1
|
Sana SS, Vadde R, Atapakala S, Alam MM, Mamidi N, Kim SC. An eco-friendly lignin sulfonate-stabilized ZnO nanoflowers with inherent antioxidant, antibacterial, anticancer activities and effect on seed germination. Int J Biol Macromol 2025; 313:144089. [PMID: 40381769 DOI: 10.1016/j.ijbiomac.2025.144089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Herein, we report the eco-friendly and cost-effective synthesis of bionanocomposites comprising zinc oxide nanoflowers (ZnONFs) encapsulated with lignin sulfonate (LS) as a stabilizing agent. The as-synthesized LS-ZnONFs were comprehensively characterized using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). FE-SEM and HR-TEM imaging elucidated a well-defined nanoflower-like morphology. The antioxidant potential of LS-ZnONFs was evaluated via DPPH and ABTS assays, demonstrating significant radical scavenging activity with IC50 values of 2.84 μg/mL and 4.38 μg/mL, respectively. Additionally, LS-ZnONFs exhibited potent antibacterial activity against clinically relevant pathogens, including Klebsiella pneumoniae, Corynebacterium diphtheriae, Salmonella typhi, and Escherichia coli, alongside notable anti-biofilm effects. In vitro cytotoxicity assessment against HepG2 human hepatocellular carcinoma cells revealed dose-dependent antiproliferative activity (IC50 = 180 μg/mL), as confirmed by MTT assay and apoptosis analysis. Furthermore, LS-ZnONFs were investigated for their influence on seed germination and growth in Raphanus sativus (radish), demonstrating their potential as a sustainable agrochemical agent. Collectively, these findings highlight the multifunctional capabilities of LS-ZnONFs as an antioxidant, anticancer, and antimicrobial agent, underscoring their promise for biomedical and agricultural applications.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516005, India
| | | | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Narsimha Mamidi
- Wisconsin Center for NanoBiosystems, School of Pharmacy, Wisconsin University, Madison, WI 53705, United States
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Mutmainna I, Tahir D, Gareso PL, Suryani S. Development of PVA-chitosan based smart packaging with the addition of red cabbage (Brassica Oleracea Var. capitata F. rubra) anthocyanin extract and copper-based metal-organic material (Cu-Mof). Int J Biol Macromol 2025; 313:144205. [PMID: 40373898 DOI: 10.1016/j.ijbiomac.2025.144205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Naturally-based smart packaging has emerged as an innovative solution to enhance product quality, safety, and shelf life in the food industry. pH-responsive smart packaging based on PVA/Chitosan was developed by incorporating Copper Metal-Organic Frameworks (Cu-MOF) and anthocyanin from red cabbage (Brassica oleracea). The pH-sensitive anthocyanin enables real-time detection of food freshness through color changes. At the same time, combining PVA/Chitosan with Cu-MOF enhances the packaging's mechanical properties, antimicrobial activity, and biodegradability. The results showed that this packaging could undergo pH-dependent color changes across various pH conditions (pH 2 to pH 9), exhibited good mechanical properties (reaching 9.82 MPa with the addition of 1 g of chitosan), and that these mechanical properties were also influenced by the addition of Cu-MOF, which had an average particle size of 1.06 nm. Moreover, the packaging achieved up to 90.38 % biodegradation by adding 1 g of chitosan at pH 3 and 80.43 % at pH 4 within 15 days, making it an environmentally friendly solution. Additionally, this packaging effectively inhibited bacterial growth after incubation, improving food safety. This packaging extended the product's shelf life in food packaging experiments using shrimp. Thus, developing this packaging offers significant potential as an innovative solution in the sustainable food packaging industry, as it is expected to visualize food changes before consumption, extend food shelf life, and significantly reduce food waste issues.
Collapse
Affiliation(s)
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | | | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
3
|
Yang X, Guo S, Cui Y, Wang X, Zhang R, Xu C, Li M, Zhao B. Effect of different modified potato starch on starch-based films containing ZIF-67@thymol. Int J Biol Macromol 2025; 303:140731. [PMID: 39920951 DOI: 10.1016/j.ijbiomac.2025.140731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Zeolite imidazolate framework-67 (ZIF-67) was used to encapsulate thymol (THY) to improve the properties of potato starch films. The effect of different modified potato starches (acetate starch (AS), hydroxypropyl di-starch phosphate (HDSP), oxidized hydroxypropyl starch (OHS), and acetylated di-starch phosphate (ADSP)) on the film properties was investigated. The results showed that the modified potato starch film had better water resistance, mechanical property, and water vapor barrier than the natural potato starch film. Scanning electron microscopy observations showed that the smoothness of the modified film was advanced. Notably, the OHS film had the best oxidation resistance activity of 76.93 % compared to the other four films. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were significantly inhibited in all potato starch films enhanced with ZIF-67@THY. Therefore, starch-based films incorporating ZIF-67@THY have a broad application prospect in food packaging.
Collapse
Affiliation(s)
- Xinyu Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Shuaiyu Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yingjun Cui
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Chenmeng Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Mengge Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bingjie Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
4
|
Lopes HM, da Costa FA, Komatsu D, Dufresne A, de Menezes AJ. Gelatinized Cassava Starch Obtained via Low Molar Ratio Hydroxypropylation Reaction. ACS OMEGA 2025; 10:12543-12552. [PMID: 40191335 PMCID: PMC11966575 DOI: 10.1021/acsomega.5c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
Hydroxypropylated starch was successfully synthesized, aiming to address the limitations of native starch, such as poor mechanical properties and water sensitivity, which hinder its application in biodegradable polymers. The modification process, conducted at 115-135 °C with propylene oxide (PO) molar ratios of 0.4-0.8 [PO molecule per OH of starch], effectively disrupted the native starch structure. FTIR and 13C NMR confirmed methyl group incorporation, with lower temperatures and higher PO ratios yielding greater modification. SEM and XRD analyses demonstrated complete gelatinization; although some short-range order structures are present, long-range structures were eliminated, while DSC confirmed the absence of gelatinization peaks. TGA revealed the integration of lower molecular weight molecules, suggesting PPO homopolymerization within the starch granules. These structural transformations enhance the feasibility of producing hydroxypropylated starch films with reduced plasticizer content and energy requirements, offering a novel approach to improving starch-based materials for biodegradable applications.
Collapse
Affiliation(s)
- Henrique
Solowej Medeiros Lopes
- Federal
University of São Carlos (UFSCar), 110 km João Leme dos Santos Road, Sorocaba, SP 18052-780, Brazil
- Technological
College of Sorocaba (Fatec), 2015 Carlos Reinaldo Mendes Avenue, Sorocaba, SP 18013-280, Brazil
- Université
Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble F-38000, France
| | - Fernanda Andrade
Tigre da Costa
- Nuclear
and Energy Research Institute (IPEN-CNEN/SP), 2242 Prof. Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil
- Université
Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble F-38000, France
| | - Daniel Komatsu
- Technological
College of Sorocaba (Fatec), 2015 Carlos Reinaldo Mendes Avenue, Sorocaba, SP 18013-280, Brazil
- Pontifical
Catholic University (PUC), 290 Joubert Wey St., Sorocaba, SP 18030-070, Brazil
| | - Alain Dufresne
- Université
Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble F-38000, France
| | | |
Collapse
|
5
|
Sun Y, Wang Z, Ye J, Li Y, Wang L, Cao R. Advances in Starch-Based Nanocomposites for Functional Food Systems: Harnessing AI and Nuclear Magnetic Resonance Technologies for Tailored Stability and Bioactivity. Foods 2025; 14:773. [PMID: 40077476 PMCID: PMC11898516 DOI: 10.3390/foods14050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Starch-based nanocomposites (SNCs) are at the forefront of innovations in food science, offering unparalleled opportunities for enhancing the stability, bioactivity, and overall functionality of food systems. This review delves into the potential of SNCs to address contemporary challenges in food formulation, focusing on the synergistic effects of their components. By integrating cutting-edge technologies, such as artificial intelligence (AI) and nuclear magnetic resonance (NMR), we explore new avenues for enhancing the precision, predictability, and functionality of SNCs. AI is applied to optimize the design of SNCs, leveraging predictive modeling to fine-tune material properties and streamline production processes. The role of NMR is also critically examined, with particular emphasis on its capacity to provide high-resolution structural insights, monitor stability over time, and elucidate molecular interactions within food matrices. Through detailed examples, the review highlights the impact of NMR in unraveling the complex behaviors of bioactive compounds encapsulated in SNCs. Additionally, we discuss the integration of functional assays and AI-driven analytics in assessing the bioactivity and sensory properties of these systems, providing a robust framework for the rational design of advanced food products. The synergy between AI, NMR, and SNCs opens new pathways for developing tailored, high-performance food formulations that address both health and consumer preferences.
Collapse
Affiliation(s)
- Yue Sun
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jian Ye
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yinta Li
- Weihai Key Laboratory of Medical Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Ruge Cao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
7
|
Zabihzadeh Khajavi M, Nikiforov A, Morent R, Fraeye I, Devlieghere F, Ragaert P, Geyter ND. Engineering antibacterial plasma-polymerized polyethylene glycol-ZnO nanocomposite coatings for extending pork sausage shelf life. Food Res Int 2025; 201:115568. [PMID: 39849744 DOI: 10.1016/j.foodres.2024.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates. The antimicrobial efficacy of these plasma-polymerized PEG-ZnO coatings against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) is assessed, demonstrating a robust antibacterial effect, particularly when using smaller ZnO NPs (35-45 nm). The deposition of uniform, conformal PEG-ZnO nanocomposites with a chemical composition akin to standard PEG polymers has been achieved. In addition, ZnO NPs are homogeneously dispersed within the PEG matrix, up to a concentration of 1 wt%. To assess the antibacterial performance in contact with real food, pasteurized pork sausages inoculated with a mixture of L. monocytogenes or LAB strains are wrapped in plasma-coated PE and vacuum-packed. Bacterial growth is monitored during storage at 7 °C over time, demonstrating that the developed plasma-polymerized PEG-ZnO nanocomposite effectively inhibits bacterial growth during refrigerated storage, with a more pronounced effect on LAB. The release of Zn from the developed PEG-ZnO nanocomposite into various food simulants also remains below the specific migration limit (5 mg kg-1 or L-1 food), confirming coating safety. Overall, plasma-polymerized PEG-ZnO nanocomposite coatings thus show great promise as effective degradable antimicrobial films for food packaging applications.
Collapse
Affiliation(s)
- Maryam Zabihzadeh Khajavi
- Ghent University, Department of Food Technology, Safety and Health, Research Unit Food Microbiology and Food Preservation (FMFP), Belgium; Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium.
| | - Anton Nikiforov
- Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium
| | - Rino Morent
- Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium
| | - Ilse Fraeye
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Belgium
| | - Frank Devlieghere
- Ghent University, Department of Food Technology, Safety and Health, Research Unit Food Microbiology and Food Preservation (FMFP), Belgium
| | - Peter Ragaert
- Ghent University, Department of Food Technology, Safety and Health, Research Unit Food Microbiology and Food Preservation (FMFP), Belgium
| | - Nathalie De Geyter
- Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium
| |
Collapse
|
8
|
Qanash H, Bazaid AS, Alharbi SF, Binsaleh NK, Barnawi H, Alharbi B, Alsolami A, Almashjary MN. Therapeutic Effects of Nanocoating of Apitoxin (Bee Venom) and Polyvinyl Alcohol Supplemented with Zinc Oxide Nanoparticles. Pharmaceutics 2025; 17:172. [PMID: 40006538 PMCID: PMC11859809 DOI: 10.3390/pharmaceutics17020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Bee venom (BV), as a natural product, is one of the foundations of the pharmaceutical industry, through which many diseases, including serious ones, can be effectively treated. The BV nanofilm is an effective antidote delivered into the human body to target the affected area and address the issue without major side effects. In this study, we investigated the intriguing therapeutic effects of apitoxin (bee venom) used in isolation, combined with the powerful properties of zinc oxide nanoparticles. Methods and Results: BV nanofilm was evaluated using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The BV extract was analyzed using mass spectrometry (MS), which identified 84 active components present at varying concentrations. BV was treated with both polyvinyl alcohol (PVA) and zinc oxide nanoparticles (ZNPs) to increase the intensity of OH and CH2 groups and to enhance the dispersion of C=O. BV has demonstrated anti-type 2 diabetes activity by inhibiting α-amylase and α-glucosidase, which are starch-degrading enzymes. The nanofilm is an active mixture of BV, PVA, and ZNPs, which exhibited the highest antidiabetic activity with IC50 values of 30.33 μg/mL and 5.55 μg/mL for the inhibition of α-amylase and α-glucosidase, compared to IC50 of 51.69 µg/mL and IC50 of 7.30 µg/mL for BV, respectively. The nanofilm also showed higher anti-inflammatory activity by inhibiting red blood cell (RBC) hemolysis, with an IC50 of 16.99 μg/mL in comparison to IC50 of 72.99 µg/mL for BV alone. The nanofilm demonstrated broad-spectrum antimicrobial activity, effectively targeting both Gram-positive (Staphylococcus aureus ATCC 6538 and Bacillus subtilis ATCC 6633) and Gram-negative bacteria (Salmonella typhi ATCC 6539, Escherichia coli ATCC 8739). Furthermore, increased antioxidant activity was recorded by inhibiting the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effect with an IC50 of 4.26 μg/mL and 19.43 μg/mL for nanofilm and BV, respectively. BV was found to be more toxic to liver tissue (HepG2 cell line) than nanofilm, with IC50 values of 18.5 ± 0.08 μg/mL and 52.27 ± 0.7 μg/mL, respectively. The BV extract displayed higher toxicity to liver tissue (2.3%) with 97.7% viability at 250 μg/mL, compared to nanofilm, which showed 0.09% toxicity and 99.9% viability at the same concentration. Conclusions: the BV nanofilm emerges as a promising alternative medicine, offering an innovative solution for treating various diseases through its high concentration of therapeutically active compounds and effortless targeting delivery.
Collapse
Affiliation(s)
- Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (A.S.B.); (S.F.A.); (N.K.B.); (H.B.); (B.A.)
- Medical and Diagnostic Research Center, University of Ha’il, Hail 55473, Saudi Arabia
| | - Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (A.S.B.); (S.F.A.); (N.K.B.); (H.B.); (B.A.)
- Medical and Diagnostic Research Center, University of Ha’il, Hail 55473, Saudi Arabia
| | - Shahad F. Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (A.S.B.); (S.F.A.); (N.K.B.); (H.B.); (B.A.)
- Medical and Diagnostic Research Center, University of Ha’il, Hail 55473, Saudi Arabia
| | - Naif K. Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (A.S.B.); (S.F.A.); (N.K.B.); (H.B.); (B.A.)
- Medical and Diagnostic Research Center, University of Ha’il, Hail 55473, Saudi Arabia
| | - Heba Barnawi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (A.S.B.); (S.F.A.); (N.K.B.); (H.B.); (B.A.)
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia; (A.S.B.); (S.F.A.); (N.K.B.); (H.B.); (B.A.)
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
9
|
Sun J, Yang X, Bai Y, Fang Z, Zhang S, Wang X, Yang Y, Guo Y. Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods 2024; 13:3999. [PMID: 39766942 PMCID: PMC11675707 DOI: 10.3390/foods13243999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
There is growing interest in the use of bio-based materials as viable alternatives to petrochemical-based packaging. However, the practical application of bio-based films is often hampered by their poor barrier and poor mechanical properties. In this context, cellulose nanofibers (CNFs) have attracted considerable attention owing to their exceptional biodegradability, high aspect ratio, and large surface area. The extraction of CNFs from agricultural waste or non-food biomass represents a sustainable approach that can effectively balance cost and environmental impacts. The functionalization of CNFs improves the economics of raw materials and production processes while expanding their applications. This paper reviews recent advances in cellulose nanofibers, including their sources, surface modification, and characterization techniques. Furthermore, we systematically discuss the interactions of CNFs with different composites in the development of functional food films. Finally, we highlight the application of cellulose nanofiber films in food preservation. Due to their environmentally friendly properties, CNFs are a promising alternative to petroleum-based plastics. The aim of this paper is to present the latest discoveries and advances in CNFs while exploring the future prospects for edible food films, thereby encouraging further research and application of CNFs in the field of active food packaging.
Collapse
Affiliation(s)
- Jiaojiao Sun
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Xi Yang
- College of Food Science and Engineering, Ningbo University, Ningbo 315100, China;
| | - Yifan Bai
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Zhisheng Fang
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Yali Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| |
Collapse
|
10
|
Taha AG, Attia MS, Abdelaziz AM. Modification of chitosan-ethyl formate polymer with zinc oxide nanoparticles and β-CD to minimize the harmful effects of Alternaria early blight on Vicia faba. Int J Biol Macromol 2024; 282:137246. [PMID: 39505187 DOI: 10.1016/j.ijbiomac.2024.137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Derivatives of chitosan-ethyl formate polymers (Chs-EF) show promise as biologically relevant materials. The novelty of this study lies in the innovative use of Chs-EF doped with zinc oxide nanoparticles and beta-cyclodextrin, which significantly enhances the polymers' protective activities against Alternaria early blight disease in Vicia faba by improving both disease resistance and plant health. After doping Chs-EF with zinc oxide nanoparticles (ZnONPs) and inserting it into the beta-cyclodextrin (CD), two products emerged: Chs-EF/ZnONPs and Chs-EF/CD. Using βCD and ZnONPs to modify the Chs-EF polymer improves the optical properties of the generated polymers. Also, the energy gab values of the modified polymers (Chs-EF/ZnONPs and Chs-EF/βCD) were 3.3 and 3.7 eV, respectively, while energy gab value of the Chs-EF polymer was 3.9 eV. In this study, the effects of ZnONPs, chitosan, β-CD, and Chs-EF/ZnONPs on Alternaria solani early blight disease in Vicia faba plants were investigated. The treatments were evaluated based on disease symptoms and a disease index (DI) to assess their ability to protect against Alternaria early blight disease blight. The results show that the modified polymer with ZnONPs and beta-cyclodextrin (β-CD) and the modified polymer with ZnONPs (Chs-EF/ZnO NPs) provided the best protection, with DI values of 25 % and 12.5 %, respectively. Furthermore, it was discovered that the levels of carotenoids, chlorophyll a, and chlorophyll b in the infected plants had dropped by 52.6 %, 69.2 %, and 36.1 %, respectively. Chs-EF/ZnONPs were the most effective treatment, showing significant increases in the contents of chlorophyll a and b in infected plants by 120.8 % and 225.4 %, respectively. The study revealed that Chs-EF/ZnONPs exhibited a 131 % increase in the total phenolic content of plants, peroxidase (POD) activity (110.6 %), and a 347 % increase in polyphenol oxidase (PPO) activity, respectively, compared to healthy plants. Malondialdhyde (MDA) decreased by 50.7 %, 49.7 %, 43.4 %, 36.6 %, 31.7 %, and 7.5 % in response to Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD, respectively. Also, application of Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD reduced the production of H2O2 by 77.5 %, 62.8 %, 62.5 %, 39.6 %, 22 %, and 15.1 %, respectively, compared to infected controls. We recommend considering these substances as promising candidates for agricultural use, as they may effectively serve as control agents against early blight caused by Alternaria solani.
Collapse
Affiliation(s)
- Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
11
|
Farousha K, Rangaraj VM, Mazumder JA, Haija MA, Banat F. Date seed extract encapsulated-MCM-41 incorporated sodium alginate/starch biocomposite films for food packaging application. Int J Biol Macromol 2024; 282:136785. [PMID: 39447794 DOI: 10.1016/j.ijbiomac.2024.136785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
In this study, we developed active bio-composite films using a sodium alginate/starch (1:1) matrix incorporating date seed extract encapsulated mesoporous silica (DSE@MCM-41) up to 7.5 wt%. Incorporating DSE@MCM-41 significantly improved the films' properties, enhancing antioxidant efficacy and UV-blocking capabilities. Notably, the films exhibited a 29.5 % increase in tensile strength, a 34.81 % decrease in water absorption, and a reduction in water vapor permeability to 1.76 × 10-8 g m-1.h-1.pa-1 at 5 wt% DSE@MCM-41 concentration. These enhancements, coupled with sustained DSE release, effectively extended the shelf life of black grapes by up to 16 days. These results demonstrate the potential of DSE@MCM-41-incorporated bio-composite films to improve food preservation and extend shelf life, making them suitable candidates for advanced food packaging systems.
Collapse
Affiliation(s)
- Khadija Farousha
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology (KUST), P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Vengatesan M Rangaraj
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology (KUST), P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jahirul Ahmed Mazumder
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology (KUST), P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University of Science and Technology (KUST), P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology (KUST), P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology (KUST), P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Siddique N, Din MI, Hussain Z, Khalid R, Alsafari IA. Syzgium cumini seed/poly vinyl alcohol based water resistant biodegradable nano-cellulose composite reinforced with zinc oxide and silver oxide nanoparticles for improved mechanical properties. Int J Biol Macromol 2024; 277:134218. [PMID: 39069065 DOI: 10.1016/j.ijbiomac.2024.134218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The current work explored a comparative study of biodegradable jamun seed/polyvinyl alcohol (JS) nanocomposites reinforced with varying concentrations of ZnO and Ag2O nano-fillers. The effect of spherical shaped ZnO and Ag2O nanoparticles (NPs) on the on structure, morphology, swelling and solubility, crystallinity and mechanical properties together with biodegradation performance of the composite films was fully studied. SEM results showed uniform distribution of ZnO and Ag2O nanofillers into the JS matrix and dense or compact nanocomposite films were formed. JS-ZnO and JS-Ag2O nanocomposites with 0.5 wt% ZnO and Ag2O content showed maximum crystallinity i.e. 11.3 and 9.58 %, respectively, as determined by XRD. When compared to the virgin JS film (8.41 MPa), the resultant JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites showed significantly enhanced tensile strength (35.7 MPa, 29.2 MPa), elongation at break (15.42 %, 14.62 %) and Young's modulus (141 MPa, 126 MPa), respectively. Also, reduced swelling (120.4 % and 116.1 %) and solubility ratio (17.45 % and 18.42 %) was observed for JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites, respectively. Biodegradation results showed that maximum degradation (88 %) was achieved for the JS film within 180 days of soil burial whereas JS-ZnO-0.1 and JS-Ag2O-0.1 nanocomposites showed 78 % and 72 % degradation within 180 days, respectively.
Collapse
Affiliation(s)
- Nida Siddique
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Muhammad Imran Din
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zaib Hussain
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Rida Khalid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ibrahim A Alsafari
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia
| |
Collapse
|
13
|
Priyanka S, S Karthick Raja Namasivayam, John F Kennedy, Meivelu Moovendhan. Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles - Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. Int J Biol Macromol 2024; 277:134319. [PMID: 39097046 DOI: 10.1016/j.ijbiomac.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
In this research, a novel active food packaging material was developed by blending starch, chitosan, and plant-based mucilage with zinc oxide nanoparticles. The polymeric nanocomposite film, created by incorporating zinc oxide nanoparticles into the mixture using a straightforward approach, was analyzed for its structural and functional attributes using FTIR, XRD, SEM, and TGA/DSC. These analyses revealed a robust interaction between the polymers' functional groups and the nanoparticles, forming a stable film. The film's mechanical properties, including tensile strength and Young's modulus, were high. It also showed reduced wettability and water solubility, enhancing water resistance. The biodegradability rate was 100 %. Antibacterial tests against Bacillus sp. and Pseudomonas sp. showed significant inhibition zones of 26 mm and 30 mm, respectively, demonstrating strong antibacterial effectiveness. The film's non-target toxicity was assessed through phytotoxicity experiments on Vigna angularis and soil nutrient evaluations, with no negative impact on plant growth or soil health observed. These results indicate that this nanocomposite is a safe, biocompatible option for food packaging.
Collapse
Affiliation(s)
- S Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - John F Kennedy
- Chembiotech Ltd, Institute of Research and Development, Kyrewood House, Worcestershire WR15 8FF, UK
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
14
|
González-Arancibia F, Mamani M, Valdés C, Contreras-Matté C, Pérez E, Aguilera J, Rojas V, Ramirez-Malule H, Andler R. Biopolymers as Sustainable and Active Packaging Materials: Fundamentals and Mechanisms of Antifungal Activities. Biomolecules 2024; 14:1224. [PMID: 39456157 PMCID: PMC11506644 DOI: 10.3390/biom14101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Developing bio-based and biodegradable materials has become important to meet current market demands, government regulations, and environmental concerns. The packaging industry, particularly for food and beverages, is known to be the world's largest consumer of plastics. Therefore, the demand for sustainable alternatives in this area is needed to meet the industry's requirements. This review presents the most commonly used bio-based and biodegradable packaging materials, bio-polyesters, and polysaccharide-based polymers. At the same time, a major problem in food packaging is presented: fungal growth and, consequently, food spoilage. Different types of antifungal compounds, both natural and synthetic, are explained in terms of structure and mechanism of action. The main uses of these antifungal compounds and their degree of effectiveness are detailed. State-of-the-art studies have shown a clear trend of increasing studies on incorporating antifungals in biodegradable materials since 2000. The bibliometric networks showed studies on active packaging, biodegradable polymers, films, antimicrobial and antifungal activities, essential oils, starch and polysaccharides, nanocomposites, and nanoparticles. The combination of the development of bio-based and biodegradable materials with the ability to control fungal growth promotes both sustainability and the innovative enhancement of the packaging sector.
Collapse
Affiliation(s)
- Fernanda González-Arancibia
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Maribel Mamani
- Laboratorio de Bioprocesos, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Caterina Contreras-Matté
- Programa de Doctorado en Psicología, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
| | - Eric Pérez
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Javier Aguilera
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | - Victoria Rojas
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| | | | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
15
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
16
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
17
|
Sathianathan RV, Joseph J, Bhaskaran A, Chan Bose S. Hybrid Metal Oxide (Ag-ZnO) Impregnated Biocomposite in the Development of an Eco-Friendly Sustainable Film. ACS APPLIED BIO MATERIALS 2024; 7:3854-3864. [PMID: 38820558 DOI: 10.1021/acsabm.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Nanotechnology offers an innovative application as an eco-friendly food packaging film fabricated along with a degradable active mixture (AM). The AM is an assortment of alloyed metal oxide nanoparticles (Ag-ZnO), citron powder (AA), and Curcuma peel powder (CPP). Alloyed nanoparticles (NPs) were observed to exhibit a hexagonal structure from the experimental X-ray diffraction. Compositional and morphological study of the NPs (22.69 nm) and AM (32 nm) was done using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and ζ- potential was observed to be -14.7 mV, indicating the stability of NPs. The prepared film was observed to be more effective with antibacterial analysis against Escherichia coli, exhibiting 72% of inhibition and antioxidant activity with IC50: 51.56% using the 2,2 diphenyl-1-picrylhydrazyl (DPPH) assay. Film 1, Film 2, Film 3, and Film 4 were fabricated with the AM and observed to be perfectly encapsulated by PVA using XRD. FESEM images of the film exhibit the aggregation of NPs with biocomposites in perfect distribution. The mechanical properties such as Young's modulus, elongation at break, tensile strength, and ultimate tensile strength (UTS- 5.37 MPa) were experimented for the films. The degradation rate was observed to be 6.12% for film 1 using the soil burial method. The study emphasizes that NPs along with biocomposite upgrade the sustainability of the packaging film with improved mechanical and physicochemical properties. The synthesized film with biomaterials could be used as a "green" food package to store fruits, vegetables, and sweets in the food industry.
Collapse
Affiliation(s)
- Rubalya Valantina Sathianathan
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Jasline Joseph
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Ashika Bhaskaran
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Sweshna Chan Bose
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| |
Collapse
|
18
|
Wang Y, Ju J, Diao Y, Zhao F, Yang Q. The application of starch-based edible film in food preservation: a comprehensive review. Crit Rev Food Sci Nutr 2024; 65:2731-2764. [PMID: 38712440 DOI: 10.1080/10408398.2024.2349735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| |
Collapse
|
19
|
Rahman S, Konwar A, Konwar AN, Dubey S, Ghosh MP, Boro B, Thakur D, Chowdhury D. Ag Nanoparticle Incorporated Guar Gum-Sodium Alginate-I-Carrageenan Tribiopolymer Blended Cloth Waste Lint Extracted Cellulose Nanocrystal Antimicrobial Composite Film. Biomacromolecules 2024; 25:1491-1508. [PMID: 38377554 DOI: 10.1021/acs.biomac.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A biopolymer-based formulation for robust and active food packaging material was developed. This material consisted of a blend of three biopolymers (guar gum-sodium alginate-i-carrageenan) reinforced by cellulose nanocrystals (CNC) alongside the integration of silver nanoparticles (AgNPs) with varying sizes. The CNC utilized in this process was derived from cloth waste lint (CWL) generated from a household cloth dryer machine. This CNC synthesis underwent a series of solvent treatments to yield the CNC used in the composite. CNC and AgNPs were incorporated into the tribiopolymeric blend matrix to construct a nanocomposite film that showed excellent tensile strength (∼90 MPa). The nanocomposite film also exhibited antimicrobial activity against Escherichia coli ATCC 25922 and Bacillus cereus MTCC 1272. In this report, it was demonstrated that the zone of inhibition against E. coli and B. cereus depends on the variation of size and amount of AgNPs inside the polymeric matrix. The practical applicability of such a film was also demonstrated by applying it to sliced bread and the enhancement of the shelf life of the raped bread was compared with a control. Thus, the guar gum-sodium alginate-i-carrageenan tribiopolymer blend with a cloth waste lint extracted cellulose nanocrystal composite film is antimicrobial, hence, an excellent candidate as an active packaging film.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Achyut Konwar
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam India
| | - Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Mritunjoy Prasad Ghosh
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Bitopan Boro
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781035, India
| |
Collapse
|
20
|
Deng B, Chen J, Li S, Liu J, Zhou Z, Qin Z, Wang H, Su M, Li L, Bai Z. An antibacterial packaging film based on amylose starch with quaternary ammonium salt chitosan and its application for meat preservation. Int J Biol Macromol 2024; 261:129706. [PMID: 38272422 DOI: 10.1016/j.ijbiomac.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
A new generation of food packaging films is gradually replacing traditional plastic packaging films because of their biodegradability, safety, and some functional properties such as anti-bacterial and oxidant resistance. In the present work, an antibacterial packing film based on amylose starch and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) was prepared for meat preservation. The interfacial bonding mechanism between amylose, HTCC, and glutaraldehyde (GA) was determined experimentally and through molecular dynamics (MD) simulation. The macromolecular chains of amylose starch and HTCC became entangled via inter-molecular H-bonds and then cross-linked with GA via the Schiff base reaction. The interaction of amylose starch and HTCC improved the mechanical properties of the amylose films. Compared with the amylose films, the tensile strength and elongation at break of the optimal HTCC/amylose films reached to 16.13 MPa (an increase of 206.65 %) and 53.86 % (an increase of 109.49 %). The HTCC/amylose films were found to provide obvious bacteriostatic performance, a relatively low cytotoxicity, the lower transmittance in the UV region, and thus the ability to enhance the preservation of fresh meat. These excellent characteristics therefore suggest that HTCC/amylose films might be promising candidates for application in antibacterial food packaging films.
Collapse
Affiliation(s)
- Bin Deng
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Chen
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shaobo Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongkai Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhu Qin
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huixing Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Li Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| | - Zongchun Bai
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| |
Collapse
|
21
|
Qiao J, Dong Y, Chen C, Xie J. Development and characterization of starch/PVA antimicrobial active films with controlled release property by utilizing electrostatic interactions between nanocellulose and lauroyl arginate ethyl ester. Int J Biol Macromol 2024; 261:129415. [PMID: 38224809 DOI: 10.1016/j.ijbiomac.2024.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The two nanocellulose (nanofibrillated cellulose (NFC) and carboxylated nanofibrillated cellulose (C-NFC)) could interact with lauryl arginine ethyl ester hydrochloride (LAE) through electrostatic bonding. The zeta potential (absolute value) of C-NFC (-27.80 mV) was higher than that of NFC (-10.07 mV). The starch/polyvinyl alcohol active films with controlled release property by utilizing electrostatic interactions between nanocellulose and LAE were prepared and their properties were investigated. For incorporation of the NFC or C-NFC, the cross-section of the films became slightly uneven and some fibrils were observed, the films exhibited an increase in strength, while the film water vapor and oxygen barrier properties decreased. The release of LAE from the films to food simulants (10 % ethanol) decelerated with increasing of NFC or C-NFC. These might be mainly attributed to the enhanced electrostatic interaction between NFC or C-NFC and LAE. It demonstrated that nanocellulose with higher negative charges would exhibit stronger electrostatic interaction with LAE, thus slowing the release of LAE. The film with highest C-NFC content exhibited smallest inhibition zone among LAE-containing films, which was related with its slowest release rate of LAE. It showed a great prospect to develop controlled release active packaging films by utilizing electrostatic interactions between substances.
Collapse
Affiliation(s)
- Junxiao Qiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiyan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
22
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
23
|
Elsaeed S, Zaki E, Diab A, Tarek MA, Omar WAE. New polyvinyl alcohol/gellan gum-based bioplastics with guava and chickpea extracts for food packaging. Sci Rep 2023; 13:22384. [PMID: 38104220 PMCID: PMC10725440 DOI: 10.1038/s41598-023-49756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Plastic is a fossil-based synthetic polymer that has become an essential material in our daily life. Plastic pollution resulting from the accumulation of plastic objects has become problematic for our environment. Bioplastic can be a biodegradable environmentally friendly alternative for the synthetic plastic. In this paper, bioplastics based on polyvinyl alcohol (PVA)/gellan gum (GG) blend have been produced in three different compositions and their chemical structure, mechanical, morphological and thermal properties have been studied. Glycerol has been used as a plasticizer. To add extra features to the PVA/GG bioplastic, Psidium guajava (guava) leaves, GL, and chickpea, CP, extracts have been added to the PVA/GG (30/70) blend. Water and aqueous ethanol have been used in the extraction of GL and CP, respectively. The addition of the plant's extracts enhanced the tensile properties of the PVA/GG bioplastic. Weathering acceleration tests have been carried out to examine the degradation of the prepared bioplastics. Cytotoxicity studies revealed that the prepared bioplastic is safe to be used in food packaging applications. Water and oxygen permeability for the new PVA/GG bioplastic have also been studied. The addition of the plant extracts (GL and CP extracts) increased the oxygen and water permeability to different extents. Bioplastic life cycle assessment (LCA) and CO2 emissions in comparison to fossil-based plastic have been investigated. From all the results, PVA/GG based bioplastic proved to be a degradable, safe and effective alternative for fossil-based plastics in food packaging applications.
Collapse
Affiliation(s)
- Shaimaa Elsaeed
- Egyptian Petroleum Research Institute, Naser City, Cairo, 11727, Egypt.
| | - Elsayed Zaki
- Egyptian Petroleum Research Institute, Naser City, Cairo, 11727, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Menna-Alla Tarek
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Walaa A E Omar
- Faculty of Petroleum and Mining Engineering, Suez University, P.O.Box: 43221, Suez, Egypt.
| |
Collapse
|