1
|
Shi XH, Shi H, Luo H, Jing CY, Wang DY. Synthesis of a cytosine-derived phosphorus‑nitrogen flame retardant and its application in cotton fabrics. Int J Biol Macromol 2025; 308:142463. [PMID: 40154690 DOI: 10.1016/j.ijbiomac.2025.142463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The growing awareness of public safety has spurred significant interest and research in flame-retardant cotton fabrics. The present study aimed to design a phosphorus‑nitrogen-based flame retardant derived from cytosine and apply it to cotton fabrics through a dipping-padding-baking-washing process. The resulting cotton fabrics (Cotton/CyP) exhibited exceptional fire resistance and self-extinguishing properties. Specifically, the LOI value reached 35.3 %, and the char residue length was 74 mm after vertical burning tests, although washable durability was limited. Compared to pure cotton, Cotton/CyP10 showed a 63.4 % reduction in the peak of heat release rate value and a 29.2 % decrease in total heat release. In conjunction with the thermal stability and decomposition products analysis, as well as char residues evaluations, these results indicated that Cotton/CyP primarily functioned by promoting the formation of a dense, regular and graphitized char layer during combustion predominantly in condensed phase. This research developed fabric holds great promise for practical applications, significantly enhancing fire safety with high efficiency.
Collapse
Affiliation(s)
- Xiao-Hui Shi
- China-Spain Collaborative Research Center for Advanced Materials, College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610064, China.
| | - Hong Shi
- China-Spain Collaborative Research Center for Advanced Materials, College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Huan Luo
- China-Spain Collaborative Research Center for Advanced Materials, College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Cheng-Yue Jing
- China-Spain Collaborative Research Center for Advanced Materials, College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid, Spain; Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
2
|
Cao X, Huang YY, Tian XY, Ni YP, Wang YZ. Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics. Int J Biol Macromol 2025; 300:140205. [PMID: 39855528 DOI: 10.1016/j.ijbiomac.2025.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated. Benefiting from the promotion of dehydration and carbonization facilitated by phosphite groups, PCS exhibits high intrinsic flame retardancy with an LOI value of 80.7 %. Moreover, its favorable rheological and film-forming properties make it well-suited for easy application as a multifunctional coating in fabric finishing through blade coating processes. The finished cotton and polyester/cotton blended fabrics exhibit excellent flame retardancy, as evidenced by increased LOI values, successful passage of vertical burning tests, reductions of up to 65.0 % and 50.3 % in pHRR and THR values, respectively. Additionally, PCS imparts superior antibacterial properties to the fabrics, achieving a 99.99 % antibacterial rate against both E. coli and S. aureus. This study introduces a straightforward and atom-economical approach for preparing highly efficient chitosan-based flame retardants, along with the development of a transparent, green, and efficacious multifunctional coating system on textiles.
Collapse
Affiliation(s)
- Xing Cao
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Yuan-Yuan Huang
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Xin-Yu Tian
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Yan-Peng Ni
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Liu X, Jin X, Li X, Yang C, Lu Z, Dong C. A biomass-based "double-encapsulation structure" heightens the flame retardancy, antimicrobial effectiveness, and hydrophobicity of cotton fabric. Int J Biol Macromol 2025; 302:140471. [PMID: 39884602 DOI: 10.1016/j.ijbiomac.2025.140471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Due to the non-renewable nature of petroleum resources, there has been a notable shift toward utilizing biomass materials to confer flame retardant properties to cotton fabrics. However, endow solely with single function cannot meet the application requirements across various fields. Therefore, there is considerable impetus to develop multifunctional cotton fabrics integrating flame retardant, antimicrobial, and hydrophobic properties sourced from biomass. In this research, a flame retardant antimicrobial agent (β-TPDM-P) incorporating an N-halamine antimicrobial precursor was synthesized by modifying β-cyclodextrin (β-CD). Furthermore, β-CD's encapsulation capability was utilized to encapsulate calcium pyrophosphate particles. Subsequently, cotton fabrics underwent treatment through a conventional dip-dry-cure process, followed by chlorination and aminosilicone oil (ASO) spraying, resulting in multifunctional cotton fabrics that are flame-retardant, antimicrobial, and hydrophobic. Benefiting from double protection of the gas phase and the condensed phase, the LOI for the treated cotton fabrics reached 37.6 %. Moreover, the fabrics displayed self-extinguishing behavior in the vertical flame test. With reductions of 75.8 % in peak heat release rate (pHRR) and 42.9 % in total heat release (THR). Leveraging the potent antimicrobial properties of N-halamine, the multifunctional fabrics exhibited inhibition rates of 98.7 % and 99.9 % against E. coli and S. aureus. Introducing a low surface energy surface endowed the fabrics with high repellency to liquids, as evidenced by a water contact angle of 129°. Importantly, these enhancements were achieved without significantly altering the physical properties of the cotton fabrics. This study introduces a feasible strategy for realizing the multifunctionalization of cotton fabrics, thereby broadening their potential applications in various fields.
Collapse
Affiliation(s)
- Xiangji Liu
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Xin Jin
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Xu Li
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Chenghao Yang
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Zhou Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Chaohong Dong
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Hu Y, Ye Y, Wang J, Zhang T, Jiang S, Han X. Functionalization of chitosan and its application in flame retardants: A review. Int J Biol Macromol 2025; 295:139615. [PMID: 39788254 DOI: 10.1016/j.ijbiomac.2025.139615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In recent years, bio-based flame retardants have gained significant attention as sustainable alternatives, achieving important breakthroughs in flame retardancy and becoming a key focus for future development. Derived from biomass, chitosan (CS) has been widely used in the field of advanced functional materials. However, in the field of flame retardancy, chitosan alone shows limited effectiveness, leading researchers to explore its reactive functional groups for creating multifunctional flame retardant chitosan composites (FRCC). This review examines FRCC modifications, focusing on how physical and chemical techniques enhance flame retardancy based on combustion mechanisms. Particular emphasis is placed on the impact of embedding flame-retardant elements. Additionally, this paper outlines FRCC performance characteristics, addressing operational requirements in varied environments, and discusses key challenges. This study offers researchers a comprehensive overview of FRCC, serving as a valuable resource for ongoing research and development.
Collapse
Affiliation(s)
- Yudong Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhang Ye
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiangbo Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Ting Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Li S, Mo K, Du C. Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning. Proc Inst Mech Eng H 2025; 239:106-117. [PMID: 39663631 DOI: 10.1177/09544119241303307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
High-efficiency and high-quality sterilization technologies for medical materials can significantly reduce iatrogenic infection. This study investigates the synergistic effects of laser-induced periodic surface structures (LIPSS) and ultrasonic cleaning on the removal of bacteria from medical material surfaces. We specifically examined how ultrasonic parameters and structural defects in LIPSS impact the effectiveness of bacterial removal. As an emerging medical metal, Zr-BMG was chosen for the target material. Femtosecond laser processing was employed to create LIPSS with both complete linear arrays and discontinuous linear arrays structures featuring surface defects by adjusting the scanning overlap rate. A high-concentration solution of S. aureus was used for co-cultivation, resulting in a surface bacterial coverage rate exceeding 95%. The study analyzed the synergistic sterilization effect of microstructured surfaces through variations in ultrasonic cleaning power and duration. The results indicated that surfaces with microstructures demonstrated significantly improved bacterial removal following ultrasonic cleaning. The bacterial removal rate was found to be proportional to the ultrasonic vibrator power, and the surface with a LIPSS structure outperformed the discontinuous LIPSS surface in bacterial removal efficiency. Optimal results were achieved with the LIPSS surface after 30 min of cleaning at 100 W ultrasonic power. However, there was minimal difference in bacterial removal between 10 and 30 min at the same power level. This study aims to provide methodological insights and data support for the efficient and high-quality cleaning of medical metal surfaces.
Collapse
Affiliation(s)
- Songlin Li
- Chenzhou Vocational Technical College, ChenZhou, Hunan, China
| | - Kekang Mo
- Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Cezhi Du
- Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Li X, Jin X, Yang C, Liu X, Ni Y, Dong C. A system with efficient flame retardant and antibacterial properties for the development of exceptional durable functional cotton fabrics. Int J Biol Macromol 2024; 279:135245. [PMID: 39222780 DOI: 10.1016/j.ijbiomac.2024.135245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Phosphorus-based flame retardants are widely employed in the study of flame retardancy for cotton fabrics due to their halogen-free nature and high efficiency. The addition of nitrogen and other elements can further enhance flame retardant properties through synergistic effects. However, the synthesis of flame-retardant multifunctional additives based on phosphoramidic ammonium salts has been scarcely reported. In this study, a halogen-free and formaldehyde-free phosphoramidite ammonium salt was synthesized as a synergistic flame retardant multifunctional additive. This compound, with phosphorus as the primary flame retardant element and a nitrogen-containing guanidine group, was used to modify cotton fabrics. The treated fabrics exhibited enhanced flame retardant and antibacterial properties. Notably, cotton fabrics treated with a 17.9 % weight gain showed a damaged length of 4 cm in the vertical flame test, and the LOI value increased to 41.5 %, remaining at 27.3 % even after 50 washing cycles. The results of the cone calorimeter test (CCT) revealed that the peak heat release rate (PHRR) and total heat release (THR) of treated cotton were 30.35 kW/m2 and 5.46 MJ/m2, respectively, representing reductions of 87.04 % and 36.07 % compared to untreated cotton. Physical performance tests indicated only a slight decrease in the strength and whiteness of the cotton fabrics, while softness increased after treatment. Moreover, the treated cotton fabric exhibited excellent antibacterial properties, with antibacterial rates of 99.26 % against E. coli and 98.54 % against S. aureus.
Collapse
Affiliation(s)
- Xu Li
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Xin Jin
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Chenghao Yang
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Xiangji Liu
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Yanpeng Ni
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Chaohong Dong
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Yuan X, Liu L, Wang Y, Li H, Jiang Q, Shi Y, Yang G. Multifunctional coating with hydrophobicity, antibacterial and flame-retardant properties on cotton fabrics by layer-by-layer self-assembly curing of phytic acid and a tyrosine-derived hyperbranched benzoxazine. Int J Biol Macromol 2024; 279:135151. [PMID: 39214207 DOI: 10.1016/j.ijbiomac.2024.135151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The inherent hydrophilicity and biocompatibility of cotton fabrics facilitated bacterial proliferation and safety concerns, limiting their applications. To address these issues, tyrosine-derived polyetherimide, bis(3-aminopropyl)-terminated poly(dimethylsiloxane), and paraformaldehyde were used to synthesize hyperbranched benzoxazine THB-BOZs-PDMS with potent antibacterial and antibiofilm activity. The protonated amino groups of benzoxazine facilitated electrostatic interactions with negatively charged bacteria, and hydrophobic interactions disrupted the cell membrane, leading to bacteria death. Notably, phytic acid interacts with benzoxazines through intermolecular forces, with its phosphoric acid groups facilitating the curing of benzoxazines, thereby imparting flame-retardant properties to the material. Consequently, a multifunctional coating was developed via LBL self-assembly and in-situ curing of benzoxazines and phytic acid on the fabric surfaces. The successful deposition of the coating was confirmed through compositional analysis and morphological characterization. After 4 cycles of LBL modification, the fabrics TBP + PA-CF-4 displayed outstanding antibacterial efficacy, bacterial anti-adhesion properties, and heat resistance. Furthermore, TBP + PA-CF-4 exhibited notable washing and mechanical durability, attributed to the stability conferred by in-situ cured of layers. Compared with other reported modified fabrics, TBP + PA-CF-4 displayed more comprehensive overall performances. These multifunctional fabrics provided a sustainable approach for advancing personal protective materials and public decoration, particularly suited for use in high-humidity environments or military settings.
Collapse
Affiliation(s)
- Xuan Yuan
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, China.
| | - Yudan Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Huan Li
- Key Lab Forest Plant Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qian Jiang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yufeng Shi
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guoxing Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Chen C, Wang Z, Chen H, Wang H, Xu Y, Dong C, Lu Z. Enhancing flame retardancy and multi-functionalization of environmentally friendly cotton fabrics with a polydimethylsiloxane-based polyurethane. Int J Biol Macromol 2024; 277:134433. [PMID: 39098686 DOI: 10.1016/j.ijbiomac.2024.134433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Phosphorus-containing flame retardants are prone to result in the buildup of biotoxins, while halogen flame retardants easily lead to hazardous gases. Therefore, it is crucial to develop a multifunctional flame-retardant cotton fabric without phosphorus and halogen. Herein, single-ended hydroxy-terminated polydimethylsiloxane (PDMS-ID) was synthesized through single-ended hydrosilicone oil and 1,4-butanediol, followed by the preparation of a waterborne polyurethane (RWPU) containing side chain polydimethylsiloxane through the reaction of PDMS-ID with isocyanate prepolymer. Characterization data shows that its particle size distribution is relatively dispersed while maintaining good emulsification performance. Based on this, a halogen-free and phosphorus-free multifunctional flame retardant cotton fabric (COF-BBN@RWPU) was successfully prepared through treatment with boric acid/borax/3-aminopropyltriethoxysilane solution and subsequent RWPU encapsulation. In vertical flammability test (VFT), COF-BBN@RWPU has a char length of 57 mm and a limiting oxygen index (LOI) of 42.3 % with a 11 % weight gain while pure cotton was burned through with a LOI of 18.0 %. In addition, the total heat release and total smoke release of COF-BBN@RWPU decreased by 80.0 % and 47.2 %, compared with pure cotton. Additionally, COF-BBN@RWPU can achieve a maximum contact angle of 140.1° with an oil-water separation rate of 98.4 %. This study presents an eco-friendly approach to achieving the multifunctionality of cellulose fabrics.
Collapse
Affiliation(s)
- Chen Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Zheng Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hongfei Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Haoran Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yihang Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chaohong Dong
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao 266071, China.
| | - Zhou Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Chen X, Ding F, Hou X, Ren X. Halloysite-based inorganic-organic hybrid coatings for durable flame retardant, hydrophobic and antibacterial properties of cotton fabrics. Int J Biol Macromol 2024; 277:134357. [PMID: 39102916 DOI: 10.1016/j.ijbiomac.2024.134357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Developing durable protective cotton fabrics (CF) against potential environmental dangers such as fire hazards and bacterial growth remains an imperative but tough challenge. In this study, flame retardant, antibacterial and hydrophobic CF were successfully prepared via two-step coating. The inner coating entailed polyelectrolyte complexes consisting of polyethyleneimine and ammonium polyphosphate with the goal of enhancing the flame retardancy of CF. Halloysite nanotubes (HNTs), a kind of tubular silicate mineral, were creatively modified and introduced to multifunctional coatings to improve flame retardant and antibacterial properties of CF. N-halamine modified HNTs (HNTs-EA-Cl) and polydimethylsiloxane were applied as the outer coating to endow CF with antibacterial and hydrophobic properties and further improve the flame retardancy of CF. After halloysite-based inorganic-organic hybrid coatings, the limiting oxygen index of the treated samples (PAHP-CF) was over 28 %, and the release of heat and smoke was significantly inhibited. PAHP-CF could inactivate 100 % E. coli and S. aureus within 2 h. More importantly, PAHP-CF showed excellent hydrophobicity with a water contact angle of 148° and exhibited great prevention of bacterial adhesion. PAHP-CF exhibited excellent washing durability undergoing 5 washing cycles. This study promotes the development of multifunctional coatings and offers a new way to manufacture multifunctional cotton fabrics.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Ding
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Key Laboratory of Textile Fiber and Products, Ministry of Education, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Xiuliang Hou
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xuehong Ren
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Key Laboratory of Textile Fiber and Products, Ministry of Education, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China.
| |
Collapse
|
10
|
Rafi AS, Sheikh AA, Chaion MH, Chakrovarty T, Islam MT, Kundu CK. A multi-functional coating on cotton fabric to incorporate electro-conductive, anti-bacterial, and flame-retardant properties. Heliyon 2024; 10:e37120. [PMID: 39296117 PMCID: PMC11408796 DOI: 10.1016/j.heliyon.2024.e37120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Multi-functional textiles have become a growing trend among smart customers who dream of having multiple functionalities in a single product. Thus, this study aimed to develop a multi-functional textile from a common textile substrate like cotton equipped with electrically conductive, anti-bacterial, and flame-retardant properties. Herein, a bunch of compounds from various sources like petro-based poly-aniline (PANI), phosphoric acid (H3PO4), inorganic silver nanoparticles (Ag-NPs), and biomass-sourced fish scale protein (FSP) were used. The coating was prepared via in-situ polymerization of PANI with the cotton substrate, followed by the dipping in AGNPs solution, layer-by-layer deposition of FSP and sodium alginate, and finally, a dip-dry-cure technique after immersing the modified cotton substrate into the H3PO4 and citric acid solution. The key results indicated that the fabric treated with PANI/Ag-NPs/FSP/P-compound exhibited a balanced improvement in all three desired properties as the electrical resistance was reduced by 44.44 % while showing superior bacterial inhibition against gram-positive bacteria (S. aureus) and gram-negative bacteria (E. coli), and produced dense-black carbonaceous char residues, indicating its flame retardant properties as well. Thus, such amicable developments made the cotton textile substrate a multi-functional textile, which showed potential to be used in medical textiles, wearable electronics, fire-fighter suits, etc.
Collapse
Affiliation(s)
- Abu Sayed Rafi
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Textile Engineering, University of Scholars, Dhaka, 1213, Bangladesh
| | - Al Amin Sheikh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mehedi Hasan Chaion
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tanay Chakrovarty
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Tanvir Islam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Chanchal Kumar Kundu
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, PR China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| |
Collapse
|
11
|
Tian J, Yu W, Pan J, Qi Z, Lin L, Wang J, Wang C. Synthesis of a novel Si-N-S flame retardant and its application on cotton cellulose biomacromolecule. Int J Biol Macromol 2024; 273:132775. [PMID: 38823732 DOI: 10.1016/j.ijbiomac.2024.132775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
A novel flame retardant containing Si, N, and S elements, ((2-(triethoxysilyl)ethyl)thio)ethan-1-amine hydrochloride (TETEA), was synthesized via a click reaction and characterized using nuclear magnetic resonance spectroscopy (NMR) and fourier transform infrared spectroscopy (FTIR). Subsequently, the flame-retardant cotton fabric was fabricated by sol-gel method. The results indicated that TETEA was successfully loaded on cotton fabric and formed a uniform protective layer on the surface of cotton fabric, exhibiting excellent flame retardancy. The flame-retardant cotton fabric achieved limiting oxygen index (LOI) of 28.3 % and passed vertical combustion test without after-flame or afterglow time at TETEA concentration of 500 g/L. Thermogravimetric analysis revealed that the residual carbon content of the flame-retardant cotton fabric was much higher than that of the control under air and N2 conditions. Besides, the flame-retardant cotton fabric was not ignited in cone calorimeter test with an external heat flux of 35 kW/m2. The peak heat release rate and the total heat release decreased from 133.4 kW/m2 to 25.8 kW/m2 and from 26.46 MJ/m2 to 17.96 MJ/m2, respectively. This phosphorus-free flame retardant offers a simplified synthesis process without adverse environmental impacts, opening up a new avenue for the development environmentally friendly flame retardants compared to traditional alternatives.
Collapse
Affiliation(s)
- Jialong Tian
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xian 710048, China
| | - Wenhui Yu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jiang Pan
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhenming Qi
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ling Lin
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinmei Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xian 710048, China
| | - Chunxia Wang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xian 710048, China; School of Textile and Clothing, Nantong University, Nantong 226019, China.
| |
Collapse
|
12
|
Malucelli G. Nanostructured Flame-Retardant Layer-by-Layer Architectures for Cotton Fabrics: The Current State of the Art and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:858. [PMID: 38786814 PMCID: PMC11123715 DOI: 10.3390/nano14100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, nanotechnology represents a well-established approach, suitable for designing, producing, and applying materials to a broad range of advanced sectors. In this context, the use of well-suited "nano" approaches accounted for a big step forward in conferring optimized flame-retardant features to such a cellulosic textile material as cotton, considering its high ease of flammability, yearly production, and extended use. Being a surface-localized phenomenon, the flammability of cotton can be quite simply and effectively controlled by tailoring its surface through the deposition of nano-objects, capable of slowing down the heat and mass transfer from and to the textile surroundings, which accounts for flame fueling and possibly interacting with the propagating radicals in the gas phase. In this context, the layer-by-layer (LbL) approach has definitively demonstrated its reliability and effectiveness in providing cotton with enhanced flame-retardant features, through the formation of fully inorganic or hybrid organic/inorganic nanostructured assemblies on the fabric surface. Therefore, the present work aims to summarize the current state of the art related to the use of nanostructured LbL architectures for cotton flame retardancy, offering an overview of the latest research outcomes that often highlight the multifunctional character of the deposited assemblies and discussing the current limitations and some perspectives.
Collapse
Affiliation(s)
- Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy; ; Tel.: +39-0131229369
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| |
Collapse
|
13
|
Zhang L, Zhang AN, He SM, Zheng GQ, Zeng FR, Wang YZ, Liu BW, Zhao HB. Biomimetic Nanoporous Transparent Universal Fire-Resistant Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19519-19528. [PMID: 38580622 DOI: 10.1021/acsami.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The inherent flammability of most polymeric materials poses a significant fire hazard, leading to substantial property damage and loss of life. A universal flame-retardant protective coating is considered as a promising strategy to mitigate such risks; however, simultaneously achieving high transparency of the coatings remains a great challenge. Here, inspired by the moth eye effect, we designed a nanoporous structure into a protective coating that leverages a hydrophilic-hydrophobic interactive assembly facilitated by phosphoric acid protonated amino siloxane. The coating demonstrates robust adhesion to a diverse range of substrates, including but not limited to fabrics, foams, paper, and wood. As expected, its moth-eye-inspired nanoporous structure conferred a high visible light transparency of >97% and water vapor transmittance of 96%. The synergistic effect among phosphorus (P), nitrogen (N), and silicon (Si) largely enhanced the char-forming ability and restricted the decomposition of the coated substrates, which successfully endowed the coating with high fire-fighting performance. More importantly, for both flexible and rigid substrates, the coated samples all possessed great mechanical properties. This work provides a new insight for the design of protective coatings, particularly focusing on achieving high transparency.
Collapse
Affiliation(s)
- Lin Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ai-Ning Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shuang-Mei He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guan-Qi Zheng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fu-Rong Zeng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|