogels are viscoelastic and show self-healing ability, making them a potential scaffold for recapitulating native ECM properties. We aimed to implement kinetically and thermodynamically distinct crosslinkers to prepare self-healing dynamic hydrogels to explore the arising properties and their effects on cellular behavior. To do so, aldehyde-substituted hyaluronic acid (HA) was synthesized to generate imine, hydrazone, and oxime crosslinked dynamic covalent hydrogels. Differences in equilibrium constants of these bonds yielded distinct properties including stiffness, stress relaxation, and self-healing ability. The effects of degree of substitution (DS), polymer concentration, crosslinker to aldehyde ratio, and crosslinker functionality on hydrogel properties were evaluated. The self-healing ability of hydrogels was investigated on samples of the same and different crosslinkers and DS to obtain hydrogels with gradient properties. Subsequently, human dermal fibroblasts were cultured in 2D and 3D to assess the cellular response considering the dynamic properties of the hydrogels. Moreover, assessing cell spreading and morphology on hydrogels having similar modulus but different stress relaxation rates showed the effects of matrix viscoelasticity with higher cell spreading in slower relaxing hydrogels.
Collapse
Affiliation(s)
- Taha Behroozi Kohlan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Yanru Wen
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Carina Mini
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden.
| |
Collapse
|
8
|
Yu C, Xu J, Heidari G, Jiang H, Shi Y, Wu A, Makvandi P, Neisiany RE, Zare EN, Shao M, Hu L. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol 2024; 269:132086. [PMID: 38705321 DOI: 10.1016/j.ijbiomac.2024.132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.
Collapse
Affiliation(s)
- Caiyu Yu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Huijun Jiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India.
| | - Minmin Shao
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Liang Hu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
9
|
Zhou C, Li L, Li D, Zhang R, Hu S, Zhong K, Yan B. Hyaluronic acid-based multifunctional bio-active coating integrated with cinnamaldehyde/hydroxypropyl-β-cyclodextrin inclusion complex for fruit preservation. Int J Biol Macromol 2024; 271:132605. [PMID: 38788869 DOI: 10.1016/j.ijbiomac.2024.132605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Natural preservatives such as cinnamaldehyde (CIN) are garnering increasing interest to replace their synthetic counterparts in maintaining fruit freshness and safety. However, their long-term effectiveness and widespread application have been greatly limited due to high volatility and potent aroma. To address these challenges, we developed a viable and simple strategy to prepare a multifunctional active coating for fruit preservation by incorporating host-guest inclusion complex of CIN and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) CIN@HP-β-CD into hyaluronic acid (HA), a natural polysaccharide with exceptional film-forming properties. The as-prepared HA/CIN@HP-β-CD coatings exhibited universal surface affinity, excellent antimicrobial performance, and satisfactory antioxidant properties with no potential toxicity. Release kinetic studies have demonstrated that CIN in the coating is continuously and slowly released. Furthermore, freshness preservation experiments on bananas and fresh-cut apples demonstrated that the developed coating is effective in preserving the color of fruit, decreasing the weight loss rate, preventing the microorganism's growth, and significantly extending the period of freshness, exhibiting the potential for application in fruit preservation.
Collapse
Affiliation(s)
- Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 643002, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Shaodong Hu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Kai Zhong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Xie X, Ao X, Xu R, Lv H, Tan S, Wu J, Zhao L, Wang Y. Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions. Int J Biol Macromol 2024; 270:132363. [PMID: 38754675 DOI: 10.1016/j.ijbiomac.2024.132363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
The combination of pharmacological and physical barrier therapy is a highly promising strategy for treating intrauterine adhesions (IUAs), but there lacks a suitable scaffold that integrates good injectability, proper mechanical stability and degradability, excellent biocompatibility, and non-toxic, non-rejection therapeutic agents. To address this, a novel injectable, degradable hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA), sodium alginate (SA), and l-serine, and loaded with platelet-rich plasma (PRP) (referred to as PSL-PRP) is developed for treating IUAs. l-Serine induces rapid gelation within 1 min and enhances the mechanical properties of the hydrogel, while degradable SA provides the hydrogel with strength, toughness, and appropriate degradation capabilities. As a result, the hydrogel exhibits an excellent scaffold for sustained release of growth factors in PRP and serves as an effective physical barrier. In vivo testing using a rat model of IUAs demonstrates that in situ injection of the PSL-PRP hydrogel significantly reduces fibrosis and promotes endometrial regeneration, ultimately leading to fertility restoration. The combined advantages make the PSL-PRP hydrogel very promising in IUAs therapy and in preventing adhesions in other internal tissue wounds.
Collapse
Affiliation(s)
- Xiangyan Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xue Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijuan Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyi Lv
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shiqiao Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
11
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhao L, Li J, Ding Y, Sun L. Preparation and Characterization of a Novel Longzhua mushroom Polysaccharide Hydrogel and Slow-Release Behavior of Encapsulated Rambutan Peel Polyphenols. Foods 2024; 13:1711. [PMID: 38890937 PMCID: PMC11171559 DOI: 10.3390/foods13111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Natural polyphenols have drawbacks such as instability and low bioavailability, which can be overcome by encapsulated slow-release systems. Natural polymer hydrogels are ideal materials for slow-release systems because of their high biocompatibility. In this study, Longzhua mushroom polysaccharide hydrogel (LMPH) was used to encapsulate rambutan peel polyphenols (RPP) and delay their release time to improve their stability and bioavailability. The mechanical properties, rheology, stability, swelling properties, water-holding capacity, RPP loading, and slow-release behavior of LMPH were investigated. The results showed that LMPH has adequate mechanical and rheological properties, high thermal stability, excellent swelling and water-holding capacity, and good self-healing behavior. Increasing the polysaccharide content not only improved the hardness (0.17-1.13 N) and water-holding capacity of LMPH (90.84-99.32%) but also enhanced the encapsulation efficiency of RPP (93.13-99.94%). The dense network structure slowed down the release of RPP. In particular, LMPH5 released only 61.58% at 48 h. Thus, a stable encapsulated slow-release system was fabricated using a simple method based on the properties of LMPH. The developed material has great potential for the sustained release and delivery of biologically active substances.
Collapse
Affiliation(s)
| | | | | | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.Z.); (J.L.); (Y.D.)
| |
Collapse
|
13
|
Xie C, Liu G, Wang L, Yang Q, Liao F, Yang X, Xiao B, Duan L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024; 16:430. [PMID: 38543325 PMCID: PMC10975320 DOI: 10.3390/pharmaceutics16030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| |
Collapse
|
14
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|