1
|
Fang T, Guo C, Li Y, Zhang D, Sun H, Wan Y, Qi C. Effect of sodium lignosulfonate as an additive in enhancing the corrosion and tribocorrosion behavior of micro-arc oxidation coatings on titanium alloy. Int J Biol Macromol 2025; 307:141960. [PMID: 40074111 DOI: 10.1016/j.ijbiomac.2025.141960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
A corrosion and wear resistant coating was developed on the surface of titanium alloy using micro-arc oxidation (MAO) technology with addition of lignin sulfonate (SLS) as an additive in electrolytes containing 15 g/L of Na2SiO3·9H2O and 10 g/L of Na3PO4·12H2O. The effects of concentration of SLS on the surface morphology, microstructure, and corrosion-wear performance of the MAO coatings were systematically investigated. Wetting properties and mechanical characteristics of MAO coatings were determined by contact angle measurements, microhardness testing, and bonding strength assessments. The corrosion resistance of the MAO coating in artificial saliva media was assessed through electrochemical testing, while its tribological and corrosion-wear performance was evaluated via dry friction tests and corrosion-wear tests, respectively. Experimental results indicate that the incorporation of lignin sulfonate as the electrolyte additive enhances pore filling within the coating matrix while improving both mechanical properties and corrosion resistance. Notably, MAO coatings with a concentration of 1 g/L exhibited superior mechanical properties; furthermore, their corrosion current density decreased by one to three orders of magnitude compared to that of the TC4 substrate.
Collapse
Affiliation(s)
- Tianyu Fang
- School of Mechanical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Chunting Guo
- School of Mechanical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yang Li
- School of Mechanical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Dejian Zhang
- School of Mechanical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huilai Sun
- School of Mechanical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yong Wan
- School of Mechanical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000, PR China.
| | - Caixia Qi
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
2
|
Wu J, Xu J, Liu S, Ma Z, Guo Y, Wang X. Anti-freezing, long-term-usability conductive organo-hydrogels containing lignin for the manufacture of high-performance flexible strain and temperature sensors. Int J Biol Macromol 2025; 306:141662. [PMID: 40037450 DOI: 10.1016/j.ijbiomac.2025.141662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
The development of an all-in-one hydrogel that possesses the desired characteristics of multiple sensing modalities, exceptional electrical conductivity, and high strain sensing performance remains a significant challenge. Here, we employed calcium ions to crosslink and chelate sodium alginate and sodium lignosulfonate within a polyacrylic acid hydrogel network. Additionally, we introduced a conductive polyaniline network through in situ polymerization and performed a solvent exchange with glycerol to produce a multifunctional conductive organo-hydrogel. The resulting hydrogels exhibited remarkable mechanical properties, with a strength of 268 kPa at a tensile strain of 400 %. They also demonstrated resistance to drying and freezing, remaining unfrozen at low temperatures of -60 °C, as well as temperature sensitivity. The incorporation of polyaniline and Ca2+ ions contributed to enhanced electrical conductivity and sensing capabilities, evidenced by gauge factors of 1.39 and 2.13 in the strain ranges of 0-210 % and 210-400 %, respectively. Furthermore, the temperature sensing properties were characterized by a temperature coefficient of resistance of -4.49 % °C-1 and -0.92 % °C-1 in the temperature ranges of -25 to 25 °C and 25 to 60 °C, respectively. Leveraging these advantageous properties, this hydrogel is anticipated to serve as a real-time motion detection device for human activities in extreme conditions.
Collapse
Affiliation(s)
- Junyuan Wu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingyu Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shiwen Liu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Tong R, Gu P, Wang Y, Ye H, Li T, Zheng X, Su L, Li H, Xu J. Facile fabrication of transparent and stretchable cellulose ionic gel paper for sustainable use in multifunctional sensors and optoelectronic devices. Int J Biol Macromol 2025; 307:142101. [PMID: 40089234 DOI: 10.1016/j.ijbiomac.2025.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Although transparent paper derived from cellulose has been successfully demonstrated as an inexpensive, renewable and biodegradable substrate used for flexible electronics, the inherently stiff characteristic and intrinsic poor conductivity of the cellulose paper inevitably hinders its application in stretchable electronic devices. Herein, we report a new avenue for construction of highly stretchable, transparent, and ionic conductive cellulose gel paper via glycerol inducing plasticizing and CaCl2 initiating chelating, a facile casting and drying strategy. The renewable carboxymethyl cellulose is employed for its intrinsically abundant carboxyl groups for crosslinking with Ca2+ via ionic coordination bonds, benefiting the improvement of various performances. The resultant cellulose ionic gel paper (CIGP) displays high stretchability (tensile strain 320 % and strength 978 kPa at fracture), and transparency (over 90 % in 400 nm to 780 nm wavelength). In addition, the CIGP also has high ionic conductivity (82.78 mS/m), and displays highly reliable, sensitive and wide range strain sensing abilities to various stimuli. Significantly, the transparent CIGP with excellent sensing performances has been successfully integrated into multifunctional sensors and optoelectronic device, showing broad applications in flexible electronics.
Collapse
Affiliation(s)
- Ruiping Tong
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ping Gu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Yifu Wang
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Huan Ye
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Tengfei Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Xiang Zheng
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Longjun Su
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Hongchao Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
4
|
Qing X, Kalidindi P, Liu Z, Vananroye A, Taurino I, Katsaounis A, Fardim P. Phytic acid/chitosan-assisted zwitterionic double-network hydrogels with enhanced mechanical properties, adhesion ability and ionic conductivity for wearable strain sensors. Int J Biol Macromol 2025; 309:142841. [PMID: 40203931 DOI: 10.1016/j.ijbiomac.2025.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Ionic conductive hydrogels have recently attracted tremendous attention in flexible wearable strain sensors. However, achieving a combination of good mechanical properties, strong adhesion to various material surfaces, and remarkable ionic conductivity in a single ionic conductive hydrogel remains a challenge. Herein, new poly(acrylamide-co-sulfobetaine methacrylate)/chitosan/phytic acid (ASCP) ionic conductive hydrogels with double networks were prepared through free radical polymerization. The versatile functional groups from chitosan and phytic acid gave the hydrogels universal adhesion capabilities with a maximum adhesion strength of 18.7 kPa to paper. The obtained ASCP conductive hydrogels exhibited a large elongation of 675 % and a moderate tensile strength 52.8 kPa due to the synergy of chemical cross-linking and physical interactions. Phytic acid as the conductive component conferred the hydrogels with excellent ionic conductivity of 10.3 S m-1. Moreover, the incorporation of chitosan and phytic acid imparted the hydrogels with enhanced anti-drying capability, as evidenced by a residual mass ratio of 58.3 % after 10 days, and exhibited favorable anti-swelling behavior, with an equilibrium swelling ratio of 115 % in water after 4 days. The described ionic conductive hydrogels were assembled into wearable strain sensors to detect various human joint movements. This work offers a straightforward strategy to design multifunctional conductive hydrogels which envision prospective applications in wearable sensors and other flexible electronic devices.
Collapse
Affiliation(s)
- Xiaoyan Qing
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Praneetha Kalidindi
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Zhongda Liu
- Department of Chemical Engineering, University of Patras, Caratheodory 1 St, 26504 Patras, Greece
| | - Anja Vananroye
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Irene Taurino
- Micro and Nano Systems (MNS), Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | - Alexandros Katsaounis
- Department of Chemical Engineering, University of Patras, Caratheodory 1 St, 26504 Patras, Greece
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Liang A, Zhai J, Zou J, Chen X. Porous Carbon Nanoparticle Composite Paper Fiber with Laser-Induced Graphene Surface Microstructure for Pressure Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2688-2698. [PMID: 39856562 DOI: 10.1021/acs.langmuir.4c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
In recent years, flexible pressure sensors have played an increasingly important role in human health monitoring. Inspired by traditional papermaking techniques, we have developed a highly flexible, low-cost, and ecofriendly flexible pressure sensor using shredded paper fibers as the substrate. By combining the properties of laser-induced graphene with the structure of paper fibers, we have improved the internal structure of pressure-sensitive paper and designed a conical surface microstructure, providing new insights into nanomaterial engineering. It features low resistance (424.44 Ω), low energy consumption of only 0.367 μW under a pressure of 1.96 kPa, high sensitivity (1.68 kPa-1), and a wide monitoring range (98 Pa-111.720 kPa). The pressure-sensitive paper with surface microstructure (MFTG) developed in this study has a total thickness comparable to A4 paper, is soft and bendable, can be cut into any shape like paper to fit the human body, and holds great potential for continuous monitoring of human activity status and physiological information.
Collapse
Affiliation(s)
- Aoxun Liang
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Junlong Zhai
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Jixu Zou
- School of Chemistry and Materials Science, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Xueye Chen
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| |
Collapse
|
6
|
Jin Z, Gong H, Chen B, Jiang Y, Su Y, Zhou J, Wang H, Li Y. Novel functional hydrogels based on lignin‑silver nanoparticles with adhesion, antimicrobial, antioxidant and anti-freezing properties for wound dressings and pressure strain sensors. Int J Biol Macromol 2025; 291:138853. [PMID: 39694379 DOI: 10.1016/j.ijbiomac.2024.138853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
As wound dressings and wearable electronics advance, it is critical to develop an efficacious strategy for integrating a variety of powerful functions into hydrogels. In this work, sodium lignosulfonate‑silver nanoparticles and the functional [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide structure (SBMA) are introduced into the multifunctional lignin-based hydrogel system. The sodium lignosulfonate‑silver nanoparticles, by catalyzing multiple redox reactions, facilitate the swift curing of hydrogels at room temperature. This process is advantageous for the structural refinement of hydrogel polymer segments and the integration of multiple functionalities. The synergistic effect of functional structure and nanoparticles bestows the hydrogel with superior adhesion, mechanical properties, antimicrobial properties and antioxidant properties. The introduction of a functional structure not only deferments the release of sodium lignosulfonate‑silver nanoparticles, but also imparts satisfactory conductivity and anti-freezing properties to the hydrogels. In applications related to wound dressings and pressure strain sensors, hydrogels demonstrate excellent potential. They effectively facilitate wound healing and enable the monitoring of limb movement. This work introduces a simple and effective approach to prepare lignin-based functional hydrogels, exhibiting significant potential for wound dressings and pressure strain sensors applications.
Collapse
Affiliation(s)
- Zhenxing Jin
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Bo Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Huihui Wang
- School of Mechanical Engineering & Automation, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
7
|
Liu Y, Fu S, Jin K, Cheng Y, Li Y, Zhao Y, Liu R, Tian Y. Advances in polysaccharide-based conductive hydrogel for flexible electronics. Carbohydr Polym 2025; 348:122836. [PMID: 39562110 DOI: 10.1016/j.carbpol.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
Polysaccharides, being the most abundant natural polymers, play a pivotal role in the development of hydrogel materials. Polysaccharide-based conductive hydrogels have found extensive applications in flexible electronics due to their excellent conductivity and biocompatibility. This review highlights recent advancements in this area, starting with an overview of polysaccharide materials such as chitosan, cellulose, starch, cyclodextrin, alginate, hyaluronic acid, and agarose. It then explores different classifications of conductive hydrogels: ionic conductive, electronic conductive, and ionic-electronic composite types. The review also covers key characteristics of these hydrogels, including mechanical properties, self-healing, adhesion, structural color, antibacterial, responsiveness, biocompatibility and anti-swelling. Representative applications, such as flexible sensors, triboelectric nanogenerators, supercapacitors, and flexible electronic wound dressings, are summarized. Finally, the review addresses current challenges and provides guidance for future research, aiming to advance the field of polysaccharide-based conductive hydrogels in flexible electronics.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Intelligent Medical Engineering, College of Life and Health Management, Shenyang City University, Shenyang 110112, China
| | - Simian Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yugui Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yiqi Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yunjun Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China.
| |
Collapse
|
8
|
Zhang M, Ren J, Li R, Zhang W, Li Y, Yang W. Ultrastretchable and highly sensitive ionic conductive hydrogel for environmentally resistant all-in-one human-motion sensors. Int J Biol Macromol 2025; 287:138567. [PMID: 39653198 DOI: 10.1016/j.ijbiomac.2024.138567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Conductive hydrogels have been considered ideal candidate materials for fabricating human-motion sensors due to their combination properties of electronic and tissue-like soft nature and the similar functions of human skin with mechanical and sensory properties. However, the perfect integration of multiple functionalities such as environmentally tolerant, stretchable, self-adhesive, self-healing, transparent, high sensitivity, and rapid response in one system (all-in-one) is still a significant challenge. Herein, a novel ionic conductive hydrogel platform with excellent comprehensive performance through multiple dynamic interactions was prepared by employing [BMIm]BF4/glycerol/water ternary solvent system. The dynamic hydrogen bonds, coordination bonds, and electrostatic interaction within the network endows the hydrogel excellent mechanical performance. The synchronous effect of ionic liquids and glycerol realized the high ionic conductivity, transparency, environmentally tolerance, and long-term stability. Sensors based on this hydrogel have a relatively high sensitivity, a fast response time, and a wide linear sensing range in monitoring human movements. It can also serve as electronic skin, like human skin, for touchscreen pen and writing. Thus, the all-in-one hydrogel was concluded to hold considerable promise for constructing the next generation of hydrogel platforms for human-motion sensors.
Collapse
Affiliation(s)
- Minmin Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China.
| | - Ruirui Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Wenjing Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| |
Collapse
|
9
|
Guo Z, Xu X, Qiu J, Yu W, Zhang S, Li J, Zhu Y, Lu J, Gao Q, Nie B, Zhang Y, Qi G, Wang W, Zhang X, Jiang L, Wei R. Fishing net-inspired PVA-chitosan-CNT hydrogels with high stretchability, sensitivity, and environmentally stability for textile strain sensors. Int J Biol Macromol 2024; 282:137576. [PMID: 39542290 DOI: 10.1016/j.ijbiomac.2024.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Soft electronic products are being extensively investigated in diverse applications including sensors and devices, due to their superior softness, responsiveness, and biocompatibility. One-dimensional (1-D) fiber electronic devices are recognized for their lightweight, wearable, and stretchable qualities, thus emerging as critical constituents for seamless integration with the human body and attire, exhibiting great potential in wearable applications. However, wearable conductive hydrogel fibers usually face challenges in combining stretchability and excellent stability, notably in high-temperature environment. Herein, a novel stretchable conductive hydrogel fiber, namely PVA-CS-CNT (Polyvinyl Alcohol-Chitosan-Carbon Nanotube) hydrogel fiber, was successfully prepared through a straightforward low-temperature process. This hydrogel fiber not only maintains stable signal transmission at high temperatures but also exhibits significant mechanical and sensing capabilities, ensuring signal stability during repetitive cyclic stretching. Inspired by fishing net, textile sensors were fabricated by weaving PVA-CS-CNT hydrogel fibers, which offered breathability, high stability (withstanding over 500 stretch cycles), high sensitivity (detecting strains as low as 1 %), and exceptional mechanical strength (exceeding 17 MPa). The wearable sensor could not only accurately monitor human movements like stretching and bending, but also adeptly captured delicate signals such as pulses and sounds. These characteristics demonstrated the potential applications of the hydrogel fibers encompassing human motion tracking, intelligent textiles, and soft robotics.
Collapse
Affiliation(s)
- Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Xing Xu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjiang Qiu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenlong Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shiqiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junfu Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yihong Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junxia Lu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiulei Gao
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bangbang Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Yudong Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Guochen Qi
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ronghan Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Lu Z, Liu L, Miao R, Zhang N, Gao M, Fan X, Li Y. Lignin sulfonate induced ultrafast fabrication of polypyrrole-based conductive organohydrogel for high performance flexible strain and temperature sensor. Int J Biol Macromol 2024; 282:136969. [PMID: 39490480 DOI: 10.1016/j.ijbiomac.2024.136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The ultrafast preparation of electrically conductive hydrogels to endow high sensing performance and temperature tolerance remains a critical challenge. Herein, lignosulfonate sodium-templated polypyrrole (LS-PPy) nanofillers were rapidly introduced into polyacrylic acid (PAA) hydrogel through ultrafast free radical polymerization in a glycerol/water binary solvent system. The resultant LS-PPy/PAA electrically conductive organohydrogel possesses satisfactory mechanical performance (strength of 56 kPa at a tensile strain of 800 %), strong adhesion, and a desirable low freezing point (-35 °C). Furthermore, this organohydrogel exhibits high strain sensitivity (gauge factor = 2.65), fast response time (~160 ms), low signal hysteresis, and excellent cyclic stability (over 1200 cycles). And the wearable LS-PPy/PAA organohydrogel sensor could accurately and real-time monitor various intense or subtle human movements, such as joint bending, facial expression and hand writing. Besides, the developed LS-PPy/PAA temperature sensor can respond to environmental temperature variations over a wide range of -20-100 °C. High resolution of 0.5 °C with remarkable sensitivity (-0.80 %/°C and linearity of R2 = 0.99) and repeatability were achieved within 36.5-40 °C, which makes it suitable for human body temperature monitoring. All these results demonstrate the substantial prospective value of the LS-PPy/PAA hydrogel in wearable sensors and other associated fields.
Collapse
Affiliation(s)
- Zichun Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Lingke Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - RunTian Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Minjuan Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyu Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Yueqin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Hu F, Dong B, Yu D, Zhao R, Chen W, Song Z, Lu P, Zhang F, Wang Z, Liu X, Wang H, Liu W, Li H. Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors. Carbohydr Polym 2024; 342:122357. [PMID: 39048189 DOI: 10.1016/j.carbpol.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
In this study, we address the challenge of developing highly conductive hydrogels with enhanced stretchability for use in wearable sensors, which are critical for the precise detection of human motion and subtle physiological strains. Our novel approach utilizes amylopectin, a biopolymer, for the uniform integration of liquid metal gallium into the hydrogel matrix. This integration results in a conductive hydrogel characterized by remarkable elasticity (up to 7100 % extensibility) and superior electrical conductance (Gauge Factor = 31.4), coupled with a minimal detection limit of less than 0.1 % and exceptional durability over 5000 cycles. The hydrogel demonstrates significant antibacterial activity, inhibiting microbial growth in moist environments, thus enhancing its applicability in medical settings. Employing a synthesis process that involves ambient condition polymerization of acrylic acid, facilitated by a hydrophobic associative framework, this hydrogel stands out for its rapid gelation and robust mechanical properties. The potential applications of this hydrogel extend beyond wearable sensors, promising advancements in human-computer interaction through technologies like wireless actuation of robotic systems. This study not only introduces a viable material for current wearable technologies but also sets a foundation for future innovations in bio-compatible sensors and interactive devices.
Collapse
Affiliation(s)
- Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Zhaoping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Zhaojiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong Province 250012, China.
| |
Collapse
|
12
|
Zhang X, Zhu C, Yang X, Ye Y, Zhang G, Yu F, Chen P, Zhu Y, Kang Q. Conductive, sensitivity, flexibility, anti-freezing and anti-drying silica/carbon nanotubes/sodium ions modified sodium alginate hydrogels for wearable strain sensing applications. Int J Biol Macromol 2024; 280:135880. [PMID: 39317286 DOI: 10.1016/j.ijbiomac.2024.135880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The biocompatibility and salient gelling feature of alginate via forming the interpenetrating network structure has received extensive interests for different applications. Traditional alginate hydrogels freeze at low temperature and evaporate easily at room temperature, leading to reduced performance. Consequently, it is crucial to develop methods to prevent alginate hydrogel from freezing at subzero temperature and dehydration at normal temperature to maintain the performance stability. Utilizing polyacrylic acid, sodium alginate, and acrylamide-hydroxyethyl methacrylate copolymers as flexible matrix materials, this study develops a wearable silica (SiO2)/carbon nanotubes (CNT)/sodium ions (SiO2/CNT/Na+) modified sodium alginate hydrogel strain sensor characterized by high sensitivity, flexibility, and anti-freezing and anti-drying properties. The hydrogel doped with NaCl (50 mg), CNT (10 mg) and M-SiO2 (200 mg) shows excellent mechanical and electrical properties, the tensile strength is 436 KPa, the break elongation is 426 %, the elastic modulus is 99 KPa, and the toughness is 897 kJ/m3. The modified sodium alginate hydrogel used as strain sensor shows fast response time (∼100 ms), high sensitivity factor and excellent stability. The strain sensor exhibits excellent flexibility, ductility, self-adhesion, anti-freezing and anti-drying properties, significantly enhancing its strain sensing application field.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China; Jiande Baisha Chemical Co., Ltd, No. 9 Fenghe Road, Zhejiang 311606, China.
| | - Chengfei Zhu
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Xiaoli Yang
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China
| | - Yuanfeng Ye
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China.
| | - Guozhen Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Feng Yu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Peng Chen
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China; Fuyang Normal University, Fuyang City, Anhui Province 236041, China
| | - Yong Zhu
- Fuyang Normal University, Fuyang City, Anhui Province 236041, China
| | - Qiannan Kang
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China
| |
Collapse
|
13
|
Wang Z, Xu L, Liu W, Chen Y, Yang Q, Tang Z, Tan H, Li N, Du J, Yu M, Xu J. Tough, self-healing, adhesive double network conductive hydrogel based on gelatin-polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors. Int J Biol Macromol 2024; 276:133802. [PMID: 38992552 DOI: 10.1016/j.ijbiomac.2024.133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Pursuing high-performance conductive hydrogels is still hot topic in development of advanced flexible wearable devices. Herein, a tough, self-healing, adhesive double network (DN) conductive hydrogel (named as OSA-(Gelatin/PAM)-Ca, O-(G/P)-Ca) was prepared by bridging gelatin and polyacrylamide network with functionalized polysaccharide (oxidized sodium alginate, OSA) through Schiff base reaction. Thanks to the presence of multiple interactions (Schiff base bond, hydrogen bond, and metal coordination) within the network, the prepared hydrogel showed outstanding mechanical properties (tensile strain of 2800 % and stress of 630 kPa), high conductivity (0.72 S/m), repeatable adhesion performance and excellent self-healing ability (83.6 %/79.0 % of the original tensile strain/stress after self-healing). Moreover, the hydrogel-based sensor exhibited high strain sensitivity (GF = 3.66) and fast response time (<0.5 s), which can be used to monitor a wide range of human physiological signals. Based on this, excellent compression sensitivity (GF = 0.41 kPa-1 in the range of 90-120 kPa), a three-dimensional (3D) array of flexible sensor was designed to monitor the intensity of pressure and spatial force distribution. In addition, a gel-based wearable sensor was accurately classified and recognized ten types of gestures, achieving an accuracy rate of >96.33 % both before and after self-healing under three machine learning models (the decision tree, SVM, and KNN). This paper provides a simple method to prepare tough and self-healing conductive hydrogel as flexible multifunctional sensor devices for versatile applications in fields such as healthcare monitoring, human-computer interaction, and artificial intelligence.
Collapse
Affiliation(s)
- Zengsheng Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Weiling Liu
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yi Chen
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Qiannian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Zengmin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Haihu Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Na Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Jingjing Du
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Maolin Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| |
Collapse
|
14
|
Li N, Qiu L, Li B, Feng L, Qu S, Ji X, Chen W. Highly conductive, rapid self-healing, and anti-freezing poly(3,4-ethylenedioxythiophene)/lignosulfonate-cationic guar gum ionogels for multifunctional sensors. Int J Biol Macromol 2024; 274:133159. [PMID: 38880459 DOI: 10.1016/j.ijbiomac.2024.133159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Soft ionic conductors exhibit immense potential for applications in soft ionotronics, including ionic skin, human-machine interface, and soft luminescent device. Nevertheless, the majority of ionogel-based soft ionic conductors are plagued by issues such as freezing, evaporation, liquid leakage, and inadequate self-healing capabilities, thereby constraining their usability in complex environments. In this study, we present a novel strategy for fabricating conductive ionogels through the proportionally mixing cationic guar gum (CGG), water, 1-butyl-3-methylimidazolium chloride (BmimCl)/glycerol eutectic-based ionic liquid, and poly(3,4-ethylenedioxythiophene)/lignosulfonate (PEDOT/LS). The resultant benefits from strong hydrogen bonding and electrostatic interactions among its constituents, endowing it with an ultrafast self-healing capability (merely 30 s) while sustaining high electrical conductivity (~16.5 mS cm-1). Moreover, it demonstrates exceptional water retention (62 % over 10 days), wide temperature tolerance (-20 to 60 °C), and injectability. A wearable sensor fabricated from this ionogel displayed remarkable sensitivity (gauge factor = 17.75) and a rapid response to variations in strain, pressure, and temperature, coupled with both long-term stability and wide working temperature range. These attributes underscore its potential for applications in healthcare devices and flexible electronics.
Collapse
Affiliation(s)
- Nan Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; CAS Key Laboratory of Biobased Materials, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Qihe Leahou Chemical Co., Ltd, Dezhou 251100, China
| | - Liyuan Qiu
- College of Engineering, Qufu Normal University, Rizhao 276826, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Li
- CAS Key Laboratory of Biobased Materials, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | - Shuguang Qu
- Qihe Leahou Chemical Co., Ltd, Dezhou 251100, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
15
|
Zhang M, Ren J, Li R, Zhang W, Li Y, Yang W. Multifunctional sodium lignosulfonate/xanthan gum/sodium alginate/polyacrylamide ionic hydrogels composite as a high-performance wearable strain sensor. Int J Biol Macromol 2024; 261:129718. [PMID: 38296129 DOI: 10.1016/j.ijbiomac.2024.129718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Recently, conductive hydrogels have shown great promise in flexible electronics and are ideal materials for the preparation of wearable strain sensors. However, developing a simple method to produce conductive hydrogels with excellent mechanical properties, self-adhesion, transparency, anti-freezing, and UV resistance remains a significant challenge. A novel sodium lignosulfonate/xanthan gum/sodium alginate/polyacrylamide/Zn2+/DMSO (SLS/XG/SA/PAM/Zn2+/DMSO) ionic conductive hydrogel was developed using a one-pot method. The resulting ionic conductive hydrogels have excellent mechanical properties (stress: 0.13 MPa, strain: 1629 %), high anti-fatigue properties, self-adhesion properties (iron: 7.37 kPa, pigskin: 4.74 kPa), anti-freezing (freezing point: -33.49 °C) and UV resistance by constructing a chemical and physical hybrid cross-linking network. In particular, the conductivity of G hydrogel reached 6.02 S/m at room temperature and 5.52 S/m at -20 °C. Thus, the hydrogel was assembled into a flexible sensor that could distinguish a variety of large and small scales human movements, such as joint bending, swallowing and speaking in real time with high stability and sensitivity. Moreover, the hydrogel could be used as electronic skin just like human skin and touch screen pen to write.
Collapse
Affiliation(s)
- Minmin Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China.
| | - Ruirui Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Wenjing Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| |
Collapse
|
16
|
Hu X, Wang J, Song S, Gan W, Li W, Qi H, Zhang Y. Ionic conductive konjac glucomannan/liquid crystal cellulose composite hydrogels with dual sensing of photo- and electro-signals capacities as wearable strain sensors. Int J Biol Macromol 2024; 258:129038. [PMID: 38154724 DOI: 10.1016/j.ijbiomac.2023.129038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
The ionic conductive hydrogel-based sensor exhibits wide applications in wearable electronic devices. However, the strength and ductility trade-off, multimodal requirements, and water-soluble polymer alternatives are significant challenges for the hydrogel-based sensor. Herein, a stretchable and conductive hydrogel is developed with a double network formed by incorporating polyacrylamide and ionic liquid into the konjac glucomannan network. The hydrogel displays significantly enhanced mechanical properties, and good tear/puncture resistance owing to the existence of covalent and non-covalent interactions. In addition, by the introduction of nematic liquid crystal hydroxypropyl cellulose, the hydrogel/cellulose-based strain sensor demonstrates excellent sensing performance in monitoring human motions and writing recognition ability with optical and electrical bimodal sensing response. This work provides new insights to further expand the options of hydrogel-based sensor matrix and to construct bimodal sensors.
Collapse
Affiliation(s)
- Xintong Hu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jianhua Wang
- Suzhou Institute of Green Fiber Technology, Jiangsu Guowang High-tech Fiber Co., Ltd., Suzhou, Jiangsu 215221, PR China
| | - Shiqiang Song
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China; Suzhou Institute of Green Fiber Technology, Jiangsu Guowang High-tech Fiber Co., Ltd., Suzhou, Jiangsu 215221, PR China; State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenjun Gan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Weizhen Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Hechuang Qi
- School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Yong Zhang
- State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|