1
|
Yang S, Lu K, Shi X, Xu S, Li B, Feng X, Li T, Su W, Wan Y, Cao X, Wang Y. Multifunctional chitosan-based indicator films containing composite pigments stabilized by extracellular and cell wall polysaccharides from Auricularia cornea var. Li. waste for visualization of salmon freshness. Food Chem 2025; 480:143932. [PMID: 40132304 DOI: 10.1016/j.foodchem.2025.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Smart packaging can indicate the meat freshness through color variations of natural pigments within the films, whose instability have hindered their industrial application. This study developed multifunctional indicator films (CS-ACPS-CB) that possessed ultraviolet resistance, antioxidant properties, and pH sensitivity by incorporating extracellular and cell wall polysaccharides from Auricularia cornea var. Li waste (ACPS) into chitosan (CS) matrix with curcumin/betalain as indicators. Results revealed the extracellular component was acidic heteropolysaccharides, while the cell wall comprised glucose, mannose, xylose, rhamnose and galactaric acid. The electrostatic interactions and hydrogen bonding between cell wall polysaccharides and CS strongly stabilized composite pigments, allowing for controlled release at pH above 8.0. Additionally, CS-ACPS-CB demonstrated color changes corresponding to increases in total volatile basic nitrogen values, effectively signaling the progressive spoilage of salmon. These findings offer an environmentally friendly solution for utilizing Auricularia cornea var. Li waste and a sustainable application for ACPS in smart packaging materials.
Collapse
Affiliation(s)
- Shuanglong Yang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Keshu Lu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Xueying Shi
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Shuhan Xu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Binyan Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Xin Feng
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yujun Wan
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QW, UK
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China.
| |
Collapse
|
2
|
Li W, Qin Y, Zhang B, Zhang W, Yao D, Zeng C, Ning D, Zhuang Y, Li L, Huang R. Effect of different zein/tea polyphenol/apple pectin coating on nutritional, physicochemical properties of fresh walnut kernel preservation. Food Chem 2025; 475:143230. [PMID: 39954639 DOI: 10.1016/j.foodchem.2025.143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
In this study, zein/apple pectin/tea polyphenol layer-by-layer assembled cling film prepared by solution casting was characterized, and the preservation effect of composite coatings, double, triple, and quadruple multilayer layer-by-layer assembly coatings on fresh walnut kernels at 4 °C was evaluated. As the number of assembly layers increased, the water vapor barrier increased, and the lower the film's UV transmittance. The assembled film's antioxidant and antibacterial activities were significantly higher than composite film. The moisture, color, and texture of the fresh walnut kernels treated with the assembled coatings were less different from 0 d fresh walnut kernels after 40 d of storage at 4 °C. The acid value, peroxide value, and total number of bacterial colonies of the fresh walnut kernels with 4-layer assembled coatings were significantly lower than those of the composite coatings. Overall, zein/apple pectin/tea polyphenol layer-by-layer assembled coating is an effective way to the fresh walnut kernel preservation.
Collapse
Affiliation(s)
- Wenwen Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yu Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Beibei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wenwen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Dengjie Yao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chunyin Zeng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, Yunnan Province 650204, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Lirong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Rui Huang
- Zhongken Huashan Mu Dairy Co., LTD, Weinan, Shaanxi Province 714000, China..
| |
Collapse
|
3
|
Qian L, Jia R, Zhao Q, Sun N, Yang J, Wen J, Li H, Yang J, Mo L, Gao W, Deng S, Qin Z. Tough, antibacterial, and antioxidant chitosan-based composite films enhanced with proanthocyanidin and carvacrol essential oil for fruit preservation. Food Res Int 2025; 208:116269. [PMID: 40263857 DOI: 10.1016/j.foodres.2025.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Post-harvest fruits are susceptible to microbial infections and spoilage, and the development of multifunctional green preservation films to extend the shelf-life of fruits is desirable. In this study, multifunctional antibacterial and antioxidant fruit preservation films were developed by incorporating natural plant actives of proanthocyanidins and carvacrol essential oils into chitosan-dialdehyde cellulose composite films. The composite film had good mechanical properties, with a tensile strength of 78.8 MPa, a free radical scavenging rate of over 90 %, and enhanced barrier properties against UV light and water vapor. The diameters of the inhibition zones of the composite film for S. aureus and E. coli were 23.65 mm and 22.37 mm, respectively. In addition, the composite film was biocompatible and the survival rate of cells treated with the composite film solution was more than 90 %. Using strawberries as model fruit, we showed that the composite film could effectively inhibit the growth of colonies on the surface of the fruit and reduce the weight loss rate. These results demonstrated that the composite film has great potential for fruit preservation.
Collapse
Affiliation(s)
- Lijun Qian
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Ruijing Jia
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Quanling Zhao
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Ningjing Sun
- College of resources and environment sciences, Baoshan University, Baoshan 678000, China
| | - Juan Yang
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Jisheng Yang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Liuting Mo
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Shuduan Deng
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming, 650224, China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Yang H, Lu Y, Bao L, Liu Y, Liu D, Zhong Z. Preparation and bioactivities of chitosan nicotinamide derivatives and their application in the preservation of cherry tomatoes. Int J Food Microbiol 2025; 434:111149. [PMID: 40058058 DOI: 10.1016/j.ijfoodmicro.2025.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
Three pyridine-3-formyl chitosan derivatives were successfully prepared, and the preservation performance of the derivatives was examined. According to the results, the derivatives exhibited better antifungal and antioxidant properties than that of chitosan. At a supply concentration of 0.5 mg/mL, 2-ANACS could scavenge DPPH radicals at a rate of (92.82 ± 0.38)%. Additionally, all three derivatives exhibited less cytotoxicity and higher biocompatibility. In the freshness preservation studies of cherry tomatoes, the three derivatives considerably decreased the weight loss rate and postponed the drop in VC and titratable acid content. After 32 days of 2.0 g/L VPPCS treatment, the weight loss of cherry tomatoes was (4.0 ± 0.52) % among them. Still, the weight loss of cherry tomato in the chitosan treatment and blank control was (5.5 ± 1.33) % and (5.94 ± 1.02) %, respectively, which was considerably decreased by VPPCS therapy. These findings demonstrated that adding niacin improved chitosan's antifungal and antioxidant properties, extended the shelf life of cherry tomatoes, and increased the potential uses of chitosan and its derivatives in fruit preservation.
Collapse
Affiliation(s)
- Hehe Yang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yan Lu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Liangliang Bao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yao Liu
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongqi Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhimei Zhong
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
5
|
Zhang Y, Xie X, Yang Y, Huang L, Nan G, Wang X, Zhao H, Wu Q. Efficient production, computational screening, molecular docking, quantum chemical calculations, and application of novel antioxidant peptides from Tartary buckwheat in composite preservation films. Food Chem 2025; 482:144115. [PMID: 40187322 DOI: 10.1016/j.foodchem.2025.144115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Tartary buckwheat is a protein-rich pseudocereal. This research developed an efficient method for extracting antioxidant peptides from buckwheat. Alkaline hydrolysis of buckwheat albumin protein produced antioxidant peptides with higher extraction efficiency and antioxidant activity (p < 0.05). LC-MS/MS analysis identified 1284 novel antioxidant peptide sequences. Computational screening identified 16 peptides with high abundance and superior antioxidant capacity. Molecular docking and quantum chemical calculations determined WPWR, FLQL, and HGLFSPF as the peptides with the highest bioactivity. Among these, WPWR demonstrated excellent in vitro antioxidant activity and was successfully applied in peptide-polysaccharide composite preservation films, effectively extending the shelf life of strawberries, highlighting the potential of Tartary buckwheat-derived antioxidant peptides for advanced food preservation technology.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Xuemei Xie
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Yuanhang Yang
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Lilin Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Guohui Nan
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, Sichuan 644000, People's Republic of China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
6
|
Sun J, Pan X, Wang T, Liu L, Li Z, Wang X. Preparation, characterization and application of chitosan/thyme essential oil composite film. Sci Rep 2025; 15:7934. [PMID: 40050689 PMCID: PMC11885837 DOI: 10.1038/s41598-025-92267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
In order to prepare a chitosan-based antibacterial film with excellent mechanical properties and study its properties, the tape casting method was used to prepare the composite film from chitosan, glycerin and thyme essential oil. Through single factor test and response surface optimization test, the tensile strength and elongation at break were used as response indicators to prepare the composite film with better mechanical properties, and the physical properties, water vapor permeability, solubility and bacteriostasis of the composite film were measured, and the characterization of the microstructure of the composite films. The results showed that the optimized composite film ratio was 1.5% chitosan, 0.5% glycerol, 0.5% thyme essential oil, 18.69 MPa tensile strength, 19.01% elongation at break, 2.52 g/h·m2 water vapor permeability, and 23.78% solubility. The composite film had a good antibacterial effect and increased the DPPH radical scavenging rate to 52.4%. Its overall performance was superior to that of chitosan single film. The chitosan/thyme essential oil composite film can reduce the weight loss rate, hardness loss rate and POD activity of blueberry fruits during storage. Additionally, it effectively inhibits the decline of soluble solids content, anthocyanin content, and Vc content, while slowing the increase of MDA content, thereby maintaining fruit quality and enhancing the fresh-keeping effect. Adding thyme essential oil to prepare composite film provides a reference for the fresh-keeping research of freshly cut fruits and vegetables.
Collapse
Affiliation(s)
- Jianming Sun
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Intelligent and Protective Packaging Design, Luoyang, China
| | - Xiao Pan
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, China
| | - Tiantian Wang
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, China
| | - Lei Liu
- Henan Inspection and Testing Institute Group Co., Ltd, Zhengzhou, China.
| | - Zhao Li
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Intelligent and Protective Packaging Design, Luoyang, China
| | - Xiaofang Wang
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Intelligent and Protective Packaging Design, Luoyang, China
| |
Collapse
|
7
|
Xiao M, Shen A, Chen X, Lu T, Zhang J, Li S, Yang W. Preparation and Keep-Refreshing Effect of Chitosan/Sea Buckthorn Polysaccharide Composite Film on the Preservation of Yellow Cherry Tomatoes. Foodborne Pathog Dis 2025; 22:131-139. [PMID: 39230436 DOI: 10.1089/fpd.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
In this study, sea buckthorn polysaccharides (SBP) were added as functional substances to chitosan (CS), and chitosan/sea buckthorn polysaccharide (SCS) composite films were prepared using the casting method. The effects of SBP addition on the optical properties, physical properties, mechanical properties, structure, antioxidant activity, and antibacterial activity of the SCS composite films were studied, and the prepared SCS composite films were used to preserve yellow cherry tomatoes. The results showed that SCS composite films exhibited good UV resistance, water solubility, and antioxidant activity, but its apparent structure, hydrophobicity, and mechanical properties needed further improvement. Meanwhile, SBP has inhibitory effects on all 8 experimental strains. In addition, the SCS composite film with the addition of 200 mg/L SBP could reduce the weight loss rate of yellow cherry tomatoes, maintain hardness, delay the decrease of total soluble solids, titratable acid, and Vitamin C content, and inhibit the accumulation of malondialdehyde. SCS composite films are beneficial for enhancing the quality of yellow cherry tomatoes during storage, and their application in fruit and vegetable preservation has development prospects.
Collapse
Affiliation(s)
- Miaorong Xiao
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Ao Shen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaodi Chen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Tongtong Lu
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Jin Zhang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Weiwei Yang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
8
|
Wang Y, Zhang Y, Ma Y, Liu J, Zhang R, Zhao J. Preparation and application of chitosan/nano-TiO₂/daisy essential oil composite films in the preservation of Actinidia arguta. Food Chem X 2025; 26:102303. [PMID: 40083854 PMCID: PMC11905817 DOI: 10.1016/j.fochx.2025.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Chitosan, a natural polysaccharide, is widely recognized for its biocompatibility, biodegradability, and film-forming properties, making it an ideal candidate for food preservation applications. This study focuses on the development of chitosan-based nanocomposite films incorporating nano-TiO2 and Daisy Essential Oil for the preservation of Actinidia arguta. The composite films were synthesized and characterized using FT-IR, XRD, SEM, TGA, UV-Visible spectroscopy, and contact angle measurements to evaluate their structural, thermal, and physical properties. The films exhibited enhanced mechanical strength, antimicrobial activity, and antioxidant capacity. Application of these films on Actinidia arguta demonstrated significant improvements in weight loss, hardness, decay rate, total microbial count, respiration rate, soluble solids content, vitamin C, titratable acidity, and enzyme activities during storage. The results indicate that chitosan/nano-TiO2/DEO composite films effectively extend the shelf life and maintain the quality of Actinidia arguta, providing a promising approach for natural and sustainable food preservation.
Collapse
Affiliation(s)
- Yue Wang
- College of Food Science and Engineering, Changchun University, No.6543 Satellite Road, 130022 Changchun, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, No.6543 Satellite Road, 130022 Changchun, China
| | - Yaomei Ma
- College of Food Science and Engineering, Changchun University, No.6543 Satellite Road, 130022 Changchun, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Ruinting Zhang
- Agriculture College, Yanbian University, Yanbian 133002, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, No.6543 Satellite Road, 130022 Changchun, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Ministry of Education, Changchun University, Changchun 130022, China
| |
Collapse
|
9
|
Yildirim A, Acay H. Methylene blue and malachite green dyes adsorption onto russula delica/bentonite/tripolyphosphate. Heliyon 2025; 11:e41250. [PMID: 39811303 PMCID: PMC11731215 DOI: 10.1016/j.heliyon.2024.e41250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
In the current research Russula delica mushroom/bentonite clay (RDBNC) as a low-cost bionanosorbent was investigated for adsorption of methylene blue (MB) and malachite green (MG) dye from contaminated water. The bionanosorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (FESEM), Thermal Gravimetric Analysis (TGA), and Zeta-potential techniques. Adsorption experiments of RDBNC for MB, MG dyes following Freundlich isotherm and pseudo second order kinetic models. To determine their effects on the adsorption efficiency, the adsorption parameters were investigated including dye concentration, contact time, temperature, and dosage of the bionanosorbent. The adsorption process can operate through three primary mechanisms: the π-π interaction, the hydrogen bonding, and electrostatic interactions between the surface of RDBNC and MB, MG dyes. Desorption results revealed that MB and MG dyes were effectively desorbed during the fourth cycle without a notable loss in adsorption capacity. The thermodynamics parameters including ΔH, ΔS, and ΔG, were determined, and the adsorption process was favorable, spontaneous, and exothermic for MB and MG. The results showed that RDBNC, which showed effective inhibition at low concentrations, especially against E. coli, can be used as a low-cost bionanosorbent synthesised for the first time to remove industrial dyes.
Collapse
Affiliation(s)
- Ayfer Yildirim
- Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkey
| | - Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
10
|
Zhao M, Han P, Mu H, Sun S, Dong J, Sun J, Lu S, Wang Q, Ji H. Food packaging films from natural polysaccharides and protein hydrogels: A comprehensive review. Food Chem X 2025; 25:102174. [PMID: 39897972 PMCID: PMC11786921 DOI: 10.1016/j.fochx.2025.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/09/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
The development of innovative, biodegradable food packaging materials to combat plastic pollution has garnered significant attention from scholars and government agencies worldwide. Natural polysaccharides and proteins exhibit excellent modifiability, biodegradability, high ductility, and compatibility with food products, making them ideal candidates for constructing hydrogels. Hydrogel films based on these biopolymers have opened new research horizons in food packaging applications. This review examines natural polysaccharides and proteins commonly used in hydrogel film preparation and explores strategies to improve their packaging performance, including the use of binary mixtures and exogenous additives. To optimize functionality, the cross-linking mechanisms between materials and film-forming methods are summarized. Additionally, recent applications of hydrogel films in food packaging in are discussed, showcasing their ability to extend or monitor food freshness. Despite existing challenges, the current advancements present a promising and sustainable alternative to conventional plastic materials paving the way for innovative packaging solutions.
Collapse
Affiliation(s)
- Mou Zhao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ping Han
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
11
|
Mu Y, Lv S, Liu J, Tong J, Liu L, Wang J, He T, Wei D. Recent advances in research on biomass-based food packaging film materials. Compr Rev Food Sci Food Saf 2025; 24:e70093. [PMID: 39812511 DOI: 10.1111/1541-4337.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.g., solution casting, extrusion blow molding, layer-by-layer assembly, and electrostatic spinning), and applications in food packaging. Through these preparation methods, the paper analyzes how the properties of the films can be effectively tuned and optimized to meet specific packaging needs. It was found that biomass film materials for food packaging not only possess functional properties such as antimicrobial, preservation, and indication, but also that their continued material innovation and technological improvements offer promising prospects for their use in commercial applications. These advances could help advance the global sustainable development goals, while showing great potential for improving food safety and extending shelf life. Future research will further explore new functions and applications of biomass films, providing additional solutions for environmental protection and sustainability.
Collapse
Affiliation(s)
- Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiaqi Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
12
|
Wang J, Li Z, Wu X, Wang Z, Liang B, Gao Y, Dai Y, Wu Q. Preparation of Physalis alkekengi L. calyx total flavonoids-chitosan composite film and its effect on preservation of chilled beef. Int J Biol Macromol 2024; 283:137768. [PMID: 39557237 DOI: 10.1016/j.ijbiomac.2024.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
In the present study, Physalis alkekengi L. calyx total flavonoids (PCTF) were extracted using the ultrasound-assisted ethanol method and separated and purified using macroporous resin AB-8. Physalis alkekengi L. calyx total flavonoid-chitosan (PCTF-CS) composite films containing 0.05 %, 0.10 % and 0.15 % PCTF were prepared using the purified PCTF laminated with chitosan (CS) and compared with single CS films, respectively, to investigate their mechanical properties, barrier properties, optical properties, microstructure, crystallography, thermal stability, water contact angle, particle size and zeta potential, antioxidant property, antimicrobial property, and preservation effect on chilled beef. The PCTF-CS films with PCTF additions had darker colors and higher mechanical and barrier properties than the CS films. In addition, the addition of PCTF improved the antioxidant and antimicrobial properties of the CS films. It enhances the freshness retention of fresh beef, and effectively inhibits the rise of weight loss, pH, total bacteria, total volatile basic nitrogen, and thiobarbituric acid reactive substances in beef, prolonging the shelf life of beef. These results indicate that the addition of PCTF can provide CS films with superior functional properties and bioactivities and that PCTF-CS composite films are a potential and promising packaging material for food preservation.
Collapse
Affiliation(s)
- Jiaming Wang
- Changchun University, Changchun, Jilin 130022, China
| | - Zhentao Li
- Changchun University, Changchun, Jilin 130022, China
| | - Xinru Wu
- Changchun University, Changchun, Jilin 130022, China
| | - Zifei Wang
- Changchun University, Changchun, Jilin 130022, China
| | - Bin Liang
- Changchun University, Changchun, Jilin 130022, China
| | - Yang Gao
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, Province, 130033, China
| | - Yonggang Dai
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, Province, 130033, China
| | - Qiong Wu
- Changchun University, Changchun, Jilin 130022, China.
| |
Collapse
|
13
|
Meng Y, Zhao H, Dong C, He Z, Long Z. Eco-friendly and flexible polysaccharide-based packaging films for fruit preservation. Int J Biol Macromol 2024; 281:136132. [PMID: 39419685 DOI: 10.1016/j.ijbiomac.2024.136132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Food safety and wastage caused by fruit deterioration is a serious global problem. Effective packaging systems for extending the freshness period of fruit play a key role in food safety. In this work, we constructed an eco-friendly and flexible polysaccharide-based packaging film based on hydroxypropyl guar (HPG), cellulose nanocrystals (CNCs), deep eutectic solvents (DES) and anthocyanin (Anth). DES could endow polysaccharide films with multiple hydrogen bond numbers and good stability. Hydroxypropyl guar/cellulose nanocrystals/anthocyanin with 0.2 g deep eutectic solvents (HCA-DES0.2) had good tensile properties, oxygen barrier properties (3.01 cm3/m2·day·Pa), water resistance (WCA 111.97°), antibacterial (CFU ˂ 103), and transparency (55.4 %). The preservation tests of grape and blueberry showed that the shelf life of these two fruits was 12-20 days, and the polysaccharide film had great application potential in fruit preservation.
Collapse
Affiliation(s)
- Yahui Meng
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Huifang Zhao
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhibin He
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Zhu Long
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Hossen MA, Shimul IM, Sameen DE, Rasheed Z, Tanga W, Chen M, Liu Y. Chitosan/gelatin coating loaded with ginger essential oil/β-cyclodextrin inclusion complex on quality and shelf life of blueberries. Int J Biol Macromol 2024; 279:135026. [PMID: 39187107 DOI: 10.1016/j.ijbiomac.2024.135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Blueberries are highly susceptible to fungal pathogens and oxidative deterioration due to their thin epidermal layer, which can be mitigated by applying a natural polymer-based antimicrobial coating to their surface. This study aimed to develop a chitosan/gelatin-based antimicrobial coating utilizing ginger essential oil (GEO) to extend the postharvest quality of blueberries. To ensure GEO's stability within the coating, it was initially encapsulated with β-cyclodextrin (β-CD) using the inclusion complexation technique. The GEO/β-CD inclusion complex (IC) formed rhomboidal shapes with high encapsulation efficiency and small particle sizes. When the optimized GEO/β-CD IC was incorporated into the chitosan/gelatin polymer solution, it significantly increased surface hydrophobicity and free radical scavenging activity, and suppressed the growth of three selected fungi, namely Botrytis cinerea, Penicillium italicum and Alternaria alternaria. The results of postharvest storage quality revealed that blueberry samples coated with CH/Gel-GEO/β-CD IC-5 effectively maintained the quality of blueberries by decreasing weight loss and decay incidence, and regulating anthocyanin and other oxidation-related enzyme activities compared to the control group during 16 days at 25 °C and 40 days at 4 °C storages. In conclusion, it can be stated that CH/Gel-GEO/β-CD composite coating can be a promising technology to address the drawbacks of blueberry preservation.
Collapse
Affiliation(s)
- Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zainab Rasheed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wuxia Tanga
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
15
|
Shen C, Li J, Meng Q, Xu L, Zhang G. Rhamnolipids stabilized essential oils microemulsion for antimicrobial and fruit preservation. Food Chem 2024; 457:140167. [PMID: 38909451 DOI: 10.1016/j.foodchem.2024.140167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Essential oils, well-known for their antifungal properties, are widely utilized to combat fruit decay. However, their application faces big challenges due to their high volatility and hydrophobic traits, which leads to strong odor, short effective time and poor dispersivity. This study aimed to address these challenges by formulating microemulsions consisting of essential oils and rhamnolipids. The optimized microemulsion, featuring a small particle size of 6.8 nm, exhibited higher stability and lower volatility than conventional emulsion. Notably, the prepared microemulsions demonstrated remarkable antimicrobial efficacy against E. coli, S. aureus, C. albicans, S. cerevisiae, and A. niger. The application of these microemulsions proved to be highly effective in preventing blueberry decay while preserving fruit's quality, particularly by minimizing the loss of essential nutrients such as anthocyanins. Consequently, essential oil microemulsions emerge as a highly effective postharvest preservative for fruits, offering a promising solution to extend their shelf life and enhance overall quality.
Collapse
Affiliation(s)
- Chong Shen
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangxiong Li
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Zheda Road 38#, 310027 Hangzhou, China
| | - Lusheng Xu
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Liu M, Chen H, Pan F, Wu X, Zhang Y, Fang X, Li X, Tian W, Peng W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr Polym 2024; 343:122445. [PMID: 39174125 DOI: 10.1016/j.carbpol.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
17
|
Wang J, Yuan Y, Liu Y, Li X, Wu S. Application of chitosan in fruit preservation: A review. Food Chem X 2024; 23:101589. [PMID: 39036472 PMCID: PMC11260026 DOI: 10.1016/j.fochx.2024.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Fruit preservation after harvest is one of the key issues in current agriculture, rural areas, and for farmers. Using chitosan to keep fruits fresh, which can reduce the harm caused by chemical preservative residue to human health. It also helps avoid the disadvantages of the high cost of physical preservation and the challenges associated with difficult operation. This review focuses on the application progress of chitosan in fruit preservation. Studies have shown that chitosan inhibits the growth of bacteria and fungi, and delays fruit aging and decay. Furthermore, it can regulate the respiration and physiological metabolism of fruit, helping to maintain its quality and nutritional value. The preservation mechanism of chitosan includes its antibacterial properties, film-forming properties, and its effects on the physiological processes of fruit. However, in practical applications, issues such as determining the optimal concentration and treatment of chitosan still require further research and optimization.
Collapse
Affiliation(s)
- Jingjing Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Yuning Yuan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Yu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Xiang Li
- Corresponding authors at: Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China.
| | - Shengjun Wu
- Corresponding authors at: Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China.
| |
Collapse
|
18
|
Liu M, Zou X, Wu X, Li X, Chen H, Pan F, Zhang Y, Fang X, Tian W, Peng W. Preparation of chitosan/Tenebrio molitor larvae protein/curcumin active packaging film and its application in blueberry preservation. Int J Biol Macromol 2024; 275:133675. [PMID: 38971287 DOI: 10.1016/j.ijbiomac.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
With growing concerns about postharvest spoilage of fruits, higher requirements have been placed on high-performance and sustainable active packaging materials. In this study, we prepared curcumin-based functional composite films using chitosan (CS) and Tenebrio molitor larvae protein (TMP) as the substrates. The effects of curcumin concentration on the structural and physicochemical properties of the composite films were determined. Curcumin was equally distributed in the polymer film through physical interactions. Furthermore, the curcumin composite film with 0.3 % addition exhibited a 27.39 % increase in elongation at break (EBA), a 37.04 % increase in the water vapor barrier, and strong UV-blocking properties and antioxidant activity compared with the control film (CS/TMP). The degradation experiment of the composite film on natural soil revealed that the composite film exhibited good biodegradability and environmental protection. Furthermore, the applicability of functional composite films for preserving blueberries was investigated. Compared with the control film and polyethylene (PE) films, the prepared composite films packaging treatment reduced the decay rate and weight loss rate of blueberries during storage, delayed softening and aging, and maintained the quality of blueberries. Using sustainable protein resources (TMP) and natural polysaccharides as packaging materials provides an economically, feasible and sustainable way to achieve the functional preservation of biomass materials.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xu Zou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
19
|
Zhang M, Liu S, Gao X, Jiang X, Zhang E, Fan H, Zhu S. Highly flexible carbon nitride-polyethylene glycol-cellulose acetate film with photocatalytic antibacterial activity for fruit preservation. Int J Biol Macromol 2024; 266:131161. [PMID: 38547947 DOI: 10.1016/j.ijbiomac.2024.131161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Cellulose acetate film, as a biodegradable and biomass-derived material, has great potential applications in food packaging. However, the poor mechanical and antibacterial properties limit its applications. Herein, a highly flexible carbon nitride-polyethylene glycol-cellulose acetate (CN-PEG-CA) film was successfully prepared by combining graphitic carbon nitride (g-C3N4) photocatalyst with cellulose acetate (CA). The g-C3N4 enables the film with antibacterial activity, as a green photocatalyst. PEG softens the rigid polymer CA and crosslinks CA, PEG, and g-C3N4 together by hydrogen bonding, as a flexible crosslinker. X-ray diffractometer (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectrum (FT-IR) characterizations confirmed the successful preparation of the CN-PEG-CA film. The mechanical property tests demonstrated that adding PEG increased the elongation at break of the film by about 4 times. The composite film had high antibacterial activity, and the bactericidal rates on Escherichia coli and Staphylococcus aureus were 99.98 % and 99.89 %, respectively. It effectively extended the shelf life of strawberries to 96 h and effectively maintained the quality of strawberries during storage. After 96 h, the weight loss rate of strawberries packaged with 15 % CN-PEG-CA film was 21.83 %, vitamin C content was 45.47 %, titratable acidity content was 0.89 %, and color, hardness and total soluble solids were well maintained. And biocompatibility test results showed that the film was safe and nontoxic. From the ecological and economic point of view, the highly flexible and biodegradable films with efficient photocatalytic antibacterial activity synthesized in this paper have great potential in the field of food packaging.
Collapse
Affiliation(s)
- Mengting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Shujun Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xianqiang Gao
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xiaokang Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Enze Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Hai Fan
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
20
|
Wang Z, Zhang M, Liang S, Li Y. Enhanced antioxidant and antibacterial activities of chitosan/zein nanoparticle Pickering emulsion-incorporated chitosan coatings in the presence of cinnamaldehyde and tea polyphenol. Int J Biol Macromol 2024; 266:131181. [PMID: 38552702 DOI: 10.1016/j.ijbiomac.2024.131181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Pickering emulsions were prepared by using zein/chitosan nanoparticles as stabilizer and then incorporated into chitosan coatings. To improve the stability and performances, tea polyphenol and cinnamaldehyde (CA) were used to modulate the formation and functionalities of Pickering emulsions. The oil phase in Pickering emulsions were set at 5 % and 20 % to alter the hydrophobicity of chitosan coatings. Physical, structural, antioxidant and antibacterial activities of chitosan coatings with Pickering emulsions were characterized. Tea polyphenol significantly enhanced antioxidant capacity of chitosan coatings from 2.09 % to 57.61 % of DPPH value and from 2.63 % to 38.85 % of ABTS value. CA effectively increased the antibacterial activity of chitosan coatings against S. aureus and E. coli. Under 20 % oil content, the inhibition zones on S. aureus and E. coli increased from 3.03 ± 0.23 mm to 18.39 ± 1.22 mm and 7.66 ± 1.61 mm to 15.70 ± 1.75 mm, respectively. The preservative effect of chitosan coatings on fresh pork was further confirmed that the shelf-life of fresh pork could be extended by >4 days. These results suggested a great potential application of Pickering emulsion-incorporated chitosan coatings in the preservation of fresh pork.
Collapse
Affiliation(s)
- Zinan Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Shan Liang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Qiao J, Wang Q, Liu K, Chang Y, Wang L, Zhang S, Yu Y. Characterization and Antioxidant and Antibacterial Activities of Carboxymethylated Tamarind Seed Polysaccharide Composite Films Incorporated with ε-Polylysine and Their Application in Fresh-Cut Green Bell Pepper Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8805-8816. [PMID: 38566515 DOI: 10.1021/acs.jafc.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.
Collapse
Affiliation(s)
- Jianfu Qiao
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Qi Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Kunyu Liu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Yuan Chang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Linjing Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| |
Collapse
|
22
|
Qiao J, Wang L, Wang L, Li Z, Huai Y, Zhang S, Yu Y. Development and Characterization of Modified Gelatin-Based Cling Films with Antimicrobial and Antioxidant Activities and Their Application in the Preservation of Cherry Tomatoes. Antioxidants (Basel) 2024; 13:431. [PMID: 38671879 PMCID: PMC11047390 DOI: 10.3390/antiox13040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The utilization of functional cling films presents a promising approach to alleviate post-harvest spoilage caused by microbial activity, oxidative metabolism, and moisture loss in agricultural products. To overcome the environmental problems of conventional packaging materials, in this study, we developed functional fruit and vegetable cling films based on glycidyltrimethylammonium chloride and rosemarinic acid cross-linked gelatin (RQ-GEL). The results indicate that the prepared RQ-GEL film possesses excellent UV light barrier properties and mechanical performance. RQ-GEL inhibited S. aureus and E. coli by 93.79% and 92.04%, respectively. DPPH and ABTS free radical scavenging activities were as high as 87.69% and 84.6%. In the cherry tomato preservation experiment, when compared to uncovered samples, the RQ-GEL group had a 29.77% reduction in weight loss and a significant 26.92% reduction in hardness. Meanwhile, the RQ-GEL group delays the decline of fruit total soluble solids and titratable acidity content, and prolongs the preservation period of cherry tomatoes. Hence, RQ-GEL cling film is poised to emerge as a promising packaging material for the post-harvest preservation of agricultural products.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China; (J.Q.); (L.W.); (L.W.); (Z.L.); (Y.H.)
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030000, China; (J.Q.); (L.W.); (L.W.); (Z.L.); (Y.H.)
| |
Collapse
|
23
|
Hossen MA, Shimul IM, Sameen DE, Rasheed Z, Dai J, Li S, Qin W, Tang W, Chen M, Liu Y. Essential oil-loaded biopolymeric particles on food industry and packaging: A review. Int J Biol Macromol 2024; 265:130765. [PMID: 38462119 DOI: 10.1016/j.ijbiomac.2024.130765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Essential oils (EOs) are liquid extracts derived from various parts of herbal or medicinal plants. They are widely accepted in food packaging due to their bioactive components, which exhibit remarkable antioxidant and antimicrobial properties against various pathogenic and food spoilage microorganisms. However, the functional efficacy of EOs is hindered by the high volatility of their bioactive compounds, leading to rapid release. Combining biopolymers with EOs forms a complex network within the polymeric matrix, reducing the volatility of EOs, controlling their release, and enhancing thermal and mechanical stability, favoring their application in food packaging or processing industries. This study presents a comprehensive overview of techniques used to encapsulate EOs, the natural polymers employed to load EOs, and the functional properties of EOs-loaded biopolymeric particles, along with their potential antioxidant and antimicrobial benefits. Additionally, a thorough discussion is provided on the widespread application of EOs-loaded biopolymers in the food industries. However, research on their utilization in confectionery processing, such as biscuits, chocolates, and others, remains limited. Further studies can be conducted to explore and expand the applications of EOs-loaded biopolymeric particles in food processing industries.
Collapse
Affiliation(s)
- Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zainab Rasheed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wuxia Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
24
|
Li Y, Bian B, Tang R, Zhang K. Characterization of a Clove Essential Oil Slow-Release Microencapsulated Composite Film and Its Preservation Effects on Blueberry. ACS OMEGA 2024; 9:12643-12656. [PMID: 38524409 PMCID: PMC10955695 DOI: 10.1021/acsomega.3c07169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
In order to extend the shelf life of fruits and vegetables, a sodium alginate-sodium carboxymethyl cellulose composite film loaded with poly(vinyl alcohol) microcapsules was prepared in this paper. The optimal film substrate ratios were obtained after the response surface optimization. Poly(vinyl alcohol) microcapsules were prepared, clove essential oil was loaded into them to investigate the effects of microcapsules on the composite film properties, and the microcapsule composite film with the best overall performance was selected to be applied to blueberry preservation. The results showed that the composite film of 0.84% sodium alginate, 0.25% sodium carboxymethyl cellulose, and 0.56% glycerol presented excellent mechanical properties after adding 1.75% microcapsules. It had a good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Penicillium and had a DPPH clearance rate of 83.78%. The low-temperature bonded composite film could slow down the respiration rate of blueberry, inhibit browning and water loss, effectively maintain the quality of blueberry, and have a significant preservation effect on the anthocyanin and soluble solid content of blueberry. The clove essential oil slow-release microencapsulated composite film can be used for blueberry preservation.
Collapse
Affiliation(s)
- Yang Li
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Boya Bian
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Rongrong Tang
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Kexin Zhang
- College of Civil Engineering
and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
25
|
Feng X, Li Y, Cui Z, Tang R. Sodium alginate/carboxymethyl cellulose films embedded with liposomes encapsulated green tea extract: characterization, controlled release, application. RSC Adv 2024; 14:245-254. [PMID: 38173599 PMCID: PMC10758806 DOI: 10.1039/d3ra05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
To maintain the freshness of the fruit during storage, sodium alginate/carboxymethyl cellulose films embedded with pH-senstive liposomes encapsulated green tea extract were developed (SA/CMC/TP-Lip). An orthogonal design was used to optimise the preparation of TP-Lip and SA/CMC/TP-Lip was prepared through response surface. The stability of TP-Lip structure was measured. The morphology of SA/CMC/TP-Lip was characterised by SEM, and the mechanical properties and oxidation resistance of films were measured. Special attention was paid to the pH sensitivity of TP-Lip and the improvement of film properties. The zeta potential and encapsulation rate of TP-Lip were -45.85 ± 2.13 mV and 61.45 ± 0.23%. The average release rate of TP encapsulated into TP-Lip at pH 3 was 41.08%, an increase of 23.07% over pH 6 during 12 h. SEM and FTIR showed that TP-Lip was structurally stable and had good compatibility with SA/CMC. Tensile strength was increased by 30.55% and DPPH radical scavenging capacity was increased by 7.16% with the addition of TP-Lip. SA/CMC/TP-Lip is applied to blueberries to reduce their weight loss and improve the loss of freshness of blueberries during storage. Thus, SA/CMC/TP-Lip could provide a new way to extend active packaging materials and maintain fruit freshness during storage.
Collapse
Affiliation(s)
- Xin Feng
- Department of Forestry Engineering, Northeast Forestry University Harbin Heilongjiang China
| | - Yang Li
- Department of Logistics Engineering and Management, Northeast Forestry University Harbin Heilongjiang China
| | - Zhuoyu Cui
- Department of Forestry Engineering, Northeast Forestry University Harbin Heilongjiang China
| | - Rongrong Tang
- Department of Logistics Engineering and Management, Northeast Forestry University Harbin Heilongjiang China
| |
Collapse
|