1
|
Shoeibi S, Mahdipour E, Mohammadi S, Moohebati M, Ghayour-Mobarhan M. Treatment of atherosclerosis through transplantation of endothelial progenitor cells overexpressing dimethylarginine dimethylaminohydrolase (DDAH) in rabbits. Int J Cardiol 2021; 331:189-198. [PMID: 33535073 DOI: 10.1016/j.ijcard.2021.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial dysfunction is a key event in the development of vascular diseases, including atherosclerosis. Endothelial progenitor cells (EPCs) play an important role in vascular repair. Decreased dimethylarginine dimethylaminohydrolase (DDAH) activity is observed in several pathological conditions, and it is associated with an increased risk of vascular disease. We hypothesized that bone marrow-derived EPCs and combination therapy with DDAH2-EPCs could reduce plaque size and ameliorate endothelial dysfunction in an atherosclerosis rabbit model. METHOD Four groups of rabbits (n = 8 per group) were subjected to a hyperlipidemic diet for a month. After establishing the atherosclerosis model, rabbits received 4 × 106 EPC, EPCs expressing DDAH2, through femoral vein injection, or saline (the control group with basic food and the untreated group). One month after transplantation, plaque thickness, endothelial function, oxidative stress, and inflammatory mRNAs, DDAH, and eNOS function were assessed. RESULTS DDAH2-EPCs transplantation (p < 0.05) and EPCs transplantation (p < 0.05) were both associated with a reduction in plaque size compared to the control saline injection. The antiproliferative and antiatherogenic effects of EPCs were further enhanced by the overexpression of DDAH2 (p < 0.05, DDAH2-EPCs vs. EPCs). Furthermore, DDAH2-EPCs transplantation significantly increased endothelium integrity compared to the EPCs transplantation. CONCLUSION Transplantation of EPCs overexpressing DDAH2 may enhance the repair of injured endothelium by reducing inflammation and restoring endothelial function. Therefore, pCMV6-mediated DDAH2 gene-transfected EPCs are a potentially valuable tool for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Mohammadi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pyrrolidine dithiocarbamate ameliorates endothelial dysfunction in thoracic aorta of diabetic rats by preserving vascular DDAH activity. PLoS One 2017; 12:e0179908. [PMID: 28715444 PMCID: PMC5513417 DOI: 10.1371/journal.pone.0179908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/07/2017] [Indexed: 01/27/2023] Open
Abstract
Objective Endothelial dysfunction plays a pivotal role in the development of diabetic cardiovascular complications. Accumulation of endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) and inhibition of dimethylarginine dimethylaminohydrolase (DDAH) activity have been involved in diabetic endothelial dysfunction. This study was to investigate the effect of pyrrolidine dithiocarbamate (PDTC) on impairment of endothelium-dependent vasodilatation in diabetic rats and its potential mechanism. Methods Diabetic rats were induced by a single intraperitoneal injection of streptozotocin (60mg/kg), and PDTC (10mg/kg) was given in drinking water for 8 weeks. Blood glucose and serum ADMA concentrations were measured in experimental rats. Recombinant adenovirus encoding human DDAH2 gene were constructed and ex vivo transferred to isolated rat aortas. The maximal relaxation (Emax) and half maximal effective concentration (EC50) of aortic rings response to accumulative concentrations of acetylcholine and vascular DDAH activity were examined before and after gene transfection. Results Diabetic rats displayed significant elevations of blood glucose and serum ADMA levels compared to control group (P<0.01). Vascular DDAH activity and endothelium-dependent relaxation of aortas were inhibited, as expressed by the decreased Emax and increased EC50 in diabetic rats compared to control rats (P<0.01). Treatment with PDTC not only decreased blood glucose and serum ADMA concentration (P<0.01) but also restored vascular DDAH activity and endothelium-dependent relaxation, evidenced by the higher Emax and lower EC50 in PDTC-treated diabetic rats compared to untreated diabetic rats (P<0.01). Similar restoration of Emax, EC50 and DDAH activity were observed in diabetic aortas after DDAH2-gene transfection. Conclusions These results indicate that PDTC could ameliorate impairment of endothelium-dependent relaxation in diabetic rats. The underlying mechanisms might be related to preservation of vascular DDAH activity and consequent reduction of endogenous ADMA in endothelium via its antioxidant action. This study highlights the therapeutic potential of PDTC in impaired vasodilation and provides a new strategy for treatment of diabetic cardiovascular complications.
Collapse
|
3
|
Shoeibi S, Mohammadi S, Sadeghnia HR, Mahdipour E, Ghayour‐Mobarhan M. Determine exogenous human DDAH2 gene function in rabbit bone marrow–derived endothelial progenitor cells in vitro. Cell Biochem Funct 2017; 35:69-76. [DOI: 10.1002/cbf.3249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The in vitro amplification of endothelial progenitor cells (EPCs) is an important method because of its role in gene transferring and regenerative medicine. In this study, we isolated rabbit bone marrow–derived EPCs to further manipulation and overexpression of dimethylarginine dimethylaminohydrolase (DDAH) in EPCs. Isolated EPCs were cultured, expanded in endothelial basal medium. Morphology of EPCs and expression levels of surface markers detected using immunocytochemistry staining and through the use of flow cytometery. Endothelial progenitor cells were transfected with plasmid vectors expressing human DDAH2 (DDAH2‐EPCs). Three days after gene transfer, positive transfected‐EPCs proliferation and DDAH activity were assayed. We observed colonies conformation and endothelium‐like morphology gradually in the third week of culture. Characterization results revealed positive expression of EPC surface markers CD106, Flk‐1, vWF, and CD34 using few identification techniques. Overexpression of DDAH2 increased citrulline production after 96 hours of transfection, 235.34 ± 0.69 vs 95.26 ± 5.76 ng/mL; P = .023. These results suggest that cell population with EPC characteristics can be simply isolated from rabbit bone marrow and successfully engineered to overexpress exogenous gene. In this study, we offer a feasible method to isolate and identify EPCs from bone marrow. In addition, an efficient transfection with a plasmid vector (without risk of interference) can be constructed a hybrid structure with EPC and DDAH2 gene to examine their function in vitro.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of Medical Biotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shabnam Mohammadi
- Department of Basic Sciences, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour‐Mobarhan
- Cardiovascular Research Center, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Biochemistry of Nutrition Research Center, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
4
|
Lin Y, Feng M, Lu CW, Lei YP, He ZM, Xiong Y. Preservation of vascular DDAH activity contributes to the protection of captopril against endothelial dysfunction in hyperlipidemic rabbits. Eur J Pharmacol 2017; 798:43-48. [PMID: 28163022 DOI: 10.1016/j.ejphar.2017.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Endothelial dysfunction plays a pivotal role in the pathogenesis of atherosclerosis. Endogenous inhibitor of nitric oxide synthase (NOS) asymmetric dimethylarginine (ADMA) has been recognized as an independent risk factor of endothelial dysfunction and the biomarker of atherosclerosis. This study was to investigate whether endogenous ADMA and its metabolic enzyme dimethylarginine dimethylaminohydrolase (DDAH) were involved in mechanisms of captopril protection against endothelial dysfunction in high fat diet feeding rabbits. Half of model rabbits were treated with captopril (10mg/kg/d, i.g.) for 12w. Vascular morphology and serum lipid profiles were detected. Serum ADMA concentration were assayed by high performance liquid chromatography. Recombinant DDAH2 gene adenoviruses were ex vivo transferred to thoracic aortas of high fat diet feeding rabbits. Endothelium-dependent relaxation of aortas response to acetylcholine and DDAH activity were measured. Atherosclerosis was confirmed in high fat diet feeding rabbits by increased serum lipid profiles and morphologic changes of vascular wall. Serum ADMA levels were significantly increased in hyperlipidemic rabbits accompanied with impairment of endothelium-dependent relaxation and inhibition of DDAH activity in thoracic aortas. Captopril treatment not only decreased vascular intima thickening and serum ADMA concentration but also preserved vascular DDAH activity and endothelium-dependent relaxation in hyperlipidemic rabbits without influence on serum lipid profiles. Similar beneficial effects on endothelial function and DDAH activity could be achieved by DDAH2 gene transfection. These results indicated that captopril could protect against injuries of vascular morphology and endothelial function in hyperlipidemic rabbits, the mechanisms may be related to the preservation of DDAH activity and decrease of ADMA accumulation in vascular endothelium.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Pharmacology, Guangzhou Institute of Snake Venom Research, Guangzhou Medical University, Guangzhou 511436, Guangdong, PR China
| | - Mei Feng
- Department of Pharmacology, Guangzhou Institute of Snake Venom Research, Guangzhou Medical University, Guangzhou 511436, Guangdong, PR China
| | - Chang-Wu Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, Hunan, PR China
| | - Yan-Ping Lei
- Department of Pharmacology, Guangzhou Institute of Snake Venom Research, Guangzhou Medical University, Guangzhou 511436, Guangdong, PR China
| | - Zhi-Min He
- Department of Pharmacology, Cancer Research Institute, Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, Guangdong, PR China
| | - Yan Xiong
- Department of Pharmacology, Guangzhou Institute of Snake Venom Research, Guangzhou Medical University, Guangzhou 511436, Guangdong, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, Hunan, PR China.
| |
Collapse
|
5
|
Wu Y, Zhang JJ, Li TB, Liu WQ, Li LS, Luo XJ, Jiang JL, Ma QL, Yang ZC, Peng J. Phosphorylation of Nonmuscle Myosin Light Chain Promotes Endothelial Injury in Hyperlipidemic Rats Through a Mechanism Involving Downregulation of Dimethylarginine Dimethylaminohydrolase 2. J Cardiovasc Pharmacol Ther 2016; 21:536-548. [PMID: 26911182 DOI: 10.1177/1074248416634465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
Suppression of dimethylarginine dimethylaminohydrolase (DDAH) activation is related to endothelial dysfunction in hyperlipidemia, and nonmuscle myosin regulatory light chain (nmMLC20) has been show to exert transcriptional function in regulation of gene expression. This study aims to explore whether the suppression of DDAH activation promotes endothelial injury under the condition of hyperlipidemia and whether nmMLC20 can regulate DDAH expression in a phosphorylation-dependent manner. The rats were fed with high-fat diet for 8 weeks to establish a hyperlipidemic model, which showed an increase in plasma lipids and endothelial injury, accompanied by an elevation in myosin light chain kinase (MLCK) activity, phosphorylated nmMLC20 (p-nmMLC20) level, and asymmetric dimethylarginine (ADMA) content as well as a reduction in DDAH2 expression, DDAH activity, and nitric oxide (NO) content. Next, human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL; 100 μg/mL) for 24 hours to establish a cellular injury model in vitro. Consistent with the finding in vivo, ox-LDL induced HUVECs injury (apoptosis and necrosis) concomitant with an increase in MLCK activity, p-nmMLC20 level (in total or nuclear proteins), and ADMA content as well as a reduction in DDAH2 expression, DDAH activity, and NO content; these phenomena were attenuated by MLCK inhibitor. Either in hyperlipidemic rats or in ox-LDL-treated HUVECs, there was not significant change in DDAH1 expression. Based on these observations, we conclude that the suppression of DDAH2 expression might account for, at least partially, the vascular endothelial dysfunction in hyperlipidemia, and nmMLC20 plays a role in suppression of DDAH2 expression in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Yan Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie-Jie Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ting-Bo Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wei-Qi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lian-Sheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun-Lin Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Chun Yang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, Tsiamis E, Stefanadis C. Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther 2014; 144:253-267. [PMID: 24928320 DOI: 10.1016/j.pharmthera.2014.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
The vascular endothelium not only is a single monolayer of cells between the vessel lumen and the intimal wall, but also plays an important role by controlling vascular function and structure mainly via the production of nitric oxide (NO). The so called "cardiovascular risk factors" are associated with endothelial dysfunction, that reduces NO bioavailability, increases oxidative stress, and promotes inflammation contributing therefore to the development of atherosclerosis. The significant role of endothelial dysfunction in the development of atherosclerosis emphasizes the need for efficient therapeutic interventions. During the last years statins, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists, antioxidants, beta-blockers and insulin sensitizers have been evaluated for their ability to restore endothelial function (Briasoulis et al., 2012). As there is not a straightforward relationship between therapeutic interventions and improvement of endothelial function but rather a complicated interrelationship between multiple cellular and sub-cellular targets, research has been focused on the understanding of the underlying mechanisms. Moreover, the development of novel diagnostic invasive and non-invasive methods has allowed the early detection of endothelial dysfunction expanding the role of therapeutic interventions and our knowledge. In the current review we present the available data concerning the contribution of endothelial dysfunction to atherogenesis and review the methods that assess endothelial function with a view to understand the multiple targets of therapeutic interventions. Finally we focus on the classic and novel therapeutic approaches aiming to improve endothelial dysfunction and the underlying mechanisms.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece.
| | - Chryssa Simopoulou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Nikos Papageorgiou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - George Hatzis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Eleftherios Tsiamis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | | |
Collapse
|
7
|
Verbeke L, Trebicka J, Laleman W. Reply: To PMID 24259407. Hepatology 2014; 60:1799-800. [PMID: 24623183 DOI: 10.1002/hep.27125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 12/07/2022]
Affiliation(s)
- Len Verbeke
- Department of Liver and Biliopancreatic Disorders, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
8
|
Siamwala JH, Dias PM, Majumder S, Joshi MK, Sinkar VP, Banerjee G, Chatterjee S. l-Theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation. J Nutr Biochem 2013; 24:595-605. [DOI: 10.1016/j.jnutbio.2012.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
9
|
Altmann KS, Havemeyer A, Beitz E, Clement B. Dimethylarginine-dimethylaminohydrolase-2 (DDAH-2) does not metabolize methylarginines. Chembiochem 2012; 13:2599-604. [PMID: 23125090 DOI: 10.1002/cbic.201200499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 01/18/2023]
Abstract
Free endogenous methylarginines, N(ω)-monomethyl-L-arginine (L-NMMA) and N(ω),N(ω')-dimethyl-L-arginine (ADMA), inhibit NO synthases (NOSs) and are metabolized by dimethylargininedimethylaminohydrolase (DDAH). A postulated metabolism has been shown several times for DDAH-1, but the involvement of DDAH-2 in the degradation of ADMA and L-NMMA is still a matter of debate. Determination of the isoform-specific DDAH protein expression profiles in various porcine tissue types shows a correlation of DDAH activity only with DDAH-1 levels. DDAH activity (measured as L-citrulline formation from the conversion of methylarginines and alternative DDAH substrates) was detected in DDAH-1-rich porcine tissue types, that is, kidney, liver, and brain, but not in DDAH-2-rich porcine fractions, that is, spleen and thyroid. Furthermore, several ex vivo studies showed DDAH activity to be important for L-citrulline formation in porcine tissue and indicated the absence of an endogenous DDAH inhibitor in porcine tissue. This study provides new insights into tissue distributions as well as substrate selectivity for both DDAH isoforms. Although DDAH-1 is known to metabolize the endogenous NOS inhibitors L-NMMA and ADMA, a physiological function for DDAH-2 has yet to be determined. Hence, determining DDAH activity by methylarginine conversion is not suitable for analyzing isoform selectivity of DDAH-1 inhibitors as postulated.
Collapse
Affiliation(s)
- Karin S Altmann
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-Universität Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
10
|
Tuygun AK, Tuygun A, Yurtseven N, Şensöz Y, Günay R, Keser M, Tuygun UH, Ketenci B, Şahin S, Yekeler I. Asymmetric Dimethylarginine Levels in Buerger’s Disease. Ann Vasc Surg 2011; 25:547-54. [DOI: 10.1016/j.avsg.2010.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
|
11
|
Bauer MC, O'Connell DJ, Maj M, Wagner L, Cahill DJ, Linse S. Identification of a high-affinity network of secretagogin-binding proteins involved in vesicle secretion. MOLECULAR BIOSYSTEMS 2011; 7:2196-204. [PMID: 21528130 DOI: 10.1039/c0mb00349b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Secretagogin is a hexa EF-hand Ca(2+)-binding protein expressed in neuroendocrine, pancreatic endocrine and retinal cells. The protein has been noted for its expression in specific neuronal subtypes in the support of hierarchical organizing principles in the mammalian brain. Secretagogin has previously been found to interact with SNAP25 involved in Ca(2+)-induced exocytosis. Here, the cellular interaction network of secretagogin has been expanded with nine proteins: SNAP-23, DOC2alpha, ARFGAP2, rootletin, KIF5B, β-tubulin, DDAH-2, ATP-synthase and myeloid leukemia factor 2, based on screening of a high content protein array and validation and quantification of binding with surface plasmon resonance and GST pulldown assays. All targets have association rate constants in the range 10(4)-10(6) M(-1) s(-1), dissociation rate constants in the range 10(-3)-10(-5) s(-1) and equilibrium dissociation constants in the 100 pM to 10 nM range. The novel target SNAP23 is an essential component of the high affinity receptor for the general membrane fusion machinery and an important regulator of transport vesicle docking and fusion. Complementary roles in vesicle trafficking are known for ARFGAP2 and DOC2alpha in regulating fusion of vesicles to membranes, kinesin 5B and tubulin for transport of vesicles in the cell, while rootletin builds up the rootlet believed to function as a scaffold for vesicles. The identification of a discrete network of interacting proteins that mediate secretion and vesicle trafficking suggests a regulatory role for secretagogin in these processes.
Collapse
Affiliation(s)
- Mikael C Bauer
- Departments of Biophysical Chemistry and Biochemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Leiper J, Nandi M. The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nat Rev Drug Discov 2011; 10:277-91. [PMID: 21455237 DOI: 10.1038/nrd3358] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Asymmetric dimethylarginine (ADMA)--a naturally occurring amino acid that is a product of protein breakdown--is released into the cytoplasm following the post-translational methylation of arginine residues within proteins and the subsequent proteolysis of these arginine-methylated proteins. ADMA inhibits all three isoforms of nitric oxide synthase and therefore has the potential to produce diverse biological effects, particularly in the cardiovascular system. In addition to its renal clearance, endogenously produced ADMA is metabolized to L-citrulline and dimethylamine by the dimethylarginine dimethylaminohydrolase (DDAH) enzymes. Pharmacological modification of DDAH has therefore been proposed as a mechanism for manipulating endogenous ADMA concentrations and regulating the production of nitric oxide in situations where alterations in nitric oxide signalling have been shown to contribute to pathophysiology. This review describes the biology of ADMA and the potential therapeutic utility of manipulating DDAH activity.
Collapse
Affiliation(s)
- James Leiper
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W120NN, UK.
| | | |
Collapse
|
13
|
Wolf C, Lorenzen JM, Stein S, Tsikas D, Störk S, Weidemann F, Ertl G, Anker SD, Bauersachs J, Thum T. Urinary asymmetric dimethylarginine (ADMA) is a predictor of mortality risk in patients with coronary artery disease. Int J Cardiol 2010; 156:289-94. [PMID: 21159392 DOI: 10.1016/j.ijcard.2010.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA) causes endothelial dysfunction by inhibiting endothelial nitric oxide synthase. Elevated ADMA plasma levels comprise a major risk factor for coronary artery disease (CAD) and predict coronary events. ADMA is metabolised by dimethylarginine dimethylaminohydrolases (DDAHs) to citrulline and dimethylamine (DMA) and is partly excreted unchanged via the kidney. Unlike circulating ADMA, very little is known about urinary ADMA and DMA concentrations and a predictive value in CAD patients. METHODS AND RESULTS Seventy-seven consecutive patients admitted to hospital because of stable angina (mean age 65.9 ± 1.1 years) were enrolled and followed-up for 28 [1-28] months. All patients underwent cardiac catheterization and were divided into patients with no CAD or 1-3-vessel disease (CAD 1-3). Urinary ADMA levels (corrected for creatinine excretion) were lower in severely diseased patients (CAD 3, p<0.05) whereas the DMA/ADMA ratio was significantly increased (p<0.05 CAD 3 vs. CAD 0). In a stepwise multivariate regression analysis the ADMA/creatinine ratio correlated with cardiac function (r=0.5, p<0.0001) and LDL concentrations (r=0.27, p=0.01). A total of 12 patients died during follow-up, 9 due to cardiovascular causes. Importantly, low urinary ADMA concentrations predicted future cardiovascular death (p<0.01) and overall death (p<0.05). CONCLUSION In CAD patients low urinary ADMA concentrations are associated with impaired cardiac function and predict cardiovascular as well as all-cause mortality. The potential clinical value of urinary ADMA as a new biomarker for the diagnosis of CAD or cardiac dysfunction is intriguing, but warrants further studies.
Collapse
Affiliation(s)
- Christian Wolf
- Institut für Molekulare und Translationale Therapiestrategien (IMTTS), Medizinische Hochschule, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|