1
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Hasani S, Javeri A, Asadi A, Fakhr Taha M. Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid. CELL JOURNAL 2019; 22:273-282. [PMID: 31863652 PMCID: PMC6947007 DOI: 10.22074/cellj.2020.6582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Objective Bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) play important roles in embryonic heart development. Also, two epigenetic modifying molecules, 5'-azacytidine (5'-Aza) and valproic acid (VPA) induce cardiomyogenesis in the infarcted heart. In this study, we first evaluated the role of BMP4 and bFGF in cardiac trans-differentiation and then the effectiveness of 5´-Aza and VPA in reprogramming and cardiac differentiation of human adipose tissue-derived stem cells (ADSCs). Materials and Methods In this experimental study, human ADSCs were isolated by collagenase I digestion. For cardiac differentiation, third to fifth-passaged ADSCs were treated with BMP4 alone or a combination of BMP4 and bFGF with or without 5'-Aza and VPA pre-treatment. After 21 days, the expression of cardiac-specific markers was evaluated by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, immunocytochemistry, flow cytometry and western blot analyses. Results BMP4 and more prominently a combination of BMP4 and bFGF induced cardiac differentiation of human ADSCs. Epigenetic modification of the ADSCs by 5'-Aza and VPA significantly upregulated the expression of OCT4A, SOX2, NANOG, Brachyury/T and GATA4 but downregulated GSC and NES mRNAs. Furthermore, pre-treatment with 5'-Aza and VPA upregulated the expression of TBX5, ANF, CX43 and CXCR4 mRNAs in three-week differentiated ADSCs but downregulated the expression of some cardiac-specific genes and decreased the population of cardiac troponin I-expressing cells. Conclusion Our findings demonstrated the inductive role of BMP4 and especially BMP4 and bFGF combination in cardiac trans-differentiation of human ADSCs. Treatment with 5'-Aza and VPA reprogrammed ADSCs toward a more pluripotent state and increased tendency of the ADSCs for mesodermal differentiation. Although pre-treatment with 5'-Aza and VPA counteracted the cardiogenic effects of BMP4 and bFGF, it may be in favor of migration, engraftment and survival of the ADSCs after transplantation.
Collapse
Affiliation(s)
- Sanaz Hasani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Elrctronic Address:
| |
Collapse
|
3
|
Kim YH, Kim BJ, Kim SM, Kim SU, Ryu BY. Induction of cardiomyocyte‑like cells from hair follicle cells in mice. Int J Mol Med 2019; 43:2230-2240. [PMID: 30864673 DOI: 10.3892/ijmm.2019.4133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/08/2019] [Indexed: 11/05/2022] Open
Abstract
Hair follicles (HFs) are a well‑characterized niche for adult stem cells (SCs), and include epithelial and melanocytic SCs. HF cells are an accessible source of multipotent adult SCs for the generation of the interfollicular epidermis, HF structures and sebaceous glands in addition to the reconstitution of novel HFs in vivo. In the present study, it was demonstrated that HF cells are able to be induced to differentiate into cardiomyocyte‑like cells in vitro under specific conditions. It was determined that HF cells cultured on OP9 feeder cells in KnockOut‑Dulbecco's modified Eagle's medium/B27 in the presence of vascular endothelial growth factors differentiated into cardiomyocyte‑like cells that express markers specific to cardiac lineage, but do not express non‑cardiac lineage markers including neural stem/progenitor cell, HF bulge cells or undifferentiated spermatogonia markers. These cardiomyocyte‑like cells exhibited a spindle‑ and filament‑shaped morphology similar to that presented by cardiac muscles and exhibited spontaneous beating that persisted for over 3 months. These results demonstrate that SC reprogramming and differentiation may be induced without resulting in any genetic modification, which is important for the clinical applications of SCs including tissue and organ regeneration.
Collapse
Affiliation(s)
- Yong-Hee Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung‑Ang University, Anseong, Gyeonggi‑do 17546, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seok-Man Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung‑Ang University, Anseong, Gyeonggi‑do 17546, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung‑Ang University, Anseong, Gyeonggi‑do 17546, Republic of Korea
| |
Collapse
|
4
|
Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018; 9:44. [PMID: 29482607 PMCID: PMC5828435 DOI: 10.1186/s13287-018-0773-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofei Guo
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yan Bai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Li Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bo Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Katherine Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | - Zhimin Du
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
5
|
Bazgir B, Fathi R, Rezazadeh Valojerdi M, Mozdziak P, Asgari A. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair. CELL JOURNAL 2016; 18:473-484. [PMID: 28042532 PMCID: PMC5086326 DOI: 10.22074/cellj.2016.4714] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise.
Collapse
Affiliation(s)
- Behzad Bazgir
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Alireza Asgari
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Aerospace and Subaquatic Medicine Faculty, Aerospace Medicine Research Center, AJA Medical Sciences
University, Tehran, Iran
| |
Collapse
|
6
|
Wei R, Yang J, Gao M, Wang H, Hou W, Mu Y, Chen G, Hong T. Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells. Cell Biol Int 2016; 40:1235-1246. [PMID: 27600481 DOI: 10.1002/cbin.10679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/04/2016] [Indexed: 11/07/2022]
Abstract
Microenvironment regulates cell fate and function. In this study, we investigated the effects of the infarcted cardiac microenvironment on cardiac differentiation of human embryonic stem cells (hESCs). hESCs were intramyocardially transplanted into infarcted or uninjured rat hearts. After 4 weeks, mesodermal and cardiac lineage markers were detected by immunofluorescence. Cardiac function was assessed by echocardiography. hESCs were differentiated in vitro under hypoxic (5% O2 ), low-nutrient (5% FBS), or control condition. The numbers of beating clusters, proportions of cardiac troponin T (cTnT)-positive cells, and relative levels of cardiac-specific markers were determined. Results showed that in both uninjured and infarcted hearts, hESCs survived, underwent development, and formed intracardiac grafts, with a higher proportion in the uninjured hearts. However, cells that were double positive for human fetal liver kinase 1 (Flk1), a marker of cardiac progenitors, and human β-tubulin, a marker for labeling human cells, were found in the uninjured hearts but not in the infarcted hearts. hESC transplantation did not restore the cardiac function of acutely infarcted rats. In vitro, low FBS treatment was associated with fewer beating clusters, a lower proportion of cTnT-positive cells and lower levels of cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) expression than those in the control. Conversely, hypoxia treatment was associated with a higher proportion of cTnT-positive cells and higher levels of cTnI expression. In conclusion, transplanted hESCs differentiate toward Flk1-positive cardiac progenitors in the uninjured but not infarcted hearts. The infarcted cardiac microenvironment recapitulated is unsuitable for cardiac differentiation of hESCs, likely due to nutrient deprivation.
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Meijuan Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Wenfang Hou
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Guian Chen
- Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, Wada I, Omori K. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res 2015; 364:319-30. [DOI: 10.1007/s00441-015-2304-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/28/2015] [Indexed: 02/02/2023]
|
8
|
Hodge AJ, Zhong J, Lipke EA. Enhanced stem cell-derived cardiomyocyte differentiation in suspension culture by delivery of nitric oxide using S-nitrosocysteine. Biotechnol Bioeng 2015; 113:882-94. [PMID: 26444682 DOI: 10.1002/bit.25849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
The development of cell-based treatments for heart disease relies on the creation of functionally mature stem cell-derived cardiomyocytes employing in vitro culture suspension systems, a process which remains a formidable and expensive endeavor. The use of nitric oxide as a signaling molecule during differentiation has demonstrated the potential for creating increased numbers of spontaneously contracting embryoid bodies in culture; however, the effects of nitric oxide signaling on the function and maturation of stem cell-derived cardiomyocytes is not well understood. In this study, the effects of nitric oxide on mouse embryonic stem cell-derived cardiomyocyte contractile activity, protein, and gene expression, and calcium handling were quantified. Embryoid bodies (EBs) formed using the hanging drop method, were treated with the soluble nitric oxide donor S-nitrosocysteine (CysNO) over a period of 18 days in suspension culture and spontaneous contractile activity was assessed. On day 8, selected EBs were dissociated to form monolayers for electrophysiological characterization using calcium transient mapping. Nitric oxide treatment led to increased numbers of stem cell-derived cardiomyocytes (SC-CMs) relative to non-treated EBs after 8 days in suspension culture. Increased incidence of spontaneous contraction and frequency of contraction were observed from days 8-14 in EBs receiving nitric oxide treatment in comparison to control. Expression of cardiac markers and functional proteins was visualized using immunocytochemistry and gene expression was assessed using qPCR. Cardiac-specific proteins were present in both CysNO-treated and control SC-CMs; however, CysNO treatment during differentiation significantly increased βMHC gene expression in SC-CMs relative to control SC-CMs. Furthermore, increased calcium transient velocity and decreased calcium transient duration was observed for CysNO-treated SC-CMs in comparison to control SC-CMs. Soluble nitric oxide donors, including S-nitrosocysteine, have advantages over other bioactive molecules for use in scalable culture systems in driving cardiac differentiation, since they are inexpensive and the diffusivity of nitric oxide is relatively high. By enabling maintenance of spontaneous contraction in suspension culture and progressing electrophysiological function of resulting SC-CMs toward a more mature phenotype, long-term application of S-nitrosocysteine was shown to be beneficial during cardiac differentiation. Taken together, these results demonstrate the efficiency of nitric oxide as a signaling compound, with implications in the improvement of pluripotent stem cell-derived cardiomyocyte maturation in large-scale culture systems.
Collapse
Affiliation(s)
- Alexander J Hodge
- Department of Chemical Engineering, Auburn University, 212 Ross Hall Auburn 36849, Alabama
| | - Juming Zhong
- College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall Auburn 36849, Alabama.
| |
Collapse
|
9
|
Geuss LR, Wu DC, Ramamoorthy D, Alford CD, Suggs LJ. Paramagnetic beads and magnetically mediated strain enhance cardiomyogenesis in mouse embryoid bodies. PLoS One 2014; 9:e113982. [PMID: 25501004 PMCID: PMC4264692 DOI: 10.1371/journal.pone.0113982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/25/2014] [Indexed: 01/16/2023] Open
Abstract
Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC) in vitro. In addition, manipulation of the embryoid body (EB) microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD)-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA) and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4) supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols.
Collapse
Affiliation(s)
- Laura R. Geuss
- The University of Texas at Austin, Institute of Cell and Molecular Biology, Austin, Texas, United States of America
| | - Douglas C. Wu
- The University of Texas at Austin, Institute of Cell and Molecular Biology, Austin, Texas, United States of America
| | - Divya Ramamoorthy
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States of America
| | - Corinne D. Alford
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States of America
| | - Laura J. Suggs
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Taha MF, Javeri A. The expression of NPPA splice variants during mouse cardiac development. DNA Cell Biol 2014; 34:19-28. [PMID: 25260157 DOI: 10.1089/dna.2014.2600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natriuretic peptide precursor-A (NPPA) is an early and specific marker for functional myocardium of the embryonic heart. NPPA gene encodes for a precursor of atrial natriuretic peptide (ANP). So far, three alternatively spliced variants have been reported for NPPA in human. In mouse, no alternatively spliced transcript of NPPA has been reported. In the current study, we investigated the expression of NPPA gene during cardiac differentiation of mouse adipose-tissue-derived stem cells (ADSCs) and embryonic stem (ES) cells. As revealed by reverse-transcription polymerase chain reaction analysis, 2-week-differentiated cells expressed some cardiac-specific makers, including ANP. Three additional intron-retained splice variants of NPPA were also detected during cardiac differentiation of the ADSCs and ES cells. In addition, we detected three intron-retained splice variants of NPPA in 8.5-day mouse embryonic heart. In the mature cardiomyocytes of 1-week-old mice, only the correctly spliced isoform of NPPA gene was expressed. Freshly isolated stromal vascular fraction also expressed one intron-retained isoform of NPPA gene. In conclusion, our findings have provided evidence for the expression of intron-retained splices of NPPA mRNA during the early stages of mouse cardiogenesis as well as in the mouse adipose tissue.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran, Iran
| | | |
Collapse
|
11
|
Khaleghi M, Taha MF, Jafarzadeh N, Javeri A. Atrial and ventricular specification of ADSCs is stimulated by different doses of BMP4. Biotechnol Lett 2014; 36:2581-9. [PMID: 25216643 DOI: 10.1007/s10529-014-1637-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/11/2014] [Indexed: 11/29/2022]
Abstract
To investigate the effect of BMP4 on cardiomyocyte differentiation of adipose tissue-derived stem cells (ADSCs), mouse ADSCs were treated with different concentrations of BMP4 in media containing fetal bovine serum (FBS) or Knockout™ Serum Replacement (KoSR). 3 weeks after cardiac induction, differentiated ADSCs expressed some cardiac-specific genes and proteins. BMP4 treatment upregulated the expression of cardiac transcription factors. In both FBS and KoSR-supplemented media, lower concentrations of BMP4 had a positive effect on the expression of MLC2A gene, while MLC2V was more expressed with higher concentrations of BMP4. BMP4 treatment in KoSR supplemented medium was more efficient for cardiac induction. Supplementation of culture media with insulin-transferrin-selenium improved the expression of MLC2A gene. The results of this study indicated that BMP4 is important for cardiac differentiation of the ADSCs. However, BMP4 was not enough for structural and functional maturation of the ADSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Maryam Khaleghi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965-161, Tehran, Iran
| | | | | | | |
Collapse
|
12
|
Taylor-Weiner H, Schwarzbauer JE, Engler AJ. Defined extracellular matrix components are necessary for definitive endoderm induction. Stem Cells 2014; 31:2084-94. [PMID: 23766144 DOI: 10.1002/stem.1453] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/30/2013] [Accepted: 05/25/2013] [Indexed: 01/25/2023]
Abstract
Differentiation methods often rely exclusively on growth factors to direct mouse embryonic stem cell (ESC) fate, but the niche also contains fibrillar extracellular matrix (ECM) proteins, including fibronectin (FN) and laminin, which could also direct cell fate. Soluble differentiation factors are known to increase ECM expression, yet ECM's ability to direct ESC fate is not well understood. To address the extent to which these proteins regulate differentiation when assembled into a matrix, we examined mouse ESC embryoid bodies (EBs) and found that their ability to maintain pluripotency marker expression was impaired by soluble serum FN. EBs also showed a spatiotemporal correlation between expression of FN and GATA4, a marker of definitive endoderm (DE), and an inverse correlation between FN and Nanog, a pluripotency marker. Maintenance of mouse ESC pluripotency prevented fibrillar matrix production, but induction medium created lineage-specific ECM containing varying amounts of FN and laminin. Mouse ESC-derived matrix was unlike conventional fibroblast-derived matrix, which did not contain laminin. Naïve mouse ESCs plated onto ESC- and fibroblast-derived matrix exhibited composition-specific differentiation. With exogenously added laminin, fibroblast-derived matrix is more similar in composition to mouse ESC-derived matrix and lacks residual growth factors that mouse ESC matrix may contain. Naïve mouse ESCs in DE induction medium exhibited dose-dependent DE differentiation as a function of the amount of exogenous laminin in the matrix in an α3 integrin-dependent mechanism. These data imply that fibrillar FN is necessary for loss of pluripotency and that laminin within a FN matrix improves DE differentiation.
Collapse
Affiliation(s)
- Hermes Taylor-Weiner
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA; Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | | | | |
Collapse
|
13
|
Taha MF, Javeri A, Kheirkhah O, Majidizadeh T, Khalatbary AR. Neural differentiation of mouse embryonic and mesenchymal stem cells in a simple medium containing synthetic serum replacement. J Biotechnol 2014; 172:1-10. [DOI: 10.1016/j.jbiotec.2013.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023]
|
14
|
Rouhi L, Kajbafzadeh AM, Modaresi M, Shariati M, Hamrahi D. Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-β1 (TGF-β1). In Vitro Cell Dev Biol Anim 2013; 49:287-94. [PMID: 23519561 DOI: 10.1007/s11626-013-9597-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/25/2013] [Indexed: 12/20/2022]
Abstract
In spite of previous reports, the role of transforming growth factor-β1 (TGF-β1) on cardiomyocyte differentiation, especially in the present autologous serum (AS) in culture medium, is still unclear. So, the purpose of this study was to investigate the potential of rat bone marrow mesenchymal stem cells (rBMSCs) to proliferate and differentiate towards cardiomyocyte lineage with the use of AS. Most expansion protocols use a medium supplemented with fetal bovine serum (FBS) as nutritional supplement. FBS is an adverse additive to cells that are proliferated for therapeutic purposes in humans because the use of FBS carries the risk of transmitting viral and bacterial infections and proteins that may initiate xenogeneic immune responses. Therefore, bone marrow cells were cultured in a medium supplemented with 10% AS, 10% FBS, and serum free medium (SFM). Then, rBMSCs were cultured with TGF-β1 (10 ng/ml) for 2 wk. The number of viable cells in AS and FBS groups were measured with MTT assay. Beating areas frequency, up to fourth week after plating, were monitored and evaluated daily. The characteristics of cardiomyocytes were assessed by semi-quantitative reverse transcription polymerase chain reaction and western blot. MTT result indicated that rBMSCs in AS proliferated markedly faster than FBS and SFM. The number of beating areas significantly increased in AS compared to FBS medium. A noticeable increase in the cardiac genes expression was observed in AS. Moreover, western blot analysis confirmed that cardiac proteins were increased in the AS condition. In conclusion, the present study could be extended toward the safe culture of MSCs for the treatment of heart defects.
Collapse
Affiliation(s)
- Leila Rouhi
- Department of Animal Biology-Developmental, Science and Research Branch, Islamic Azad University, Fars, Iran.
| | | | | | | | | |
Collapse
|
15
|
Ca2+ activated K channels-new tools to induce cardiac commitment from pluripotent stem cells in mice and men. Stem Cell Rev Rep 2012; 8:720-40. [PMID: 22038332 DOI: 10.1007/s12015-011-9324-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Taha MF, Valojerdi MR, Hatami L, Javeri A. Electron microscopic study of mouse embryonic stem cell-derived cardiomyocytes. Cytotechnology 2011; 64:197-202. [PMID: 22160438 DOI: 10.1007/s10616-011-9411-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023] Open
Abstract
Differentiation of embryonic stem cell (ESC)-derived embryoid bodies (EBs) is a heterogeneous process. ESCs can differentiate in vitro into different cell types including beating cardiomyocytes. The main aim of the present study was to develop an improved preparation method for scanning electron microscopic study of ESC-derived cardiac bundles and to investigate the fine structural characteristics of mouse ESCs-derived cardiomyocytes using electron microscopy. The mouse ESCs differentiation was induced by EBs' development through hanging drop, suspension and plating stages. Cardiomyocytes appeared in the EBs' outgrowth as beating clusters that grew in size and formed thick branching bundles gradually. Cardiac bundles showed cross striation even when they were observed under an inverted microscope. They showed a positive immunostaining for cardiac troponin I and α-actinin. Transmission and scanning electron microscopy (TEM & SEM) were used to study the structural characteristics of ESC-derived cardiomyocytes. Three weeks after plating, differentiated EBs showed a superficial layer of compact fibrous ECM that made detailed observation of cardiac bundles impossible. We tried several preparation methods to remove unwanted cells and fibers, and finally we revealed the branching bundles of cardiomyocytes. In TEM study, most cardiomyocytes showed parallel arrays of myofibrils with a mature sarcomeric organization marked by H-bands, M-lines and numerous T-tubules. Cardiomyocytes were connected to each other by intercalated discs composed of numerous gap junctions and fascia adherences.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,
| | | | | | | |
Collapse
|
17
|
Ng KM, Lee YK, Lai WH, Chan YC, Fung ML, Tse HF, Siu CW. Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. PLoS One 2011; 6:e19787. [PMID: 21589943 PMCID: PMC3092777 DOI: 10.1371/journal.pone.0019787] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/14/2011] [Indexed: 02/02/2023] Open
Abstract
The cardioprotective effects of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA-I) are well documented, but their effects in the direction of the cardiac differentiation of embryonic stem cells are unknown. We evaluated the effects of exogenous apoA-I expression on cardiac differentiation of ESCs and maturation of ESC-derived cardiomyocytes. We stably over-expressed full-length human apoA-I cDNA with lentivirus (LV)-mediated gene transfer in undifferentiated mouse ESCs and human induced pluripotent stem cells. Upon cardiac differentiation, we observed a significantly higher percentage of beating embryoid bodies, an increased number of cardiomyocytes as determined by flow cytometry, and expression of cardiac markers including α-myosin heavy chain, β-myosin heavy chain and myosin light chain 2 ventricular transcripts in LV-apoA-I transduced ESCs compared with control (LV-GFP). In the presence of noggin, a BMP4 antagonist, activation of BMP4-SMAD signaling cascade in apoA-I transduced ESCs completely abolished the apoA-I stimulated cardiac differentiation. Furthermore, co-application of recombinant apoA-I and BMP4 synergistically increased the percentage of beating EBs derived from untransduced D3 ESCs. These together suggests that that pro-cardiogenic apoA-I is mediated via the BMP4-SMAD signaling pathway. Functionally, cardiomyocytes derived from the apoA-I-transduced cells exhibited improved calcium handling properties in both non-caffeine and caffeine-induced calcium transient, suggesting that apoA-I plays a role in enhancing cardiac maturation. This increased cardiac differentiation and maturation has also been observed in human iPSCs, providing further evidence of the beneficial effects of apoA-I in promoting cardiac differentiation. In Conclusion, we present novel experimental evidence that apoA-I enhances cardiac differentiation of ESCs and iPSCs and promotes maturation of the calcium handling property of ESC-derived cardiomyocytes via the BMP4/SMAD signaling pathway.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Department of Physiology, University of Hong Kong, Hong Kong
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Man-Lung Fung
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Department of Physiology, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Chung-Wah Siu
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
TGF-beta superfamily regulates a switch that mediates differentiation either into adipocytes or myocytes in left atrium derived pluripotent cells (LA-PCS). Biochem Biophys Res Commun 2010; 396:619-25. [PMID: 20420809 DOI: 10.1016/j.bbrc.2010.04.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 11/22/2022]
Abstract
Many stem cell studies have focused on the subject of cell fate and the signal molecules that modulate the regulatory switches for a given differentiation pathway. Genome-wide screens for cell fate determination signals require a cell source that differentiates purely into a single cell type. From adult rat left atrium, we established LA-PCs that differentiates into cardiac/skeletal myocytes or adipocytes with almost 100% purity. In this study, we compared gene expression profiles of undifferentiated LA-PCs with those of differentiated cells [adipocytes (Adi) or cardiac/skeletal myocytes (Myo)] to identify the signals that set the regulatory switch for adipocyte or myocyte differentiation. Microarray analysis verified the feasibility of genome-wide screening by this method. Using a pathway analysis screen, we found that members of the TGF-beta superfamily signal transduction pathways modulate the adipocyte/myocyte differentiation switch. Further analysis determined that recombinant TGF-beta inhibits adipogenesis and induces myogenesis simultaneously in a dose-dependent manner. Moreover, noggin induces differentiation into fully developed beating cardiac myocytes in vitro. These results provided new insight into the molecules that modulate the differentiation switch and validated a screening method for their identification.
Collapse
|
19
|
Yang J, Ko SJ, Kim BS, Kim HS, Park S, Hong D, Hong SW, Choi JH, Park CY, Choi SC, Hong SJ, Lim DS. Enhanced cardiomyogenic differentiation of P19 embryonal carcinoma stem cells. Korean Circ J 2009; 39:198-204. [PMID: 19949579 PMCID: PMC2771787 DOI: 10.4070/kcj.2009.39.5.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/11/2009] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives We investigated the effects of different concentrations of serum, 5-azacytidine, and culture time on the cardiomyogenic differentiation of P19 embryonal carcinoma stem cells in the course of developing an efficient protocol for generating the cardiomyogenic lineage. Materials and Methods P19 cells were plated at a density of 1×106 cells on 10-cm bacterial dishes for 96 hours in the presence of 1% dimethyl sulfoxide to form embryoid bodies. The embryoid bodies were cultured in medium with 2% or 10% fetal bovine serum for an additional 10 or 15 consecutive days in the presence of 0, 1, or 3 µM 5-azacytidine. Results Quantitative real-time polymerase chain reaction (PCR) analysis showed that the messenger ribonucleic acid (mRNA) expression of cardiac muscle-specific genes, such as GATA4, α-actin, α-myosin heavy chain, and cardiac troponin T, were significantly higher in the 15-day culture groups than in the 10-day culture groups. Furthermore, the cardiac muscle-specific genes were expressed more in the high-serum groups compared to the low-serum groups regardless of the culture time. Cardiomyogenic differentiation of the P19 cells was most effective in 1 µM 5-azacytidine regardless of the serum concentrations. In addition, the stimulation effects of 5-azacytidine on cardiomyogenic differentiation were more significant under low-serum culture conditions compared to high-serum culture conditions. Cardiomyogenic differentiation of P19 cells was further confirmed by immunostaining with cardiac muscle-specific antibodies. Conclusion Taken together, these results demonstrated that cardiomyogenic differentiation of P19 cells was enhanced by a combination of different experimental factors.
Collapse
Affiliation(s)
- Jihyun Yang
- Department of Cardiology, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG. A Small Molecule Primes Embryonic Stem Cells for Differentiation. Cell Stem Cell 2009; 4:416-26. [DOI: 10.1016/j.stem.2009.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/24/2009] [Accepted: 04/01/2009] [Indexed: 12/25/2022]
|
21
|
Takei S, Ichikawa H, Johkura K, Mogi A, No H, Yoshie S, Tomotsune D, Sasaki K. Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am J Physiol Heart Circ Physiol 2009; 296:H1793-803. [PMID: 19363129 DOI: 10.1152/ajpheart.01288.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiomyocytes derived from human embryonic stem (ES) cells are a potential source for cell-based therapy for heart diseases. We studied the effect of bone morphogenetic protein (BMP)-4 in the presence of fetal bovine serum (FBS) on cardiac induction from human H1 ES cells during embryoid body (EB) development. Suspension culture for 4 days with 20% FBS produced the best results for the differentiation of early mesoderm and cardiomyocytes. The addition of Noggin reduced the incidence of beating EBs from 23.6% to 5.3%, which indicated the involvement of BMP signaling in the spontaneous cardiac differentiation. In this condition, treatment with 12.5-25 ng/ml BMP-4 during the 4-day suspension optimally promoted the cardiomyocyte differentiation. The incidence of beating EBs at 25 ng/ml BMP-4 reached 95.8% on day 6 of expansion and then plateaued until day 20. In real-time PCR analysis, the cardiac development-related genes MESP1 and Nkx2.5 were upregulated in the EB outgrowths by 25 ng/ml BMP-4. The activation of BMP signaling in EBs was confirmed by the increase in the phosphorylation of Smad1/5/8 and by the nuclear localization of phospho-Smad1/5/8 and Smad4. The addition of 150 ng/ml Noggin considerably decreased the incidence of beating EBs and Nkx2.5 expression, and Noggin alone increased Nestin expression and neural differentiation in EB outgrowths. The cardiomyocytes induced by 25 ng/ml BMP-4 showed proper cell biological characteristics and a course of differentiation as judged from isoproterenol administration, gene expression, protein assay, immunoreactivity, and subcellular structures. No remarkable change in the extent of apoptosis and proliferation in the cardiomyocytes was observed by BMP-4 treatment. These findings showed that BMP-4 in combination with FBS at the appropriate time and concentrations significantly promotes cardiomyocyte induction from human ES cells.
Collapse
Affiliation(s)
- Shunsuke Takei
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials 2009; 30:565-73. [PMID: 18980779 PMCID: PMC2637152 DOI: 10.1016/j.biomaterials.2008.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/02/2008] [Indexed: 11/28/2022]
Abstract
The combinatorial effects of TGF-beta1 and hydrostatic pressure (HP) were investigated on meniscus cell-seeded PLLA constructs using a two-phase sequential study. The objective was to identify potentially synergistic effects of these stimuli toward enhancing the biomechanical and compositional characteristics of the engineered constructs. In Phase I, the effects of TGF-beta1 were examined on the ability of meniscus cells to produce ECM. In Phase II, meniscus cell-seeded PLLA constructs were cultured for 4 wks with a combination of TGF-beta1 and HP (10 MPa, 0 Hz or 10 MPa, 0.1 Hz). TGF-beta1 was found to increase collagen and GAG deposition in the scaffolds 15-fold and 8-fold, respectively, in Phase I. In Phase II, the combination of TGF-beta1 and 10 MPa, 0 Hz HP resulted in 4-fold higher collagen deposition (additive increase), 3-fold higher GAG deposition and enhanced compressive properties (additive and synergistic increases), when compared to the unpressurized no growth factor culture control. Though significant correlations were observed between the compressive properties (moduli and viscosity), and the GAG and collagen content of the constructs, the correlations were stronger with collagen. This study provides robust evidence that growth factors and HP can be used successfully in combination to enhance the functional properties of in vitro engineered knee meniscus constructs.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892, USA.
| | | | | |
Collapse
|