1
|
Al-Jaf S, Soliman AY, El-Yazbi AF, Abd-Elrahman KS. Unveiling the Interplay: Neurovascular Coupling, Astrocytes and G Protein-Coupled Receptors in Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:271-285. [PMID: 39974631 PMCID: PMC11833731 DOI: 10.1021/acsptsci.4c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
Astrocytes are a type of glial cell that are involved in actively modulating synaptic plasticity, neurotransmitter homeostasis, and neuroinflammatory responses. More importantly, they coordinate neuronal activity and cerebral blood flow (CBF) in what is known as neurovascular coupling (NVC). NVC is an essential mechanism that maintains the high energy demand the brain requires by supplying continuous and rapid supply of oxygen and nutrients through CBF. Impairment in NVC is one of the key events that triggers a spiral of occurrences that lead to the clinical advancement of Alzheimer's disease (AD). It is yet to be determined what the molecular manifestations of NVC impairment relate to; nonetheless, it is believed that alterations in G protein-coupled receptors (GPCRs) are responsible for exacerbating these effects. In this review, we summarize the current evidence supporting the involvement of GPCRs on astrocytes in NVC and the pathophysiology of AD. Additionally, we propose potential research directions to further elucidate the underlying mechanisms and evaluate the feasibility of targeting specific GPCRs as a therapeutic strategy to correct brain blood flow and memory impairments associated with AD.
Collapse
Affiliation(s)
- Sanarya Al-Jaf
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alaa Y. Soliman
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed F. El-Yazbi
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Khaled S. Abd-Elrahman
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
AlQot HE, Rylett RJ. Primate-specific 82-kDa choline acetyltransferase attenuates progression of Alzheimer's disease-like pathology in the APP NL-G-F knock-in mouse model. Sci Rep 2024; 14:27614. [PMID: 39528509 PMCID: PMC11555257 DOI: 10.1038/s41598-024-78751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloidosis, neuroinflammation, cholinergic dysfunction and cognitive impairment. In AD, the cholinergic neuronal marker choline acetyltransferase (ChAT) is reduced and the primate-specific nuclear isoform, 82-kDa ChAT, is mislocalized to cytoplasm. Cell-based studies suggest a role for 82-kDa ChAT in regulating expression of AD-related genes with potential reductions in β-amyloid (Aβ) levels. To study this further, we crossed transgenic mice expressing human 82-kDa ChAT with the AD mouse model APPNL-G-F and used molecular techniques and neurobehavioral tests to study the impact of 82-kDa ChAT on AD pathology. These mice had altered expression of genes linked to Aβ clearance and inflammation, and reduced cognitive decline, amyloidosis and gliosis. These effects were inversely related to age and Aβ plaque load and correlated best with 82-kDa ChAT localized to nuclei of neurons. The study suggests a role for 82-kDa ChAT in decreasing AD-like pathology.
Collapse
Affiliation(s)
- Hadir E AlQot
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Rebecca Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada.
| |
Collapse
|
3
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
4
|
Chodari L, Ghasemi M, Mehranfard N. Alterations in expression of α1-adrenergic receptors possibly are involved in prevention of age-associated apoptosis in rat hippocampus by treadmill exercise. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:707-713. [PMID: 37428454 DOI: 10.1515/jcim-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Exercise is assumed to attenuate age-related neuronal apoptosis, but the detailed mechanism(s) is not fully understood. α1-Adrenergic receptors (ARs) can either trigger or suppress apoptosis, therefore, here we determined the impact of treadmill exercise on the expression of the apoptosis regulatory proteins as well as α1-AR subtypes α1A- and α1B-ARs, in order to elucidate a possible association between apoptosis and the hippocampal expression of α1-ARs in aged male rats. METHODS Twenty-one male Wistar rats were divided into 3 groups (n=7): young control, aged sedentary, and aged + exercise. Western blot for α1A- and α1B-ARs as well as pro-(Bax and p53) and anti-apoptotic (Bcl2) proteins was conducted. An 8-week regular moderate-intensity treadmill exercise intervention was carried out in exercise group. RESULTS In aged rats, α1A-AR expression in the hippocampus was significantly increased, and exercise markedly prevented this event. While α1B-AR expression was no altered with aging, a marked reduction in α1B-AR level was detected in exercise group when compared to aged group. Furthermore, pro-apoptotic protein levels of Bax and p53 were upregulated and anti-apoptotic protein Bcl2 was downregulated in the aging hippocampus, but could be reversed by treadmill exercise. In the present research, exercise-induced reduction in α1A- and α1B-ARs was associated with an obvious downregulation of Bax/Bcl2 ratio in aged rats, suggesting that exercise may inhibit apoptosis through regulating α1-ARs, particularly α1A-AR. CONCLUSIONS Our study suggests that manipulations attenuating α1-AR activity, including nonselective α1-adrenergic antagonists, may protect against hippocampal neurodegeneration in aging brains.
Collapse
Affiliation(s)
- Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
6
|
B Szabo A, Cattaud V, Bezzina C, Dard RF, Sayegh F, Gauzin S, Lejards C, Valton L, Rampon C, Verret L, Dahan L. Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer's disease - the influence of sleep and noradrenergic transmission. Neurobiol Aging 2023; 123:35-48. [PMID: 36634385 DOI: 10.1016/j.neurobiolaging.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.
Collapse
Affiliation(s)
- Anna B Szabo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France; Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France.
| | - Vanessa Cattaud
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Bezzina
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin F Dard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fares Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sebastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France; Department of Neurology, Hôpital Pierre Paul Riquet - Purpan, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
7
|
Yu ZY, Yi X, Wang YR, Zeng GH, Tan CR, Cheng Y, Sun PY, Liu ZH, Wang YJ, Liu YH. Inhibiting α1-adrenergic receptor signaling pathway ameliorates AD-type pathologies and behavioral deficits in APPswe/PS1 mouse model. J Neurochem 2022; 161:293-307. [PMID: 35244207 DOI: 10.1111/jnc.15603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/25/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xu Yi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Pu-Yang Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Hao Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer's disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 2021; 152:105274. [PMID: 33484828 DOI: 10.1016/j.nbd.2021.105274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
It has been reported that hyperexcitability occurs in a subset of patients with Alzheimer's disease (AD) and hyperexcitability could contribute to the disease. Several studies have suggested that the hippocampal dentate gyrus (DG) may be an important area where hyperexcitability occurs. Therefore, we tested the hypothesis that the principal DG cell type, granule cells (GCs), would exhibit changes at the single-cell level which would be consistent with hyperexcitability and might help explain it. We used the Tg2576 mouse, where it has been shown that hyperexcitability is robust at 2-3 months of age. GCs from 2 to 3-month-old Tg2576 mice were compared to age-matched wild type (WT) mice. Effects of muscarinic cholinergic antagonism were tested because previously we found that Tg2576 mice exhibited hyperexcitability in vivo that was reduced by the muscarinic cholinergic antagonist atropine, counter to the dogma that in AD one needs to boost cholinergic function. The results showed that GCs from Tg2576 mice exhibited increased frequency of spontaneous excitatory postsynaptic potentials/currents (sEPSP/Cs) and reduced frequency of spontaneous inhibitory synaptic events (sIPSCs) relative to WT, increasing the excitation:inhibition (E:I) ratio. There was an inward NMDA receptor-dependent current that we defined here as a novel synaptic current (nsC) in Tg2576 mice because it was very weak in WT mice. Intrinsic properties were distinct in Tg2576 GCs relative to WT. In summary, GCs of the Tg2576 mouse exhibit early electrophysiological alterations that are consistent with increased synaptic excitation, reduced inhibition, and muscarinic cholinergic dysregulation. The data support previous suggestions that the DG contributes to hyperexcitability and there is cholinergic dysfunction early in life in AD mouse models.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Helen E Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
9
|
Shekari A, Fahnestock M. Cholinergic neurodegeneration in Alzheimer disease mouse models. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:191-209. [PMID: 34266592 DOI: 10.1016/b978-0-12-819973-2.00013-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cholinergic signaling is critical for cognitive function. The basal forebrain is the major cholinergic output of the central nervous system. Degeneration of basal forebrain cholinergic neurons is a hallmark of Alzheimer's disease (AD). Mouse models are invaluable tools in disease research and have been used to study AD for over 25 years. However, animal models of AD vary greatly with respect to the degree of cholinergic degeneration observed. The following review will outline the most influential animal models of AD with an emphasis on the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Ojiakor O, Rylett R. Modulation of sodium-coupled choline transporter CHT function in health and disease. Neurochem Int 2020; 140:104810. [DOI: 10.1016/j.neuint.2020.104810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
|
11
|
Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker GA, Rullmann M, Patt M, Luthardt J, Wagenknecht G, Hoepping A, Smits R, Franke A, Sattler B, Tiepolt S, Fischer S, Deuther-Conrad W, Hegerl U, Barthel H, Schönknecht P, Brust P. Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer's dementia. Brain 2019; 141:1840-1854. [PMID: 29672680 PMCID: PMC5972585 DOI: 10.1093/brain/awy099] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
In early Alzheimer's dementia, there is a need for PET biomarkers of disease progression with close associations to cognitive dysfunction that may aid to predict further cognitive decline and neurodegeneration. Amyloid biomarkers are not suitable for that purpose. The α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) are widely abundant in the human brain. As neuromodulators they play an important role in cognitive functions such as attention, learning and memory. Post-mortem studies reported lower expression of α4β2-nAChRs in more advanced Alzheimer's dementia. However, there is ongoing controversy whether α4β2-nAChRs are reduced in early Alzheimer's dementia. Therefore, using the recently developed α4β2-nAChR-specific radioligand (-)-18F-flubatine and PET, we aimed to quantify the α4β2-nAChR availability and its relationship to specific cognitive dysfunction in mild Alzheimer's dementia. Fourteen non-smoking patients with mild Alzheimer's dementia, drug-naïve for cholinesterase therapy, were compared with 15 non-smoking healthy controls matched for age, sex and education by applying (-)-18F-flubatine PET together with a neuropsychological test battery. The one-tissue compartment model and Logan plot method with arterial input function were used for kinetic analysis to obtain the total distribution volume (VT) as the primary, and the specific binding part of the distribution volume (VS) as the secondary quantitative outcome measure of α4β2-nAChR availability. VS was determined by using a pseudo-reference region. Correlations between VT within relevant brain regions and Z-scores of five cognitive functions (episodic memory, executive function/working memory, attention, language, visuospatial function) were calculated. VT (and VS) were applied for between-group comparisons. Volume of interest and statistical parametric mapping analyses were carried out. Analyses revealed that in patients with mild Alzheimer's dementia compared to healthy controls, there was significantly lower VT, especially within the hippocampus, fronto-temporal cortices, and basal forebrain, which was similar to comparisons of VS. VT decline in Alzheimer's dementia was associated with distinct domains of impaired cognitive functioning, especially episodic memory and executive function/working memory. Using (-)-18F-flubatine PET in patients with mild Alzheimer's dementia, we show for the first time a cholinergic α4β2-nAChR deficiency mainly present within the basal forebrain-cortical and septohippocampal cholinergic projections and a relationship between lower α4β2-nAChR availability and impairment of distinct cognitive domains, notably episodic memory and executive function/working memory. This shows the potential of (-)-18F-flubatine as PET biomarker of cholinergic α4β2-nAChR dysfunction and specific cognitive decline. Thus, if validated by longitudinal PET studies, (-)-18F-flubatine might become a PET biomarker of progression of neurodegeneration in Alzheimer's dementia.
Collapse
Affiliation(s)
- Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Gräf
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany.,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Stephan Wilke
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Gudrun Wagenknecht
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA-2), Forschungszentrum Jülich, Jülich, Germany
| | | | - Rene Smits
- ABX Advanced Biochemical Compounds GmbH, Radeberg, Germany
| | - Annegret Franke
- Centre for Clinical Trials Leipzig, University of Leipzig, Leipzig, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Alhibshi AH, Odawara A, Suzuki I. Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. Biochem Biophys Rep 2019; 17:122-126. [PMID: 30623116 PMCID: PMC6317145 DOI: 10.1016/j.bbrep.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The natural antioxidant Thymoquinone (TQ) is the most abundant ingredient in the curative plant Nigella sativa seed's oil. An extensive number of studies have revealed that TQ is the most active and most responsible component for the plant's pharmacological properties. It has been documented in several studies that TQ has a wide range of protective activities and many neuropharmacological attributes. Amyloid beta (Aβ) is the major role player peptide in the progression of Alzheimer's disease (AD). Our current study has been implemented to explore the protective possibilities of TQ on Aβ1–42 -induced neurotoxicity. To test TQ's effect we used cultured human induced pluripotent stem cell (hiPSC)-derived cholinergic neurons. The obtained results showed that Aβ1–42 caused cell death and apoptosis, which was efficiently attenuated by the co-treatment of TQ. Moreover, TQ restored the decrease in the intracellular antioxidant enzyme glutathione levels and inhibited the generation of reactive oxygen species induced by Aβ1–42. Furthermore, using the fluorescent dye FM1–43 we demonstrated that TQ was able to reduce synaptic toxicity caused by Aβ1–42. Thus, the findings of our study suggest that TQ holds a neuroprotective potential and could be a promising therapeutic agent to reduce the risk of developing AD and other disorders of the central nervous system. TQ protected hiPSC-derived cholinergic neurons against Aβ1–42 induced apoptosis. TQ restored reduced Glutathione level in hiPSC-derived cholinergic neurons. TQ protected hiPSC-derived cholinergic neurons against ROS generation induced by Aβ1–42. TQ attenuated Aβ1–42 – induced synaptic toxicity.
Collapse
Affiliation(s)
- A H Alhibshi
- Department of Neuroscience, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441, Saudi Arabia
| | - A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 192-0982, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 192-0982, Japan
| |
Collapse
|
13
|
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, Amadoro G. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Front Cell Neurosci 2018; 12:487. [PMID: 30618634 PMCID: PMC6300588 DOI: 10.3389/fncel.2018.00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
Collapse
Affiliation(s)
| | | | - Cristina Zona
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Borreca
- Institute of Cellular Biology and Neurobiology – National Research Council, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology – National Research Council, Rome, Italy
| |
Collapse
|
14
|
Belloy ME, Shah D, Abbas A, Kashyap A, Roßner S, Van der Linden A, Keilholz SD, Keliris GA, Verhoye M. Quasi-Periodic Patterns of Neural Activity improve Classification of Alzheimer's Disease in Mice. Sci Rep 2018; 8:10024. [PMID: 29968786 PMCID: PMC6030071 DOI: 10.1038/s41598-018-28237-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Resting state (rs)fMRI allows measurement of brain functional connectivity and has identified default mode (DMN) and task positive (TPN) network disruptions as promising biomarkers for Alzheimer's disease (AD). Quasi-periodic patterns (QPPs) of neural activity describe recurring spatiotemporal patterns that display DMN with TPN anti-correlation. We reasoned that QPPs could provide new insights into AD network dysfunction and improve disease diagnosis. We therefore used rsfMRI to investigate QPPs in old TG2576 mice, a model of amyloidosis, and age-matched controls. Multiple QPPs were determined and compared across groups. Using linear regression, we removed their contribution from the functional scans and assessed how they reflected functional connectivity. Lastly, we used elastic net regression to determine if QPPs improved disease classification. We present three prominent findings: (1) Compared to controls, TG2576 mice were marked by opposing neural dynamics in which DMN areas were anti-correlated and displayed diminished anti-correlation with the TPN. (2) QPPs reflected lowered DMN functional connectivity in TG2576 mice and revealed significantly decreased DMN-TPN anti-correlations. (3) QPP-derived measures significantly improved classification compared to conventional functional connectivity measures. Altogether, our findings provide insight into the neural dynamics of aberrant network connectivity in AD and indicate that QPPs might serve as a translational diagnostic tool.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
- Department of Biomedical Engineering, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA.
| | - Disha Shah
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anzar Abbas
- Department of Neuroscience, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Amrit Kashyap
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19. Haus C, 04103, Leipzig, Germany
| | - Annemie Van der Linden
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Shella D Keilholz
- Department of Biomedical Engineering, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
- Department of Neuroscience, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Georgios A Keliris
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| |
Collapse
|
15
|
Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease. Brain Res 2017; 1702:3-11. [PMID: 29102776 DOI: 10.1016/j.brainres.2017.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022]
Abstract
Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome.
Collapse
|
16
|
Thiagarajan V, Madhurantakam S, Sethuraman S, Balaguru Rayappan JB, Maheswari Krishnan U. Nano interfaced biosensor for detection of choline in triple negative breast cancer cells. J Colloid Interface Sci 2016; 462:334-40. [DOI: 10.1016/j.jcis.2015.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
17
|
Fernández-Fernández D, Dorner-Ciossek C, Kroker KS, Rosenbrock H. Age-related synaptic dysfunction in Tg2576 mice starts as a failure in early long-term potentiation which develops into a full abolishment of late long-term potentiation. J Neurosci Res 2015; 94:266-81. [PMID: 26629777 DOI: 10.1002/jnr.23701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 11/12/2022]
Abstract
Tg2576 mice are widely used to study amyloid-dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long-term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency. The present study uses hippocampal slices from 3-, 10-, and 15-month-old wild-type (WT) and Tg2576 mice to evaluate synaptic function in each group, including experiments to investigate basal synaptic transmission, short- and long-term plasticity by inducing paired-pulse facilitation, and both early and late LTP. We show that synaptic function remains intact in hippocampal slices from Tg2576 mice at 3 months of age. However, both early and late LTP decline progressively during aging in these mice. This deterioration of synaptic plasticity starts affecting early LTP, ultimately leading to the abolishment of both forms of LTP in 15-month-old animals. In comparison, WT littermates display normal synaptic parameters during aging. Additional pharmacological investigation into the involvement of NMDA receptors and L-type voltage-gated calcium channels in LTP suggests a distinct mechanism of induction among age groups, demonstrating that both early and late LTP are differentially affected by these channels in Tg2576 mice during aging.
Collapse
Affiliation(s)
- Diego Fernández-Fernández
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Cornelia Dorner-Ciossek
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Katja S Kroker
- Deptartment of Drug Discovery Support, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Holger Rosenbrock
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| |
Collapse
|
18
|
Kristofikova Z, Ricny J, Sirova J, Ripova D, Lubitz I, Schnaider-Beeri M. Differences Between Tg2576 and Wild Type Mice in the NMDA Receptor-Nitric Oxide Pathway After Prolonged Application of a Diet High in Advanced Glycation End Products. Neurochem Res 2015; 40:1709-18. [PMID: 26189181 DOI: 10.1007/s11064-015-1654-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
It has been suggested that advanced glycation end (AGE) products, via cognate receptor activation, are implicated in several diseases, including Alzheimer's disease. The NMDA receptor-nitric oxide pathway appears to be influenced by AGE products and involved in the pathogenesis of this type of dementia. In this study, C57BL/6J (WT) and transgenic (Tg2576) mice expressing human mutant amyloid precursor protein were kept on prolonged (8 months) diets containing regular or high amounts of AGE products. After the decapitation of 11-months old mice, brain tissue analyses were performed [expressions of the NR1, NR2A and NR2B subunits of NMDA receptors, activities of neuronal, endothelial and inducible nitric oxide synthase (nNOS, eNOS and iNOS)]. Moreover, levels of malondialdehyde and of human amyloid β 1-42 were estimated. We found increased activity of nNOS in WT mice maintained on a high compared to regular AGE diet; however, no similar differences were found in Tg2576 mice. In addition, we observed an increase in NR1 expression in Tg2576 compared to WT mice, both kept on a diet high in AGE products. Correlation analyses performed on mice kept on the regular AGE diet supported close links between particular subunits (NR2A-NR2B, in WT as well as in Tg2576 mice), between subunits and synthase (NR2A/NR2B-nNOS, only in WT mice) or between particular synthases (nNOS-iNOS, only in WT). Correlation analysis also revealed differences between WT mice kept on both diets (changed correlations between NR2A/NR2B-nNOS, between nNOS-eNOS and between eNOS-iNOS). Malondialdehyde levels were increased in both Tg2576 groups when compared to the corresponding WT mice, but no effects of the diets were observed. Analogously, no significant effects of diets were found in the levels of soluble or insoluble amyloid β 1-42 in Tg2576 mice. Our results demonstrate that prolonged ingestion of AGE products can influence the NMDA receptor-nitric oxide pathway in the brain and that only WT mice, not Tg2576 mice, are able to maintain homeostasis among subunits and synthases or among particular synthases. The prolonged application of AGE products enhanced differences between 11-months old Tg2576 and WT mice regarding this pathway. Observed differences in the pathway between WT mice kept on regular or high AGE diets suggest that the prolonged application of a diet low in AGE products could have beneficial effects in older or diabetic people and perhaps also in people with Alzheimer's disease.
Collapse
Affiliation(s)
- Zdena Kristofikova
- Alzheimer's Disease Center, National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic,
| | | | | | | | | | | |
Collapse
|
19
|
Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer's disease. Neural Plast 2015; 2015:781731. [PMID: 25922768 PMCID: PMC4398951 DOI: 10.1155/2015/781731] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling.
Collapse
|
20
|
Barthel H, Seibyl J, Sabri O. The role of positron emission tomography imaging in understanding Alzheimer’s disease. Expert Rev Neurother 2015; 15:395-406. [DOI: 10.1586/14737175.2015.1023296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8:167. [PMID: 24987334 PMCID: PMC4070063 DOI: 10.3389/fncel.2014.00167] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.
Collapse
Affiliation(s)
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| | - Javier Yajeya
- Department of Physiology and Pharmacology, University of Salamanca Salamanca, Spain
| | - Juan D Navarro-Lopez
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
22
|
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014; 5:88. [PMID: 24795750 PMCID: PMC4005958 DOI: 10.3389/fgene.2014.00088] [Citation(s) in RCA: 523] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023] Open
Abstract
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Neurology, University of Kentucky Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Anatomy and Neurobiology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
23
|
Nisticò R, Ferraina C, Marconi V, Blandini F, Negri L, Egebjerg J, Feligioni M. Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease. Front Pharmacol 2014; 5:63. [PMID: 24778618 PMCID: PMC3985012 DOI: 10.3389/fphar.2014.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a complex disorder that affects the central nervous system causing a severe neurodegeneration. This pathology affects an increasing number of people worldwide due to the overall aging of the human population. In recent years SUMO protein modification has emerged as a possible cellular mechanism involved in AD. Some of the proteins engaged in the physiopathological process of AD, like BACE1, GSK3-β tau, AβPP, and JNK, are in fact subject to protein SUMO modifications or interactions. Here, we have investigated the SUMO/deSUMOylation balance and SUMO-related proteins during the onset and progression of the pathology in the Tg2576 mouse model of AD. We examined four age-stages (1.5, 3, 6, 17 months old) and observed shows an increase in SUMO-1 protein conjugation at 3 and 6 months in transgenic mice with respect to WT in both cortex and hippocampus. Interestingly this is paralleled by increased expression levels of Ubc9 and SENP1 in both brain regions. At 6 months of age also the SUMO-1 mRNA resulted augmented. SUMO-2-ylation was surprisingly decreased in old transgenic mice and was unaltered in the other time windows. The fact that alterations in SUMO/deSUMOylation equilibrium occur from the early phases of AD suggests that global posttranslational modifications may play an important role in the mechanisms underlying disease pathogenesis, thus providing potential targets for pharmacological interventions.
Collapse
Affiliation(s)
- Robert Nisticò
- IRCCS Fondazione Santa Lucia Rome, Italy ; Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Caterina Ferraina
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation Rome, Italy
| | - Veronica Marconi
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute Pavia, Italy
| | - Lucia Negri
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Jan Egebjerg
- Neuroscience Drug Discovery DK H. Lundbeck A/S, Valby, Denmark
| | - Marco Feligioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation Rome, Italy
| |
Collapse
|
24
|
Krezymon A, Richetin K, Halley H, Roybon L, Lassalle JM, Francès B, Verret L, Rampon C. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer's disease. PLoS One 2013; 8:e76497. [PMID: 24086745 PMCID: PMC3785457 DOI: 10.1371/journal.pone.0076497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Alice Krezymon
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Kevin Richetin
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Hélène Halley
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Laurent Roybon
- Multi Park, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Jean-Michel Lassalle
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Bernard Francès
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Laure Verret
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Claire Rampon
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| |
Collapse
|
25
|
Amyloid Beta peptides differentially affect hippocampal theta rhythms in vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:328140. [PMID: 23878547 PMCID: PMC3708430 DOI: 10.1155/2013/328140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 12/27/2022]
Abstract
Soluble amyloid beta peptide (A β ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble A β alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different A β peptides, we also compared Aβ 25-35 and Aβ 1-42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μ M). We found that Aβ 25-35 reduces, with less potency than Aβ 1-42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ 25-35 but was reduced by Aβ 1-42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.
Collapse
|
26
|
Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, Dang V, Sanchez MM, De Miguel Z, Ashford JW, Salehi A. Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care. Neurosci Biobehav Rev 2013; 37:1363-79. [PMID: 23707776 DOI: 10.1016/j.neubiorev.2013.05.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/23/2023]
Abstract
Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.
Collapse
Affiliation(s)
- Ludwig Trillo
- Department of Physiology, School of Medicine, National University of San Agustin, Arequipa, Peru
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Prazosin, an α1-adrenoceptor antagonist, prevents memory deterioration in the APP23 transgenic mouse model of Alzheimer's disease. Neurobiol Aging 2013; 34:1105-15. [DOI: 10.1016/j.neurobiolaging.2012.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 01/16/2023]
|
28
|
Giuliani A, Beggiato S, Baldassarro VA, Mangano C, Giardino L, Imbimbo BP, Antonelli T, Calzà L, Ferraro L. CHF5074 restores visual memory ability and pre-synaptic cortical acetylcholine release in pre-plaque Tg2576 mice. J Neurochem 2013; 124:613-20. [PMID: 23278303 DOI: 10.1111/jnc.12136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/23/2012] [Accepted: 12/24/2012] [Indexed: 12/11/2022]
Abstract
CHF5074, a new microglial modulator, attenuates memory deficit in Alzheimer's disease transgenic mice. In this study, the effect of an acute or subacute CHF5074 treatment on in vivo novel object recognition test and on [³H]Acetylcholine (ACh) and GABA release in pre-plaque (7-month-old) Tg2576 mice have been compared with those induced by the γ-secretase inhibitor LY450139 (semagacestat). Vehicle-treated Tg2576 mice displayed an impairment of recognition memory compared with wild-type animals. This impairment was recovered in transgenic animals acutely treated with CHF5074 (30 mg/kg), while LY450139 (1, 3, 10 mg/kg) was ineffective. In frontal cortex synaptosomes from vehicle-treated Tg2576 mice, K⁺-evoked [³H]ACh release was lower than that measured in wild-type mice. This reduction was absent in transgenic animals subacutely treated with CHF5074 (30 mg/kg daily for 8 days), while it was slightly, not significantly, amplified by LY450139 (3 mg/kg daily for 8 days). There were no differences between the groups on spontaneous [³H]ACh release as well as spontaneous and K⁺-evoked GABA release. These results suggest that CHF5074 has beneficial effects on visual memory and cortical cholinergic dysfunctions in pre-plaque Tg2576 mice. Together with previous findings, these data suggest that CHF5074 could be a possible candidate for early Alzheimer's disease therapeutic regimens.
Collapse
Affiliation(s)
- Alessandro Giuliani
- Department of Veterinary Medicine and Health Science, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Accelerating the electron transfer of choline oxidase using ionic-liquid/NH2-MWCNTs nano-composite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-011-0044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Indirect electrocatalytic determination of choline by monitoring hydrogen peroxide at the choline oxidase-prussian blue modified iron phosphate nanostructures. Biosens Bioelectron 2012; 31:244-50. [DOI: 10.1016/j.bios.2011.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 11/22/2022]
|
31
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Thiamine levels and the activity of thiamine-dependent enzymes are reduced in the brains and peripheral tissues of patients with AD. Genetic studies have provided the opportunity to determine what proteins link thiamine to AD pathology (ie, transketolase, apolipoprotein E, α-1-antitrypsin, pyruvate dehydrogenase complex, p53, glycogen synthetase kinase-3β, c-Fos gene, the Sp1 promoter gene, and the poly(ADP-ribosyl) polymerase-1 gene). We reviewed the association between histopathogenesis and neurotransmitters to understand the relationship between thiamine and AD pathology. Oral thiamine trials have been shown to improve the cognitive function of patients with AD; however, absorption of thiamine is poor in elderly individuals. In the early stage of thiamine-deficient encephalopathy (Wernicke's encephalopathy), however, parental thiamine has been used successfully. Therefore, further studies are needed to determine the benefits of using parental thiamine as a treatment for AD.
Collapse
|
32
|
Lu'o'ng KVQ, Nguyên LTH. The beneficial role of vitamin D in Alzheimer's disease. Am J Alzheimers Dis Other Demen 2011; 26:511-20. [PMID: 22202127 PMCID: PMC10845314 DOI: 10.1177/1533317511429321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Patients with AD have a high prevalence of vitamin D deficiency, which is also associated with low mood and impaired cognitive performance in older people. Genetic studies have provided the opportunity to determine which proteins link vitamin D to AD pathology (ie, the major histocompatibility complex class II molecules, vitamin D receptor, renin-angiotensin system, apolipoprotein E, liver X receptor, Sp1 promoter gene, and the poly(ADP-ribose) polymerase-1 gene). Vitamin D also exerts its effect on AD through nongenomic factors, that is, L-type voltage-sensitive calcium channels, nerve growth factor, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D clearly has a beneficial role in AD and improves cognitive function in some patients with AD. Calcitriol, 1 α,25-dihydroxyvitamin D3, is best used for AD because of its active form of vitamin D(3) metabolite and its receptor in the central nervous system.
Collapse
|
33
|
Doze VA, Papay RS, Goldenstein BL, Gupta MK, Collette KM, Nelson BW, Lyons MJ, Davis BA, Luger EJ, Wood SG, Haselton JR, Simpson PC, Perez DM. Long-term α1A-adrenergic receptor stimulation improves synaptic plasticity, cognitive function, mood, and longevity. Mol Pharmacol 2011; 80:747-58. [PMID: 21791575 PMCID: PMC3187532 DOI: 10.1124/mol.111.073734] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/26/2011] [Indexed: 11/22/2022] Open
Abstract
The role of α(1)-adrenergic receptors (α(1)ARs) in cognition and mood is controversial, probably as a result of past use of nonselective agents. α(1A)AR activation was recently shown to increase neurogenesis, which is linked to cognition and mood. We studied the effects of long-term α(1A)AR stimulation using transgenic mice engineered to express a constitutively active mutant (CAM) form of the α(1A)AR. CAM-α(1A)AR mice showed enhancements in several behavioral models of learning and memory. In contrast, mice that have the α(1A)AR gene knocked out displayed poor cognitive function. Hippocampal brain slices from CAM-α(1A)AR mice demonstrated increased basal synaptic transmission, paired-pulse facilitation, and long-term potentiation compared with wild-type (WT) mice. WT mice treated with the α(1A)AR-selective agonist cirazoline also showed enhanced cognitive functions. In addition, CAM-α(1A)AR mice exhibited antidepressant and less anxious phenotypes in several behavioral tests compared with WT mice. Furthermore, the lifespan of CAM-α(1A)AR mice was 10% longer than that of WT mice. Our results suggest that long-term α(1A)AR stimulation improves synaptic plasticity, cognitive function, mood, and longevity. This may afford a potential therapeutic target for counteracting the decline in cognitive function and mood associated with aging and neurological disorders.
Collapse
Affiliation(s)
- Van A Doze
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011; 221:555-63. [DOI: 10.1016/j.bbr.2010.11.058] [Citation(s) in RCA: 752] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022]
|
35
|
ZHAO JJ, WU MS, TU YF. Development of Electrochemiluminescent Biosensor for Choline Based on Carbon Nanotube Modified Platinum Electrode. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1016/s1872-2040(10)60453-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res 2011; 31:98-110. [PMID: 21338248 DOI: 10.3109/10799893.2010.550008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
37
|
Abstract
INTRODUCTION The molecular pathogenesis of Alzheimer's disease (AD) includes a variety of risk factors, extracellular deposition of β-amyloid, accumulation of intracellular neurofibrillary tangles, oxidative neuronal damage and inflammatory cascades. Although amyloid-β-containing senile plaques and phospho-tau-containing neurofibrillary tangles are hallmark lesions of AD, neither is specific to nor even a marker of the disease. From a biochemical point of view the most consistent finding is a decreased level of choline acetyltransferase. In recent years, cumulative evidence has been gained on the involvement of neuronal lipoprotein activity, and on the role of cholesterol and other lipids in pathogenesis. Although basic research has made remarkable progress in the past two decades, currently available drugs are only able to improve cognitive symptoms temporarily and no treatment can reverse, stop or even slow this inexorable neurodegenerative process. AREAS COVERED The various neurobiological events associated with development of AD and the multiple treatment approaches for combating this disorder. EXPERT OPINION AD is a complex multifactorial disorder and thus a single target or pathogenic pathway is unlikely to be identified. Developing therapeutic interventions demands a greater understanding of the processes and the differential involvement of the various mediators. Effective therapeutics are urgently needed, and it is hoped that anti-amyloid strategies will offer a significant step towards a causal therapy.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | | | | |
Collapse
|
38
|
Lestaevel P, Bensoussan H, Racine R, Airault F, Gourmelon P, Souidi M. Transcriptomic effects of depleted uranium on acetylcholine and cholesterol metabolisms in Alzheimer's disease model. C R Biol 2011; 334:85-90. [PMID: 21333939 DOI: 10.1016/j.crvi.2010.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/25/2010] [Accepted: 12/03/2010] [Indexed: 11/16/2022]
Abstract
Some heavy metals, or aluminium, could participate in the development of Alzheimer disease (AD). Depleted uranium (DU), another heavy metal, modulates the cholinergic system and the cholesterol metabolism in the brain of rats, but without neurological disorders. The aim of this study was to determine what happens in organisms exposed to DU that will/are developing the AD. This study was thus performed on a transgenic mouse model for human amyloid precursor protein (APP), the Tg2576 strain. The possible effects of DU through drinking water (20 mg/L) over an 8-month period were analyzed on acetylcholine and cholesterol metabolisms at gene level in the cerebral cortex. The mRNA levels of choline acetyl transferase (ChAT) vesicular acetylcholine transporter (VAChT) and ATP-binding cassette transporter A1 (ABC A1) decreased in control Tg2576 mice in comparison with wild-type mice (respectively -89%, -86% and -44%, p < 0.05). Chronic exposure of Tg2576 mice to DU increased mRNA levels of ChAT (+189%, p < 0.05), VAChT (+120%, p < 0.05) and ABC A1 (+52%, p < 0.05) compared to control Tg2576 mice. Overall, these modifications of acetylcholine and cholesterol metabolisms did not lead to increased disturbances that are specific of AD, suggesting that chronic DU exposure did not worsen the pathology in this experimental model.
Collapse
Affiliation(s)
- Philippe Lestaevel
- Direction de la radioprotection de l'Homme, service de radiobiologie et d'épidémiologie, laboratoire de radiotoxicologie expérimentale, institut de radioprotection et de sûreté nucléaire, Fontenay-aux-Roses, France.
| | | | | | | | | | | |
Collapse
|
39
|
Ongali B, Nicolakakis N, Lecrux C, Aboulkassim T, Rosa-Neto P, Papadopoulos P, Tong XK, Hamel E. Transgenic mice overexpressing APP and transforming growth factor-beta1 feature cognitive and vascular hallmarks of Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3071-80. [PMID: 21088218 DOI: 10.2353/ajpath.2010.100339] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High brain levels of amyloid-β (Aβ) and transforming growth factor-β1 (TGF-β1) have been implicated in the cognitive and cerebrovascular alterations of Alzheimer's disease (AD). We sought to investigate the impact of combined increases in Aβ and TGF-β1 on cerebrovascular, neuronal, and mnemonic function using transgenic mice overproducing these peptides (A/T mice). In particular, we measured cerebrovascular reactivity, evoked cerebral blood flow and glucose uptake during brain activation, cholinergic status, and spatial memory, along with cerebrovascular fibrosis, amyloidosis, and astrogliosis, and their evolution with age. An assessment of perfusion and metabolic responses was considered timely, given ongoing efforts for their validation as AD biomarkers. Relative to wild-type littermates, A/T mice displayed an early progressive decline in cerebrovascular dilatory ability, preserved contractility, and reduction in constitutive nitric oxide synthesis that establishes resting vessel tone. Altered levels of vasodilator-synthesizing enzymes and fibrotic proteins, resistance to antioxidant treatment, and unchanged levels of the antioxidant enzyme, superoxide dismutase-2, accompanied these impairments. A/T mice featured deficient neurovascular and neurometabolic coupling to whisker stimulation, cholinergic denervation, cerebral and cerebrovascular Aβ deposition, astrocyte activation, and impaired Morris water maze performance, which gained severity with age. The combined Aβ- and TGF-β1-driven pathology recapitulates salient cerebrovascular, neuronal, and cognitive AD landmarks and yields a versatile model toward highly anticipated diagnostic and therapeutic tools for patients featuring Aβ and TGF-β1 increments.
Collapse
Affiliation(s)
- Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Qin X, Wang H, Wang X, Li S, Miao Z, Huang N, Chen Q. Amperometric choline biosensors based on multi-wall carbon nanotubes and layer-by-layer assembly of multilayer films composed of Poly(diallyldimethylammonium chloride) and choline oxidase. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Jazi R, Lalonde R, Qian S, Strazielle C. Regional brain evaluation of acetylcholinesterase activity in PS1/A246E transgenic mice. Neurosci Res 2009; 63:106-14. [DOI: 10.1016/j.neures.2008.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
|
42
|
Ribes D, Colomina M, Vicens P, Domingo J. Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer's disease. Exp Neurol 2008; 214:293-300. [DOI: 10.1016/j.expneurol.2008.08.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/31/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|
43
|
Cassel JC, Mathis C, Majchrzak M, Moreau PH, Dalrymple-Alford JC. Coexisting cholinergic and parahippocampal degeneration: a key to memory loss in dementia and a challenge for transgenic models? NEURODEGENER DIS 2008; 5:304-17. [PMID: 18520165 DOI: 10.1159/000135615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 10/31/2007] [Indexed: 12/25/2022] Open
Abstract
One century after Alzheimer's initial report, a variety of animal models of Alzheimer's disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- LINC UMR 7191, Université Louis Pasteur, CNRS, Institut Fédératif de Recherche IFR 37, GDR CNRS 2905, Strasbourg, France.
| | | | | | | | | |
Collapse
|
44
|
Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2008; 35 Suppl 1:S30-45. [PMID: 18228017 DOI: 10.1007/s00259-007-0701-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[(18)F]F-A-85380, which is supposed to be specific for alpha4beta2 nicotinic acetylcholine receptors (nAChRs). METHOD We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. RESULTS Both patients with AD and MCI showed significant reductions in alpha4beta2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in alpha4beta2 nAChRs occurs during early symptomatic stages of AD. The alpha4beta2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the alpha4beta2 nAChR status. CONCLUSION Together, our results provide evidence for the potential of 2-[(18)]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[(18)F]F-A-85380, we developed the new alpha4beta2 nAChR-specific radioligands (+)- and (-)-[(18)F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[(18)F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[(18)F]NCFHEB should be a suitable radioligand for larger clinical investigations.
Collapse
Affiliation(s)
- Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Stephanstrasse 11, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
45
|
Goto Y, Niidome T, Hongo H, Akaike A, Kihara T, Sugimoto H. Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Eur J Pharmacol 2008; 583:84-91. [PMID: 18282567 DOI: 10.1016/j.ejphar.2008.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/07/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Cholinergic hypothesis and amyloid cascade hypothesis are mainly proposed for Alzheimer's disease; however, the relationship between these hypotheses is poorly understood. To address the question of whether amyloid beta-peptide pathology affects cholinergic neurotransmission, we examined the effect of a cholinesterase inhibitor, physostigmine, on field excitatory postsynaptic potentials (EPSPs) evoked by single-pulse stimulation in the CA1 region of the hippocampus of various APPswe/PS1dE9 transgenic mice with different degrees of amyloid beta-peptide pathology. Reduced field EPSPs by physostigmine in transgenic mice at 3 months of age, when the mice had negligible amyloid beta-peptide levels and no amyloid beta-peptide deposits, were indistinguishable from those in age-matched wild-type mice. In contrast, reduced field EPSPs by physostigmine in transgenic mice at 5 months of age, when the mice had low amyloid beta-peptide levels and subtle amyloid beta-peptide deposits, were significantly lower than those in age-matched wild-type mice. Next, we characterized acetylcholine receptors, which play important roles in cholinergic neurotransmission, because physostigmine resulted in increased acetylcholine levels in the synaptic cleft. Different reductions of field EPSPs by physostigmine between transgenic and wild-type mice at 5 months of age were not affected by a nicotinic receptor antagonist, mecamylamine; however, reduced field EPSPs by physostigmine in both transgenic and wild-type mice were restored to basal levels by a muscarinic receptor antagonist, atropine. These results indicate that cholinergic modulation of glutamatergic transmission is already impaired at the onset of the formation of amyloid beta-peptide deposits, and muscarinic receptor dysfunction is one of the causes of this impairment.
Collapse
Affiliation(s)
- Yasuaki Goto
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Alpár A, Ueberham U, Seeger G, Arendt T, Gärtner U. Effects of wild-type and mutant human amyloid precursor protein on cortical afferent network. Neuroreport 2007; 18:1247-50. [PMID: 17632276 DOI: 10.1097/wnr.0b013e3282202829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease is characterized by severe neuronal disintegration supposed to be partly associated with amyloid pathology. Recently, we described morphological alterations of pyramidal cell structure in transgenic mice expressing wild-type or mutant human amyloid precursor protein (hAPP) (strains B6-Py8.9 and Tg2576), which are unrelated to direct plaque-associated changes. In this study, we focused on the pattern of cortical afferent connections in these transgenic mice. The quantity of cholinergic afferents is increased in both transgenic lines. Glutamatergic intra- and interhemispheric afferents are augmented in B6-Py8.9 mice but decreased in Tg2576 mice. Furthermore, perisomatic inhibition of pyramidal neurons was found to be reduced in Tg2576 mice. Findings suggest different effects of wild-type and mutant hAPP on neuronal connectivity.
Collapse
Affiliation(s)
- Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University Medical School, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
47
|
Guérin D, Sacquet J, Mandairon N, Jourdan F, Didier A. Early locus coeruleus degeneration and olfactory dysfunctions in Tg2576 mice. Neurobiol Aging 2007; 30:272-83. [PMID: 17618708 DOI: 10.1016/j.neurobiolaging.2007.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 02/01/2023]
Abstract
Olfactory deficiency has been reported in the early stages of Alzheimer's disease (AD) in humans but is very poorly understood due to the lack of investigations in animal models of AD. Recent studies point to the noradrenergic system as an important target of the AD pathological process. In addition, noradrenalin has been shown to influence adult neurogenesis which is implicated in cognitive functions. We have therefore investigated the olfactory neurogenesis and cognitive performances in young transgenic Tg2576 mice in relation with the status of the noradrenergic and the cholinergic systems. Tg2576 showed a deficit in neurogenesis in the olfactory bulb evidenced by an increased death of newborn cells and a reduced expression of PSA-NCAM. The locus coeruleus degenerated in Tg2576 between the age of 6.5 and 8 months. These changes were associated with olfactory memory impairments. Our findings indicate that a noradrenergic deficiency could play a role in the early stages of the pathological process in this transgenic model and induce olfactory cognitive impairments through an alteration of olfactory neurogenesis.
Collapse
Affiliation(s)
- Delphine Guérin
- Laboratoire de Neuroscience et Systèmes Sensoriels, Université de Lyon, F-69007 Lyon, France
| | | | | | | | | |
Collapse
|
48
|
Heinitz K, Beck M, Schliebs R, Perez-Polo JR. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J Neurochem 2006; 98:1930-45. [PMID: 16945109 DOI: 10.1111/j.1471-4159.2006.04015.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.
Collapse
Affiliation(s)
- Katrin Heinitz
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
49
|
Agnati LF, Genedani S, Leo G, Forni A, Woods AS, Filaferro M, Franco R, Fuxe K. Aβ peptides as one of the crucial volume transmission signals in the trophic units and their interactions with homocysteine. Physiological implications and relevance for Alzheimer’s disease. J Neural Transm (Vienna) 2006; 114:21-31. [PMID: 16969627 DOI: 10.1007/s00702-006-0564-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/14/2006] [Indexed: 01/11/2023]
Abstract
Amyloid peptides (Abeta) can operate as volume transmission (VT) signals since they are continuously released from cells of the central nervous system and diffuse in the extra-cellular space of the brain. They have both regulatory and trophic functions on cellular networks. In agreement with Abeta regulatory actions on glial-neuronal networks, the present paper reports new findings demonstrating that intrastriatal injections of Abeta peptides reduce striatal tyrosine hydroxylase, increase striatal GFAP immunoreactivities and lower pain threshold in experimental rats. Furthermore, it has been demonstrated that exogenous homocysteine (Hcy) binds Abeta(1-40) favouring its beta-sheet conformation both in vitro and in vivo and hence the formation of beta-fibrils and development of neurotoxicity. Thus, the hypothesis is discussed that Abeta peptides represent crucial VT-signals in the brain and their action is altered by dysmetabolic signals such as high Hcy extra-cellular levels, known to be an important risk factor for Alzheimer's disease.
Collapse
Affiliation(s)
- L F Agnati
- Department of Biomedical Sciences, Section of Physiology, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer's disease--interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 2006; 30:895-908. [PMID: 16187224 DOI: 10.1007/s11064-005-6962-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease, the most common neurodegenerative disorder of senile dementia, is characterized by two major morpho-pathological hallmarks. Deposition of extracellular neuritic, beta-amyloid peptide-containing plaques (senile plaques) in cerebral cortical regions of Alzheimer patients is accompanied by the presence of intracellular neurofibrillary tangles in cerebral pyramidal neurons. Basal forebrain cholinergic dysfunction is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed in patients with Alzheimer's disease. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology in Alzheimer's disease by affecting expression and processing of the beta-amyloid precursor protein (APP). Vice versa, low level of soluble beta-amyloid has been observed to inhibit cholinergic synaptic function. Deposition of beta-amyloid plaques in Alzheimer's disease is also accompanied by a significant plaque-associated glial up-regulation of interleukin-1, which has been attributed to affect expression and metabolism of APP and to interfere with cholinergic transmission. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, as well as local inflammatory upregulation, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|