1
|
Quan Z, Wang X, Zheng K, Wen Y, Lin J, Cui M. Synthesis of novel composite hydrogel based on carboxymethyl cellulose/acrylamide/β-cyclodextrin for drug delivery. Int J Biol Macromol 2025; 287:138387. [PMID: 39647735 DOI: 10.1016/j.ijbiomac.2024.138387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Polysaccharide-based hydrogels have attracted significant attention in fields such as drug delivery, tissue engineering, and wound healing, primarily due to their excellent water-retention capacity, biocompatibility, and biodegradability. This study reports the preparation of a hydrogel through the copolymerization of acrylamide (AM) and carboxymethyl cellulose (CMC) using a simple free-radical polymerization method. β-cyclodextrin (β-CD), capable of encapsulating hydrophobic drugs, was chemically modified with double bonds (Ac-β-CD) and incorporated as a pendant unit in the polymerization reaction, forming a ternary copolymer hydrogel with CMC, AM, and Ac-β-CD. Ibuprofen, a model hydrophobic drug, was incorporated with Ac-β-CD through high-pressure steam sterilization and was successfully loaded into the hydrogel. The hydrogel exhibited excellent water absorption and biocompatibility. Cytotoxicity and in vivo studies confirmed its non-toxic profile. The porous hydrogel achieved an encapsulation efficiency of 97.83 % for drug-loading by autoclaving. The hydrogel showed a cumulative release rate of 87.3 % over 12 h under simulated physiological pH (pH 7.4). The CMC/AM/Ac-β-CD hydrogel system developed here thus demonstrates potential as a carrier for hydrophobic drugs.
Collapse
Affiliation(s)
- Ziang Quan
- Research Center of Material Sciences and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Xiaohui Wang
- Research Center of Material Sciences and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Kaiqiang Zheng
- Research Center of Material Sciences and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - YongBao Wen
- Research Center of Material Sciences and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Jizhang Lin
- Research Center of Material Sciences and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Meng Cui
- Research Center of Material Sciences and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| |
Collapse
|
2
|
Raveendran RL, Lekshmi GS, Anirudhan TS. Self-assembled sustainable bionanocomposite hydrogels from chitosan for the combination chemotherapy of hydrophobic and hydrophilic drugs. Int J Biol Macromol 2024; 283:137881. [PMID: 39571842 DOI: 10.1016/j.ijbiomac.2024.137881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Self-assembled hydrogels derived from naturally sourced polymers have gained significant interest in drug delivery applications, owing to their potential, exceptional biocompatibility and sustainable properties. This work presents the development and application of self-assembled nanocomposite hydrogels from chitosan and nanosilver as a pH responsive drug delivery system for the controlled release of doxorubicin and paclitaxel in anticancer therapy. Chitosan was functionalized with 4-formyl benzoic acid for incorporating both hydrophobic and hydrophilic anticancer drugs. The self-assembled nanocomposite hydrogels formed from chitosan and 4-formyl benzoic acid by various non-covalent interactions were studied by FT-IR, Dynamic Light Scattering (DLS), and rheology analysis. Rheology studies demonstrated the hydrogel's shear-thinning nature, enabling easy injection. The antibacterial activity can be evidenced by agar-well diffusion assay and MIC values were measured. The antibacterial effect was analyzed by agar-well diffusion assays and H2-DCFDA assay, providing a comprehensive understanding. In-vivo pharmacokinetic studies on Wistar rats demonstrated promising and effective systemic circulation of drug loaded material in blood, thus supporting its potential for therapeutic applications. All these studies and results demonstrates feasibility and a novel synergistic dual drug delivery approach, promising the synergy between hydrophobic paclitaxel (PTX) and hydrophilic Doxorubicin hydrochloride (Dox.HCl), for improved anticancer efficacy.
Collapse
Affiliation(s)
- Reshma L Raveendran
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India.
| | - G S Lekshmi
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - T S Anirudhan
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
3
|
Kumari A, Sharma V, Singh B. Synthesis and bio-medical applications of multifunctional phosphorester cyclic amide anchored sterculia network. Int J Biol Macromol 2024; 277:134396. [PMID: 39097063 DOI: 10.1016/j.ijbiomac.2024.134396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The main focus of the present research is to design network hydrogels derived from natural polymers to promote a sustainable future. Multifunctional hydrogels were prepared by combining sterculia gum (SG), phosphorester -cyclic amide polymers for bio-medical applications including drug delivery (DD). The antibiotic drug ceftriaxone was incorporated into hydrogels to enhance wound healing potential. The surface morphology of copolymers was investigated by using FESEM and AFM techniques. FTIR and 13C NMR spectroscopic techniques provided insight into the formation of network structures. In FTIR analysis, distinctive bands were identified: at 1649 cm-1 attributed to CO stretching of the cyclic amide of PVP, at 1147 cm-1 and 974 cm-1 representing PO stretching and P-O-C of poly(BMEP), respectively. In the 13C NMR spectrum, a prominent peak at 63.272 ppm revealed the presence of (O-CH2) linkage of poly(BMEP). XRD demonstrated amorphous characteristics of hydrogels. The interactions of copolymer with blood, bio-membrane and encapsulated drug illustrated their biocompatibility, bio-adhesion and controlled DD properties. The dressings expressed a hemolytic index value of 2.58 ± 0.03 %. The hydrogels exhibited mucoadhesive character, revealed from the adhesion force of 50.0 ± 5 mN needed to separate polymer dressing from the mucosa. Dressings exhibited antioxidant properties and displayed 33.73 ± 0.3 % radical scavenging in the DPPH assay. Protein adsorption test of copolymer illustrated 9.48 ± 0.970 % of albumin adsorption. The tensile strength of the dressing was found 0.54 ± 0.03 N mm-2 while the burst strength 9.92 ± 0.27 N was observed. The sustained release of the drug was provided by supra-molecular interactions. Drug release followed a non-Fickian diffusion mechanism and the release profile was best described by the Higuchi kinetic model. Additionally, hydrogel dressings revealed permeability to H2O vapors and O2 and antimicrobial activity. These findings suggest the suitability of sterculia gum-based hydrogels for DD uses.
Collapse
Affiliation(s)
- Ankita Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
4
|
Nandal K, Jindal R. β-Cyclodextrin mediated controlled release of phenothiazine from pH-responsive pectin and pullulan-based hydrogel optimized through experimental design. Int J Biol Macromol 2024; 278:135045. [PMID: 39182886 DOI: 10.1016/j.ijbiomac.2024.135045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Drugs with lower permeability and water solubility provide major challenges for producing safe and efficient formulations. The current work aims to prepare ICs of the drug phenothiazine and β-cyclodextrin via physical, microwave, freeze-drying, and kneading methods. Many analytical methods, such as 1H NMR, ROESY, FT-IR, DSC, SEM, and XRD, were then used to confirm the formation of inclusion complexes. The natural polysaccharide-based hydrogel comprising pectin and pullulan was synthesized in air and optimized through various parameters. In order to maximize the reaction parameters, Response Surface Methodology design was employed for experimental optimization. We use FT-IR, TGA, SEM, EDX, and XRD to investigate hydrogel formation. At 37 °C, an investigation was carried out on the in vitro controlled release of PN at pH 2, 7, and 7.4. The analysis of drug release data revealed that PM and KM exhibited an initial burst release of drugs, with the MW and FD method proving to be the most suitable approach for achieving precise ICs of PN and β-CD for sustained drug release. The kinetics of drug release were evaluated using various kinetic models, with the Riteger-Peppas and Peppas-Sahlin models demonstrating the best fit for drug release in all instances.
Collapse
Affiliation(s)
- Komal Nandal
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar 144008, Punjab, India.
| | - Rajeev Jindal
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar 144008, Punjab, India.
| |
Collapse
|
5
|
Yang S, Feng M, Xu J, Deng Z, Zhang H. Encapsulation, characterization and in vitro releasing of xylanase and glucose oxidase (GOD) into cellulose nanocrystals stabilized three-layer microcapsules. Int J Biol Macromol 2024:135515. [PMID: 39260632 DOI: 10.1016/j.ijbiomac.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The xylanase and glucose oxidase (GOD) are easily inactivated, restricting their applicaiton in food and agriculture fields. In this work, xylanase and glucose oxidase (GOD) were encapsulated into cellulose nanocrystals (CNC) stabilized three-layer microcapsules via ionic gelation technique to improve their bioavailability and targeted delivery. Encapsulation efficiency (EE), physicochemical properties, and in vitro releasing of xylanase and GOD encapsulated in microcapsules were investigated. EE of xylanase and GOD reached the highest values (73.34 % and 67.16 %, respectively) at an enzyme concentration of 35 mg/mL. In vitro experiments revealed that cumulative release of both enzymes encapsulated in microcapsules was greater than that of controls in simulated gastric tract (SGT) and simulated intestinal tract (SIT). The release of xylanase increased from 41.62 % (gastric tract) to 77.13 % (intestine tract), and release of GOD increased from 42.63 % to 72.11 %, respectively. Novel hydrogel carriers as enzymes encapsulation system could effectively improve the survival rate of enzymes in harsh environments and could be widely employed in food, feed and other industries.
Collapse
Affiliation(s)
- Shoufeng Yang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jianxiong Xu
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongcai Zhang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Poursadegh H, Bakhshi V, Amini-Fazl MS, Adibag Z, Kazeminava F, Javanbakht S. Incorporating mannose-functionalized hydroxyapatite/metal-organic framework into the hyaluronic acid hydrogel film: A potential dual-targeted oral anticancer delivery system. Int J Biol Macromol 2024; 274:133516. [PMID: 38944078 DOI: 10.1016/j.ijbiomac.2024.133516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The recent challenge in enhancing the targeted delivery of anticancer drugs to cancer cells is improving the bioavailability and therapeutic efficacy of drug delivery systems while minimizing their systemic side effects. In this study, the MIL-88(Fe) metal-organic framework was synthesized using the in situ method in the presence of hydroxyapatite nanoparticles (HAP) toward the HAP/MIL-88(Fe) (HM) nanocomposite preparation. It was then functionalized with mannose (M) as an anticancer receptor through the Steglich esterification method. Various analyses confirmed the successful synthesis of MHM. For drug release investigation, 5-Fu was loaded into the MHM, which was then coated with a hyaluronic acid (HA) hydrogel film. Characterization analyses verified the structure of the resulting HA/5-Fu-MHM hydrogel film. In vitro drug release experiments showed that the release of 5-Fu drug from HA/5-Fu-MHM could be controlled with pH, reducing its release rate in the acidic environment of the stomach while increasing it in the intestinal environment. Cytotoxicity results of the HA/5-Fu-MHM hydrogel film against HT29 cancer cells showed enhanced cytotoxicity due to the mannose and hyaluronic acid in its structure, which triggers a dual-targeted drug delivery system. The obtained results indicate that the prepared hydrogel films can be a promising bio-platform for colon cancer treatment.
Collapse
Affiliation(s)
- Hossein Poursadegh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Vahid Bakhshi
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Zahra Adibag
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Kocaaga B, Inan T, Yasar Nİ, Yalcin CE, Sungur FA, Kurkcuoglu O, Demiroz A, Komurcu H, Kizilkilic O, Aydin SY, Aydin Ulgen O, Güner FS, Arslan H. Innovative Use of an Injectable, Self-Healing Drug-Loaded Pectin-Based Hydrogel for Micro- and Supermicro-Vascular Anastomoses. Biomacromolecules 2024; 25:3959-3975. [PMID: 38934558 PMCID: PMC11238333 DOI: 10.1021/acs.biomac.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Microvascular surgery plays a crucial role in reconnecting micrometer-scale vessel ends. Suturing remains the gold standard technique for small vessels; however, suturing the collapsed lumen of microvessels is challenging and time-consuming, with the risk of misplaced sutures leading to failure. Although multiple solutions have been reported, the emphasis has predominantly been on resolving challenges related to arteries rather than veins, and none has proven superior. In this study, we introduce an innovative solution to address these challenges through the development of an injectable lidocaine-loaded pectin hydrogel by using computational and experimental methods. To understand the extent of interactions between the drug and the pectin chain, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations were conducted in the first step of the research. Then, a series of experimental studies were designed to prepare lidocaine-loaded injectable pectin-based hydrogels, and their characterization was performed by using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and rheological analysis. After all the results were evaluated, the drug-loaded pectin-based hydrogel exhibiting self-healing properties was selected as a potential candidate for in vivo studies to determine its performance during operation. In this context, the hydrogel was injected into the divided vessel ends and perivascular area, allowing for direct suturing through the gel matrix. While our hydrogel effectively prevented vasospasm and facilitated micro- and supermicro-vascular anastomoses, it was noted that it did not cause significant changes in late-stage imaging and histopathological analysis up to 6 months. We strongly believe that pectin-based hydrogel potentially enhanced microlevel arterial, lymphatic, and particularly venous anastomoses.
Collapse
Affiliation(s)
- Banu Kocaaga
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| | - Tugce Inan
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| | - Nesrin İsil Yasar
- Informatics
Institute, Computational Science and Engineering Division, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Can Ege Yalcin
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| | - Fethiye Aylin Sungur
- Informatics
Institute, Computational Science and Engineering Division, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| | - Anil Demiroz
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| | - Hasan Komurcu
- Department
of Plastic, Reconstructive and Aesthetic Surgery, Balat Or-Ahayim Hastanesi, Istanbul 34087, Turkey
| | - Osman Kizilkilic
- Cerrahpasa
Medical Faculty, Department of Interventional Radiology, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Servet Yekta Aydin
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| | - Ovgu Aydin Ulgen
- Cerrahpasa
Medical Faculty, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Fatma Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
- Sabancı
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
| | - Hakan Arslan
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| |
Collapse
|
8
|
Luo S, Zhang J, Sun J, Zhao T, Deng J, Yang H. Future development trend of food-borne delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:385-433. [PMID: 39218507 DOI: 10.1016/bs.afnr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.
Collapse
Affiliation(s)
- Shuwei Luo
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Juntao Zhang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jing Sun
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Tong Zhao
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haixia Yang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
9
|
Sarkar S, Manna S, Das E, Jana P, Mukherjee S, Sahu R, Dua TK, Paul P, Kaity S, Nandi G. Fabrication and optimization of extended-release beads of diclofenac sodium based on Ca ++ cross-linked Taro (Colocasia esculenta) stolon polysaccharide and pectin by quality-by-design approach. Int J Biol Macromol 2024; 271:132606. [PMID: 38788875 DOI: 10.1016/j.ijbiomac.2024.132606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The present investigation was aimed to fabricate and optimize extended-release beads of diclofenac sodium based on an ion-cross-linked matrix of pectin (PTN) and taro (Colocasia esculenta) stolon polysaccharide (TSP) with 23 full factorial design. Total polysaccharide concentration (TPC), polysaccharide ratio (PR), and cross-linker concentration ([CaCl2]) were taken as independent factors with two levels of each. Initially, TSP was extracted, purified, and characterized. Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) showed drug-polymer compatibility. The study also revealed the significant positive effect of TSP on drug entrapment efficiency (DEE) and sustaining drug release. The response variables (DEE, cumulative % drug-release at 1, 2, 4, 6, and 10 h, release-constant, time for 50 % and 90 % drug release (T50%, T90%), release-similarity factor (f2), and difference factor (f1) were analyzed, and subsequently, independent fabrication variables were numerically optimized by Design-Expert software (Version-13; Stat-Ease Inc., Minneapolis). The optimized batch exhibited appreciable DEE of 88.5 % (± 2.2) and an extended-release profile with significantly higher T50%, T90%, and release-similarity factor (f2) of 4.7 h, 11.4 h, and 71.6, respectively. Therefore, the study exhibited successful incorporation of the novel TSP as a potential alternative adjunct polysaccharide in the pectin-based ion-cross-linked inter-penetrating polymeric network for extended drug release.
Collapse
Affiliation(s)
- Saurav Sarkar
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Sreejan Manna
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India; Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Esha Das
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Piu Jana
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Saptarshi Mukherjee
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Santanu Kaity
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India.
| |
Collapse
|
10
|
Jia B, Hao T, Chen Y, Deng Y, Qi X, Zhou C, Liu Y, Guo S, Qin J. Mussel-inspired tissue adhesive composite hydrogel with photothermal and antioxidant properties prepared from pectin for burn wound healing. Int J Biol Macromol 2024; 270:132436. [PMID: 38761908 DOI: 10.1016/j.ijbiomac.2024.132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Biodegradable self-healing hydrogels with antibacterial property attracted growing attentions in biomedication as wound dressings since they can prevent bacterial infection and promote wound healing process. In this research, a biodegradable self-healing hydrogel with ROS scavenging performance and enhanced tissue adhesion was fabricated from dopamine grafted oxidized pectin (OPD) and naphthoate hydrazide terminated PEO (PEO NH). At the same time, Fe3+ ions were incorporated to endow the hydrogel with near-infrared (NIR) triggered photothermal property to obtain antibacterial activity. The composite hydrogel showed good hemostasis performance based on mussel inspired tissue adhesion with biocompatibility well preserved. As expected, the composition of FeCl3 improved conductivity and endowed photothermal property to the hydrogel. The in vivo wound repairing experiment revealed the 808 nm NIR light triggered photothermal behavior of the hydrogel reduced the inflammation response and promoted wound repairing rate. As a result, this composite FeCl3/hydrogel shows great potential to be an excellent wound dressing for the treatment of infection prong wounds with NIR triggers.
Collapse
Affiliation(s)
- Boyang Jia
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Tingting Hao
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yawen Deng
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xingzhong Qi
- Hebei Zhitong Biological Pharmaceutical Co., Ltd., Baoding 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yanfang Liu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
11
|
Kapoor DU, Garg R, Gaur M, Pareek A, Prajapati BG, Castro GR, Suttiruengwong S, Sriamornsak P. Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharm J 2024; 32:102002. [PMID: 38439951 PMCID: PMC10910345 DOI: 10.1016/j.jsps.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.
Collapse
Affiliation(s)
- Devesh U. Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Rahul Garg
- Department of Pharmacy, Asian College of Pharmacy, Udaipur, Rajasthan 313001, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302020, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G. Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat 384012, India
| | - Guillermo R. Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
12
|
Li DQ, Tohti M, Fu YS, Zhang Y, Xiong ZW, Li J, Guo YF. Aldehyde group pendant-grafted pectin-based injectable hydrogel. Int J Biol Macromol 2024; 264:130453. [PMID: 38432279 DOI: 10.1016/j.ijbiomac.2024.130453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Periodate oxidation has been the widely accepted route for obtaining aldehyde group-functionalized polysaccharides but significantly influenced the various physicochemical properties due to the ring opening of the backbone of polysaccharides. The present study, for the first time, presents a novel method for the preparation of aldehyde group-functionalized polysaccharides that could retain the ring structure and the consequent rigidity of the backbone. Pectin was collected as the representative of polysaccharides and modified with cyclopropyl formaldehyde to obtain pectin aldehyde (AP), which was further crosslinked by DL-lysine (LYS) via the Schiff base reaction to prepare injectable hydrogel. The feasibility of the functionalization was proved by FT-IR and 1H NMR techniques. The obtained hydrogel showed acceptable mechanical properties, self-healing ability, syringeability, and sustained-release performance. Also, as-prepared injectable hydrogel presented great biocompatibility with a cell proliferation rate of 96 %, and the drug-loaded hydrogel exhibited clear inhibition of cancer cell proliferation. Overall, the present study showed a new method for the preparation of aldehyde group-functionalized polysaccharides, and the drug-loaded hydrogel has potential in drug release applications.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Maryamgul Tohti
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Yong-Sheng Fu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Zi-Wei Xiong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Yan-Feng Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| |
Collapse
|
13
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|