1
|
Esfahan SM, Sepahi N, Rezayat E. How autism impacts children's working memory for faces. J Clin Exp Neuropsychol 2025:1-9. [PMID: 40364506 DOI: 10.1080/13803395.2025.2505585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
This study investigates visual working memory (WM) performance in children aged 7-12 years with Autism Spectrum Disorder (ASD) compared to typically developing (TD) peers, focusing on face stimuli to evaluate social-relevant memory processing. The research aims to identify differences in visual WM functioning and determine whether errors in recall stem from reduced precision or increased random guessing. Participants completed a visual WM task requiring them to memorize and reproduce the orientations of faces presented on a screen. Results demonstrated that children with ASD exhibited significantly poorer overall visual WM accuracy than TD children. A fine-grained analysis of error patterns revealed that the ASD group showed markedly lower precision in recalling spatial details of the stimuli, indicating less stable or detailed memory representations. However, rates of random guessing-a measure of attentional lapses or task disengagement-did not differ significantly between groups. These findings underscore that visual WM deficits in ASD are primarily driven by reduced precision rather than fluctuations in attention or motivation. The study highlights the importance of precision-based mechanisms in understanding atypical cognitive profiles in ASD, offering insights into potential interventions targeting memory consolidation or perceptual encoding strategies to enhance functional outcomes. By isolating precision as a key deficit, this work advances theoretical models of visual WM and informs tailored approaches to support memory-related challenges in ASD.
Collapse
Affiliation(s)
- Shahrzad M Esfahan
- Department of Cognitive Sciences, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
- Department of Cognitive Psychology, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Narges Sepahi
- Department of Cognitive Sciences, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
| | - Ehsan Rezayat
- Department of Cognitive Sciences, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
2
|
Wei L, Zhou M, Hu P, Jia S, Zhong S. Abnormal brain activation in autism spectrum disorder during negative emotion processing: A meta-analysis of functional neuroimaging studies. J Psychiatr Res 2025; 185:1-10. [PMID: 40138749 DOI: 10.1016/j.jpsychires.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Autism Spectrum Disorder (ASD) has deficits in emotional processing, which is one of the most common abnormalities in ASD social skills. Studies have shown that negative emotions seem to stimulate brain activity more effectively. Therefore, it is necessary to explore the neural mechanisms underlying the abnormal performance of ASD in processing negative emotions. Considering the various results on negative emotions due to factors such as experimental paradigms and sample sizes, meta-analysis can consolidate multiple studies to obtain more reliable conclusions and explore potential factors. Therefore, this study conducted meta-analysis on negative emotions to explore the abnormal brain activation patterns of negative emotion processing in ASD. Our results revealed abnormal brain activation patterns in ASD at the systemic level when processing negative emotions, such as -abnormal hypoactivation in the bilateral inferior frontal gyrus, right cerebellum, left fusiform gyrus, and left amygdala, and abnormally complementary hyperactivation in the bilateral temporal gyrus. The negative emotion processing deficits in ASD seem to stem from the aforementioned comprehensive damage to brain regions from the mirror neuron system and the limbic system. Further, there were differences in abnormal brain activation patterns in explicit and implicit processing of negative emotions. These abnormal activation regions were significantly positively correlated with the severity of communication and social deficits in ASD, indicating impaired social skills in negative emotion processing. These findings contribute to further understanding of the pathophysiology of ASD and provide new perspectives for the treatment, rehabilitation, and diagnosis of ASD related impairments.
Collapse
Affiliation(s)
- Long Wei
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250101, China
| | - Meihao Zhou
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250101, China
| | - Pinyuan Hu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shouqiang Jia
- Department of Radiology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271199, China
| | - Suyu Zhong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| |
Collapse
|
3
|
Pan DN, Lin C, Xin M, Wolf OT, Xue G, Li X. Understanding episodic memory dynamics: Retrieval and updating mechanisms revealed by fMRI and tDCS. Neuroimage 2025; 310:121170. [PMID: 40139518 DOI: 10.1016/j.neuroimage.2025.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates brain mechanisms in memory preservation and alteration using a three-phase design: memory encoding (Day 1), interference under fMRI (Day 2), and testing (Day 3). Thirty-one participants completed the core experiment, supplemented by a tDCS study (n = 118) targeting the visual cortex. Original memories were more susceptible to incorrect updating during old-background/new-object interference compared to relearning and no-retrieval conditions. Interference trials elicited heightened activation in the Inferior Parietal Lobe (IPL), Dorsolateral Prefrontal Cortex (DLPFC), and Dorsal Anterior Cingulate Gyrus (dACC) versus no-retrieval controls, and increased frontoparietal and Occipital Fusiform Gyrus (OFG) activation versus relearning. Analyzing interference trials by Day 3 outcomes revealed preserved memories correlated with stronger cingulo-opercular and frontoparietal activation (indicating effective conflict resolution), whereas updated memories showed elevated OFG activity (suggesting new sensory integration). Crucially, IPL/DLPFC activation during interference positively correlated with original memory accuracy, while OFG activation showed negative correlation. tDCS stimulation of the occipital cortex during memory reactivation significantly enhanced memory updating, confirming visual cortex involvement in contextual distortion. Findings demonstrate distinct neural profiles underlie memory outcomes: preserved memories require efficient conflict processing networks, while perceptual interference during reactivation promotes updates through sensory integration systems. This supports targeted neuromodulation approaches for memory modification, highlighting intervention potential through visual cortex engagement during critical memory phases.
Collapse
Affiliation(s)
- Dong-Ni Pan
- Key laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 1000490, China; Cognitive Science and Allied Health School, Beijing Language and Culture University, Beijing 100083, China
| | - CuiZhu Lin
- Cognitive Science and Allied Health School, Beijing Language and Culture University, Beijing 100083, China
| | - Ma Xin
- Cognitive Science and Allied Health School, Beijing Language and Culture University, Beijing 100083, China
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xuebing Li
- Key laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Rd Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 1000490, China.
| |
Collapse
|
4
|
Gao Y, Li R, Ma Q, Bartholomay KL, Lightbody AA, Reiss AL. Longitudinal Changes in Functional Neural Activation and Sensitization During Face Processing in Fragile X Syndrome. Biol Psychiatry 2025; 97:499-506. [PMID: 38945386 PMCID: PMC11680719 DOI: 10.1016/j.biopsych.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Fragile X syndrome (FXS) is a genetic condition associated with increased risk for social anxiety and avoidance. Using functional near-infrared spectroscopy (fNIRS), we previously demonstrated aberrant neural activity responding to faces in young girls with FXS cross-sectionally. Here, we tested the hypothesis that abnormalities in neural activation and sensitization would increase with age in 65 girls with FXS (ages 6-16 years) relative to an age-matched control group of 52 girls who had comparable cognitive function and clinical symptoms. METHODS fNIRS data were collected at 2 time points (mean [SD] = 2.8 [0.6] years apart) during a face processing task. Linear mixed-effect models examined longitudinal neural profiles in girls with FXS and control participants. Correlational analysis was performed to examine associations between neural sensitization (increasing neural response to repeated stimuli) and clinical ratings. RESULTS In the FXS group, 24 participants had 1 fNIRS scan, and 32 had 2 scans. In the control group, 28 participants had 1 fNIRS scan, and 22 had 2 scans. Brain activations in the superior frontal gyrus were higher in girls with FXS than control participants at both time points. Neural sensitization also increased in girls with FXS at a higher rate than control participants in the superior frontal gyrus when responding to upright faces. For the FXS group, sensitization in the superior frontal gyrus positively correlated with longitudinal increases in anxiety and social avoidance scores. CONCLUSIONS Girls with FXS show increasingly abnormal neural activation and sensitization responding to faces over time. Aberrant neural sensitization in girls with FXS is associated with longitudinal changes in anxiety and social skills.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| | - Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR; Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Qianheng Ma
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Kristi L Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - Amy A Lightbody
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| |
Collapse
|
5
|
Lozano I, Campos R, Belinchón M. Sensitivity to temporal synchrony in audiovisual speech and language development in infants with an elevated likelihood of autism: A developmental review. Infant Behav Dev 2025; 78:102026. [PMID: 39874896 DOI: 10.1016/j.infbeh.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
Detecting temporal synchrony in audiovisual speech in infancy is fundamental for socio-communicative development, especially for language acquisition. Autism is an early-onset and highly heritable neurodevelopmental condition often associated with language difficulties that usually extend to infants with an elevated likelihood of autism. Early susceptibilities in still unclear basic mechanisms may underlie these difficulties. Here, we discuss why sensitivity to temporal synchrony in audiovisual speech should be investigated in infants with an elevated likelihood of autism as a candidate mechanism underlying language difficulties. We then review direct and indirect eye-tracking evidence. Although scarce, some studies suggest that detection of temporal synchrony in audiovisual speech may be reduced in infant siblings (but evidence is mixed); however, this does not seem to account for language difficulties. Instead, a lack of relationship between selective attention to the articulating mouth and language development may be a plausible candidate mechanism. However, longitudinal studies tracking both sensitivity to temporal synchrony and selective attention to talking faces in the first year are needed for further clarification. Our discussion highlights gaps in the literature, future research directions and implications for domain-general approaches to the emergence of autism.
Collapse
Affiliation(s)
- Itziar Lozano
- Department of Basic Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Iván Pavlov, 6, Madrid 28049, Spain; Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, Jaracza, 1, Warsaw 00-378, Poland.
| | - Ruth Campos
- Department of Basic Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Iván Pavlov, 6, Madrid 28049, Spain.
| | - Mercedes Belinchón
- Department of Basic Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Iván Pavlov, 6, Madrid 28049, Spain.
| |
Collapse
|
6
|
Liu J, Chen H, Wang H, Wang Z. Neural correlates of facial recognition deficits in autism spectrum disorder: a comprehensive review. Front Psychiatry 2025; 15:1464142. [PMID: 39834575 PMCID: PMC11743606 DOI: 10.3389/fpsyt.2024.1464142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairments in social interaction, often manifested in facial recognition deficits. These deficits hinder individuals with ASD from recognizing facial identities and interpreting emotions, further complicating social communication. This review explores the neural mechanisms underlying these deficits, focusing on both functional anomalies and anatomical differences in key brain regions such as the fusiform gyrus (FG), amygdala, superior temporal sulcus (STS), and prefrontal cortex (PFC). It has been found that the reduced activation in the FG and atypical activation of the amygdala and STS contribute to difficulties in processing facial cues, while increased reliance on the PFC for facial recognition tasks imposes a cognitive load. Additionally, disrupted functional and structural connectivity between these regions further exacerbates facial recognition challenges. Future research should emphasize longitudinal, multimodal neuroimaging approaches to better understand developmental trajectories and design personalized interventions, leveraging AI and machine learning to optimize therapeutic outcomes for individuals with ASD.
Collapse
Affiliation(s)
- Jianmei Liu
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, China
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Huihui Chen
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Haijing Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
7
|
Floris DL, Llera A, Zabihi M, Moessnang C, Jones EJH, Mason L, Haartsen R, Holz NE, Mei T, Elleaume C, Vieira BH, Pretzsch CM, Forde NJ, Baumeister S, Dell’Acqua F, Durston S, Banaschewski T, Ecker C, Holt RJ, Baron-Cohen S, Bourgeron T, Charman T, Loth E, Murphy DGM, Buitelaar JK, Beckmann CF, Langer N. A multimodal neural signature of face processing in autism within the fusiform gyrus. NATURE. MENTAL HEALTH 2025; 3:31-45. [PMID: 39802935 PMCID: PMC11717707 DOI: 10.1038/s44220-024-00349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning. Here we leveraged a large multimodal sample to study the cross-modal signature of face processing within the FFG across four imaging modalities (structural magnetic resonance imaging (MRI), resting-state functional magnetic resonance imaging, task-functional magnetic resonance imaging and electroencephalography) in 204 autistic and nonautistic individuals aged 7-30 years (case-control design). We combined two methodological innovations-normative modeling and linked independent component analysis-to integrate individual-level deviations across modalities and assessed how multimodal components differentiated groups and informed social functioning in autism. Groups differed significantly in a multimodal component driven by bilateral resting-state functional MRI, bilateral structure, right task-functional MRI and left electroencephalography loadings in face-selective and retinotopic FFG. Multimodal components outperformed unimodal ones in differentiating groups. In autistic individuals, multimodal components were associated with cognitive and clinical features linked to social, but not nonsocial, functioning. These findings underscore the importance of elucidating multimodal neural associations of social functioning in autism, offering potential for the identification of mechanistic and prognostic biomarkers.
Collapse
Affiliation(s)
- Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Lis Data Solutions, Santander, Spain
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- MRC Unit Lifelong Health and Aging, University College London, London, UK
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Emily J. H. Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rianne Haartsen
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Nathalie E. Holz
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Center for Mental Health (DZPG), Partner site Mannheim–Heidelberg–Ulm, Mannheim, Germany
| | - Ting Mei
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camille Elleaume
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Bruno Hebling Vieira
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Natalie J. Forde
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Flavio Dell’Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Center for Mental Health (DZPG), Partner site Mannheim–Heidelberg–Ulm, Mannheim, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Rosemary J. Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unity, Institut Pasteur, Paris, France
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicolas Langer
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Griffin JW, Naples A, Bernier R, Chawarska K, Dawson G, Dziura J, Faja S, Jeste S, Kleinhans N, Sugar C, Webb SJ, Shic F, McPartland JC. Spatiotemporal Eye Movement Dynamics Reveal Altered Face Prioritization in Early Visual Processing Among Autistic Children. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:45-57. [PMID: 39237004 PMCID: PMC11710975 DOI: 10.1016/j.bpsc.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Reduced social attention-looking at faces-is one of the most common manifestations of social difficulty in autism that is central to social development. Although reduced social attention is well characterized in autism, qualitative differences in how social attention unfolds across time remains unknown. METHODS We used a computational modeling (i.e., hidden Markov modeling) approach to assess and compare the spatiotemporal dynamics of social attention in a large, well-characterized sample of children with autism (n = 280) and neurotypical children (n = 119) (ages 6-11) who completed 3 social eye-tracking assays at 3 longitudinal time points (baseline, 6 weeks, 24 weeks). RESULTS Our analysis supported the existence of 2 common eye movement patterns that emerged across 3 eye-tracking assays. A focused pattern was characterized by small face regions of interest, which had high a probability of capturing fixations early in visual processing. In contrast, an exploratory pattern was characterized by larger face regions of interest, with a lower initial probability of fixation and more nonsocial regions of interest. In the context of social perception, children with autism showed significantly more exploratory eye movement patterns than neurotypical children across all social perception assays and all 3 longitudinal time points. Eye movement patterns were associated with clinical features of autism, including adaptive function, face recognition, and autism symptom severity. CONCLUSIONS Decreased likelihood of precisely looking at faces early in social visual processing may be an important feature of autism that is associated with autism-related symptomology and may reflect less visual sensitivity to face information.
Collapse
Affiliation(s)
- Jason W Griffin
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Adam Naples
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, Washington
| | - Katarzyna Chawarska
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Duke University, Durham, North Carolina
| | - James Dziura
- Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Susan Faja
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Shafali Jeste
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Natalia Kleinhans
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington; Center On Human Development and Disability, University of Washington, Seattle, Washington
| | - Catherine Sugar
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California; Department of Biostatistics, University of California Los Angeles, Los Angeles, California
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, Washington; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, Washington
| | - Frederick Shic
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, Washington; Department of General Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - James C McPartland
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Center for Brain and Mind Health, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
9
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner TJ, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2025; 20:25-37. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Sarovic D, Schneiderman J, Lundström S, Riaz B, Orekhova E, Khan S, Gillberg C. Differential late-stage face processing in autism: a magnetoencephalographic study of fusiform gyrus activation. BMC Psychiatry 2024; 24:900. [PMID: 39695511 DOI: 10.1186/s12888-024-06400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Autism is associated with alterations of social communication, such as during face-to-face interactions. This study aimed to probe face processing in autistics with normal IQ utilizing magnetoencephalography to examine event-related fields within the fusiform gyrus during face perception. METHODS A case-control cohort of 22 individuals diagnosed with autism and 20 age-matched controls (all male, age 29.3 ± 6.9 years) underwent magnetoencephalographic scanning during an active task while observing neutral faces, face-like pareidolic objects, and non-face objects. The fusiform face area was identified using a face localizer for each participant, and the cortical activation pattern was normalized onto an average brain for subsequent analysis. RESULTS Early post-stimulus activation amplitudes (before 100-200 ms) indicated differentiation between stimuli containing fundamental facial features and non-face objects in both groups. In contrast, later activation (400-550 ms) differentiated real faces from both pareidolic and non-face objects across both groups and faces from objects in controls but not in autistics. There was no effect of autistic-like traits. CONCLUSIONS The absence of group differences in early activation suggest intact face detection in autistics possessing a normal IQ. Later activation captures a greater degree of the complexity and social information from actual faces. Although both groups distinguished faces from pareidolic and non-face objects, the control group exhibited a slightly heightened differentiation at this latency, indicating a potential disadvantage for autistics in real face processing. The subtle difference in late-stage face processing observed in autistic individuals may reflect specific cognitive mechanisms related to face perception in autism.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Radiology, Sahlgrenska University Hospital, Bruna Straket 11B, Gothenburg, 413 45, Sweden.
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Justin Schneiderman
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bushra Riaz
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Elena Orekhova
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Buehler R, Ansorge U, Silani G. Social attention in the wild - fixations to the eyes and autistic traits during a naturalistic interaction in a healthy sample. Sci Rep 2024; 14:30102. [PMID: 39627271 PMCID: PMC11615244 DOI: 10.1038/s41598-024-79210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Attention to social stimuli is a key component of social behavior and facilitates the development of fundamental social skills. Studies investigating social attention in neurotypical or neurodiverse populations have often relied on screen-based experiments using static images or videos, which lack the sensory richness and reciprocity present in real-life social interactions. This can possibly be attributed to the challenges one encounters when creating naturalistic experiments, such as dealing with dynamically moving areas of interest (AOIs), which require either time-intensive manual coding or restraining of participants. Here, we present findings from an experimental paradigm using unrestrained mobile eye-tracking and a face detection algorithm (MTCNN) to measure fixation rates during a semi-structured, face-to-face interview. Data from N = 62 healthy adult participants was analyzed for gaze behavior and related to participants' autistic traits. We observed a significant negative correlation between fixation rates on the eye region averaged over the entire interaction and scores on the autism spectrum quotient (AQ) (r = -0.14), indicating participants with high autistic traits fixated less frequently on the eye region. We also compared different types of interview questions (open vs. closed) to explore whether the reduction in fixation rates was more pronounced for specific time intervals during the interview. Lastly, we discuss both possibilities for extensions as well as limitations of the presented paradigm that could serve as inspiration for future research.
Collapse
Affiliation(s)
- Raimund Buehler
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010, Vienna, Austria.
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Research Platform Mediatized Lifeworlds, University of Vienna, Vienna, Austria
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010, Vienna, Austria.
| |
Collapse
|
12
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. The human social cognitive network contains multiple regions within the amygdala. SCIENCE ADVANCES 2024; 10:eadp0453. [PMID: 39576857 PMCID: PMC11584017 DOI: 10.1126/sciadv.adp0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Reasoning about someone's thoughts and intentions-i.e., forming a "theory of mind"-is a core aspect of social cognition and relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by social cognitive processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to anterior regions of the medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between internal circuits of the amygdala and a broader distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Akin-Bulbul I, Ozdemir S. Evaluation of the Social Attention Hypothesis: Do Children with Autism Prefer to See Objects Rather than People? J Autism Dev Disord 2024:10.1007/s10803-024-06596-9. [PMID: 39546170 DOI: 10.1007/s10803-024-06596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
A growing body of research shows that children with autism exhibit selective limitations in their ability to direct their visual attention to social stimuli. The cause of this selective limitation, however, remains unknown. The main purpose of this study is to determine whether the limitations in social attention are influenced by the objects in the environment. Specifically, the study examines the differences in visual attention between children with autism and typically developing (TD) children as they view videos of social interactions under two conditions, with and without objects. The sample consisted of 53 children with autism and 74 TD children, aged between 18 and 36 months. The findings indicated that young children with autism exhibited differences in their social attention compared to their TD peers. The results revealed that the presence of objects did not affect the visual attention differences between the two groups. However, removing objects from the environment positively impacted the social attention of both groups. In the condition without objects, both groups directed more visual attention more toward the Face and Body Areas of Interests (AoIs), whereas in the condition with objects, both groups prioritized looking at the Toy AoI. These findings have important implications for evidence-based decision-making, especially in designing early intervention environments for children with autism.
Collapse
Affiliation(s)
- Isik Akin-Bulbul
- Hacettepe Education Faculty, Department of Special Education, Hacettepe University, Ankara, Turkey.
| | - Selda Ozdemir
- Hacettepe Education Faculty, Department of Special Education, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Sotoodeh MS, Chien SHL, Hadjikhani N. Visual attention modulates mu suppression during biological motion perception in autistic individuals. Eur J Neurosci 2024. [PMID: 39537315 DOI: 10.1111/ejn.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
There has been a lot of controversy regarding mirror neuron function in autism spectrum disorder (ASD), in particular during the observation of biological motions (BM). Here, we directly explored the link between visual attention and brain activity in terms of mu suppression, by simultaneously recording eye-tracking and EEGs during BM tasks. Nineteen autistic children (15 boys, mean age = 11.57 ± 4.28 years) and 19 age-matched neurotypical (NT) children (15 boys, mean age = 11.68 ± 5.22 years) participated in the study. Each participant's eye movement and EEG were simultaneously recorded while watching four BM stimuli (walking, cartwheeling, free-throwing and underarm throwing) and a scrambled condition. Mu (8-13 Hz) suppression index (SI) for central regions was calculated. Fixation counts and percent of fixation time were calculated as indices of eye movements. EEG results revealed significant mu suppressions in the central region in both groups for all BM actions. Eye-tracking results showed that NT children had greater fixation counts and a higher percentage of fixation time than autistic children, indicating greater overall visual attention to BM. Notably, correlational analyses for both groups further revealed that individuals' fixation time and fixation counts were negatively correlated with the mu suppression index for all actions, indicating a strong association between visual attention and mu SI in the central region. Our findings suggest a critical role of visual attention in interpreting mu suppression during action perception in autism.
Collapse
Affiliation(s)
| | - Sarina Hui-Lin Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Neuroscience and Brain Diseases, China Medical University, Taichung, Taiwan
| | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
- Gillberg Neuropsychiatry Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Sivapalan S, Sivayokan B, Raveenthiran K, Sivayokan S. Sensory Issues and Their Impact Among Autistic Children: A Cross-Sectional Study in Northern Sri Lanka. Cureus 2024; 16:e72130. [PMID: 39575000 PMCID: PMC11580710 DOI: 10.7759/cureus.72130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Sensory processing issues are among the key diagnostic criteria for autism spectrum disorder (ASD). As altered sensory processing causes autistic children to react differently to sensory experiences and has a profound impact on their development, affecting their learning ability, social interaction, and ability to adapt to a new environment, there is a need to recognize and address these issues in children diagnosed with ASD during assessments and interventions. This study aimed to identify the patterns of sensory issues and their impact, and selected correlates among autistic children attending a center for neurodevelopmental disorders in northern Sri Lanka. METHODS This institution-based, descriptive, cross-sectional study was conducted at a center for neurodevelopmental disorders in Jaffna among 100 children diagnosed with ASD. The sociodemographic details of the child, and scores of the Childhood Autism Rating Scale second edition (CARS™ 2), Sensory Profile™ 2, and a locally developed Behavioral Checklist were extracted from the records available at the center. Data were analyzed using R statistical computing software (R Foundation for Statistical Computing, Vienna, Austria) using general linear models. RESULTS All the children in this study had at least one sensory issue, with 50% having visual processing issues. The severity of ASD increased as auditory processing issues increased. Behavioral issues, in general, increased significantly with increasing auditory and visual processing issues. Repetitive behaviors significantly increased with increasing auditory processing issues, while problems with self-regulation increased significantly with increasing visual and movement processing issues. Conduct-related issues were found to increase significantly with increasing movement and visual processing issues, and attentional response issues were found to increase significantly with increasing auditory, visual, and touch processing issues. CONCLUSION The high prevalence of sensory issues in autistic children and its impact on the severity of ASD and behavioral issues are reiterated in this study. These results emphasize the importance of including interventions targeting sensory issues with the routine therapy for ASD.
Collapse
Affiliation(s)
| | - Bhavana Sivayokan
- Department of Psychological Sciences, Kansas State University, Manhattan, USA
| | - Kounthini Raveenthiran
- Mathavam - Center for Neurodevelopmental Disorders, Regional Directorate of Health Services, Jaffna, LKA
| | - Sambasivamoorthy Sivayokan
- Mental Health Unit, Teaching Hospital Jaffna, Jaffna, LKA
- Department of Psychiatry, University of Jaffna, Jaffna, LKA
| |
Collapse
|
16
|
Kamensek T, Iarocci G, Oruc I. Atypical daily visual exposure to faces in adults with autism spectrum disorder. Curr Biol 2024; 34:4197-4208.e4. [PMID: 39181127 DOI: 10.1016/j.cub.2024.07.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Expert face processes are refined and tuned through a protracted development. Exposure statistics of the daily visual experience of neurotypical adults (the face diet) show substantial exposure to familiar faces. People with autism spectrum disorder (ASD) do not show the same expertise with faces as their non-autistic counterparts. This may be due to an impoverished visual experience with faces, according to experiential models of autism. Here, we present the first empirical report on the day-to-day visual experience of the faces of adults with ASD. Our results, based on over 360 h of first-person perspective footage of daily exposure, show striking qualitative and quantitative differences in the ASD face diet compared with those of neurotypical observers, which is best characterized by a pattern of reduced and atypical exposure to familiar faces in ASD. Specifically, duration of exposure to familiar faces was lower in ASD, and faces were viewed from farther distances and from viewpoints that were biased toward profile pose. Our results provide strong evidence that individuals with ASD may not be getting the experience needed for the typical development of expert face processes.
Collapse
Affiliation(s)
- Todd Kamensek
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 818 W 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ipek Oruc
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 818 W 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
17
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Duan K, Eyler L, Pierce K, Lombardo MV, Datko M, Hagler DJ, Taluja V, Zahiri J, Campbell K, Barnes CC, Arias S, Nalabolu S, Troxel J, Ji P, Courchesne E. Differences in regional brain structure in toddlers with autism are related to future language outcomes. Nat Commun 2024; 15:5075. [PMID: 38871689 PMCID: PMC11176156 DOI: 10.1038/s41467-024-48952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
- VISN 22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Michael Datko
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Peng Ji
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Gignac GE, Palermo R, Bothe E, Walker DL, Wilmer JB. Face perception and facial emotional expression recognition ability: Both unique predictors of the broader autism phenotype. Q J Exp Psychol (Hove) 2024; 77:1140-1153. [PMID: 37710359 PMCID: PMC11103922 DOI: 10.1177/17470218231203679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 07/09/2023] [Indexed: 09/16/2023]
Abstract
Autism spectrum disorder (ASD) and the broader autistic phenotype (BAP) have been suggested to be associated with perceptual-cognitive difficulties processing human faces. However, the empirical results are mixed, arguably, in part due to inadequate samples and analyses. Consequently, we administered the Cambridge Face Perception Test (CFPT), the Reading the Mind in the Eyes Test (RMET), a vocabulary test, and the Autism Quotient (AQ) to a sample of 318 adults in the general community. Based on a disattenuated path analytic modelling strategy, we found that both face perception ability (β = -.21) and facial emotional expression recognition ability (β = -.27) predicted uniquely and significantly the Communication dimension of AQ. Vocabulary failed to yield a significant, direct effect onto the Communication dimension of the AQ. We conclude that difficulties perceiving information from the faces of others may contribute to difficulties in nonverbal communication, as conceptualised and measured within the context of BAP.
Collapse
Affiliation(s)
| | | | - Ellen Bothe
- University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
20
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J Clin Med 2024; 13:279. [PMID: 38202286 PMCID: PMC10779511 DOI: 10.3390/jcm13010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last decade, the comorbidity between Autism Spectrum Disorder (ASD) and epilepsy has been widely demonstrated, and many hypotheses regarding the common neurobiological bases of these disorders have been put forward. A variable, but significant, prevalence of abnormalities on electroencephalogram (EEG) has been documented in non-epileptic children with ASD; therefore, several scientific studies have recently tried to demonstrate the role of these abnormalities as a possible biomarker of altered neural connectivity in ASD individuals. This narrative review intends to summarize the main findings of the recent scientific literature regarding abnormalities detected with standard EEG in children/adolescents with idiopathic ASD. Research using three different databases (PubMed, Scopus and Google Scholar) was conducted, resulting in the selection of 10 original articles. Despite an important lack of studies on preschoolers and a deep heterogeneity in results, some authors speculated on a possible association between EEG abnormalities and ASD characteristics, in particular, the severity of symptoms. Although this correlation needs to be more strongly elucidated, these findings may encourage future studies aimed at demonstrating the role of electrical brain abnormalities as an early biomarker of neural circuit alterations in ASD, highlighting the potential diagnostic, prognostic and therapeutic value of EEG in this field.
Collapse
Affiliation(s)
- Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
22
|
Bian C, Xia N, Xie A, Cong S, Dong Q. Adversarially Trained Persistent Homology Based Graph Convolutional Network for Disease Identification Using Brain Connectivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:503-516. [PMID: 37643097 DOI: 10.1109/tmi.2023.3309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Brain disease propagation is associated with characteristic alterations in the structural and functional connectivity networks of the brain. To identify disease-specific network representations, graph convolutional networks (GCNs) have been used because of their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks. However, existing GCNs generally focus on learning the discriminative region of interest (ROI) features, often ignoring important topological information that enables the integration of connectome patterns of brain activity. In addition, most methods fail to consider the vulnerability of GCNs to perturbations in network properties of the brain, which considerably degrades the reliability of diagnosis results. In this study, we propose an adversarially trained persistent homology-based graph convolutional network (ATPGCN) to capture disease-specific brain connectome patterns and classify brain diseases. First, the brain functional/structural connectivity is constructed using different neuroimaging modalities. Then, we develop a novel strategy that concatenates the persistent homology features from a brain algebraic topology analysis with readout features of the global pooling layer of a GCN model to collaboratively learn the individual-level representation. Finally, we simulate the adversarial perturbations by targeting the risk ROIs from clinical prior, and incorporate them into a training loop to evaluate the robustness of the model. The experimental results on three independent datasets demonstrate that ATPGCN outperforms existing classification methods in disease identification and is robust to minor perturbations in network architecture. Our code is available at https://github.com/CYB08/ATPGCN.
Collapse
|
23
|
Jenner LA, Farran EK, Welham A, Jones C, Moss J. The use of eye-tracking technology as a tool to evaluate social cognition in people with an intellectual disability: a systematic review and meta-analysis. J Neurodev Disord 2023; 15:42. [PMID: 38044457 PMCID: PMC10694880 DOI: 10.1186/s11689-023-09506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Relatively little is known about social cognition in people with intellectual disability (ID), and how this may support understanding of co-occurring autism. A limitation of previous research is that traditional social-cognitive tasks place a demand on domain-general cognition and language abilities. These tasks are not suitable for people with ID and lack the sensitivity to detect subtle social-cognitive processes. In autism research, eye-tracking technology has offered an effective method of evaluating social cognition-indicating associations between visual social attention and autism characteristics. The present systematic review synthesised research which has used eye-tracking technology to study social cognition in ID. A meta-analysis was used to explore whether visual attention on socially salient regions (SSRs) of stimuli during these tasks correlated with degree of autism characteristics presented on clinical assessment tools. METHOD Searches were conducted using four databases, research mailing lists, and citation tracking. Following in-depth screening and exclusion of studies with low methodological quality, 49 articles were included in the review. A correlational meta-analysis was run on Pearson's r values obtained from twelve studies, reporting the relationship between visual attention on SSRs and autism characteristics. RESULTS AND CONCLUSIONS Eye-tracking technology was used to measure different social-cognitive abilities across a range of syndromic and non-syndromic ID groups. Restricted scan paths and eye-region avoidance appeared to impact people's ability to make explicit inferences about mental states and social cues. Readiness to attend to social stimuli also varied depending on social content and degree of familiarity. A meta-analysis using a random effects model revealed a significant negative correlation (r = -.28, [95% CI -.47, -.08]) between visual attention on SSRs and autism characteristics across ID groups. Together, these findings highlight how eye-tracking can be used as an accessible tool to measure more subtle social-cognitive processes, which appear to reflect variability in observable behaviour. Further research is needed to be able to explore additional covariates (e.g. ID severity, ADHD, anxiety) which may be related to visual attention on SSRs, to different degrees within syndromic and non-syndromic ID groups, in order to determine the specificity of the association with autism characteristics.
Collapse
Affiliation(s)
- L A Jenner
- School of Psychology, University of Surrey, Surrey, UK.
| | - E K Farran
- School of Psychology, University of Surrey, Surrey, UK
| | - A Welham
- School of Psychology, University of Birmingham, Birmingham, UK
| | - C Jones
- School of Psychology, University of Birmingham, Birmingham, UK
| | - J Moss
- School of Psychology, University of Surrey, Surrey, UK
| |
Collapse
|
24
|
Kamensek T, Susilo T, Iarocci G, Oruc I. Are people with autism prosopagnosic? Autism Res 2023; 16:2100-2109. [PMID: 37740564 DOI: 10.1002/aur.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Difficulties in various face processing tasks have been well documented in autism spectrum disorder (ASD). Several meta-analyses and numerous case-control studies have indicated that this population experiences a moderate degree of impairment, with a small percentage of studies failing to detect any impairment. One possible account of this mixed pattern of findings is heterogeneity in face processing abilities stemming from the presence of a subpopulation of prosopagnosic individuals with ASD alongside those with normal face processing skills. Samples randomly drawn from such a population, especially relatively smaller ones, would vary in the proportion of participants with prosopagnosia, resulting in a wide range of group-level deficits from mild (or none) to severe across studies. We test this prosopagnosic subpopulation hypothesis by examining three groups of participants: adults with ASD, adults with developmental prosopagnosia (DP), and a comparison group. Our results show that the prosopagnosic subpopulation hypothesis does not account for the face impairments in the broader autism spectrum. ASD observers show a continuous and graded, rather than categorical, heterogeneity that span a range of face processing skills including many with mild to moderate deficits, inconsistent with a prosopagnosic subtype account. We suggest that pathogenic origins of face deficits for at least some with ASD differ from those of DP.
Collapse
Affiliation(s)
- Todd Kamensek
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tirta Susilo
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ipek Oruc
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Haghighi AH, Broughani S, Askari R, Shahrabadi H, Souza D, Gentil P. Combined Physical Training Strategies Improve Physical Fitness, Behavior, and Social Skills of Autistic Children. J Autism Dev Disord 2023; 53:4271-4279. [PMID: 36083392 DOI: 10.1007/s10803-022-05731-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
The present study aimed to investigate the effects of combined physical training (CPT) on social skills and physical fitness (PF) in children with ASD. Sixteen children with autism (age 6-10 years) were randomly assigned into two groups: CPT and control. The CPT group participated in a program involving ball game, rhythmic movements, and resistance training for eight weeks (three sessions per week). PF and behavior profile were assessed before and after training. CPT program had a significant effect on indicators of social skills such as stereotypic behavior and communication, as well as PF such as handgrip strength, upper and lower body power, flexibility, balance, and agility (P < 0.05). CPT in autistic children can improve indicators of social skills and PF.
Collapse
Affiliation(s)
| | | | - Roya Askari
- Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Hadi Shahrabadi
- Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Daniel Souza
- College of Physical Education and Dance, Federal University of Goias, Goiania, Brazil.
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
26
|
Van der Donck S, Hendriks M, Vos S, Op de Beeck H, Boets B. Neural sensitivity to facial identity and facial expression discrimination in adults with autism. Autism Res 2023; 16:2110-2124. [PMID: 37823568 DOI: 10.1002/aur.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
The fluent processing of faces can be challenging for autistic individuals. Here, we assessed the neural sensitivity to rapid changes in subtle facial cues in 23 autistic men and 23 age and IQ matched non-autistic (NA) controls using frequency-tagging electroencephalography (EEG). In oddball paradigms examining the automatic and implicit discrimination of facial identity and facial expression, base rate images were presented at 6 Hz, periodically interleaved every fifth image with an oddball image (i.e. 1.2 Hz oddball frequency). These distinctive frequency tags for base rate and oddball stimuli allowed direct and objective quantification of the neural discrimination responses. We found no large differences in the neural sensitivity of participants in both groups, not for facial identity discrimination, nor for facial expression discrimination. Both groups also showed a clear face-inversion effect, with reduced brain responses for inverted versus upright faces. Furthermore, sad faces generally elicited significantly lower neural amplitudes than angry, fearful and happy faces. The only minor group difference is the larger involvement of high-level right-hemisphere visual areas in NA men for facial expression processing. These findings are discussed from a developmental perspective, as they strikingly contrast with robust face processing deficits observed in autistic children using identical EEG paradigms.
Collapse
Affiliation(s)
- Stephanie Van der Donck
- Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Michelle Hendriks
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Research Unit Brain and Cognition, Leuven Brain Institute, KU Leuve, Leuven, Belgium
| | - Silke Vos
- Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Hans Op de Beeck
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Research Unit Brain and Cognition, Leuven Brain Institute, KU Leuve, Leuven, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Galazka MA, Wallin L, Thorsson M, Gillberg C, Billstedt E, Hadjikhani N, Åsberg Johnels J. Self-reported eye contact sensitivity and face processing in chromosome 22q11.2 deletion syndrome. J Clin Exp Neuropsychol 2023; 45:570-578. [PMID: 37732542 DOI: 10.1080/13803395.2023.2259043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION 22q11.2 deletion syndrome (22qDS) has been associated with varying levels of social impairments, and with atypical visual scanning of faces. The present study explored whether self-reported sensitivity to eye contact might be related to these phenomena. METHOD Individuals with confirmed 22qDS were interviewed about their experience and possible discomfort with eye contact. In cases where individuals expresesed discomfort, they were subsequently asked about coping mechanisms used to deal with this discomfort. In addition to self-reported eye contact discomfort, gaze to emotional faces was examined using eye tracking. RESULTS In the subgroup of individuals who reported discomfort during eye contact, eye tracking results revealed a lower amount of gaze in the eyes of neutral faces, as well as the absence of the typical left visual field (LVF) bias, indicative of alterations in hemispheric lateralization. This subgroup also scored lower on a measure of everyday functioning. CONCLUSIONS Our results show that, by simply asking individuals with this social and communicative disorder about eye gaze discomfort, we may better understand the specific challenges that they experience. Moreover, information gained from such first-person reports together with eye-tracking measures further informs about the integrity of their face processing system, as well as about the nature and degree of impairment in this population.
Collapse
Affiliation(s)
- Martyna A Galazka
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Division of Cognition and Communication, Department of Applied Information Technology, University of Gothenburg, Gothenburg, Sweden
| | - Lena Wallin
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Cognition and Old Age Psychiatric Clinic, Sahlgrenska University Hospital, Psychiatry, Gothenburg, Sweden
| | - Max Thorsson
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Child Neuropsychiatric Clinic, Queen Silvia Children's Hospital, Västra Götalandsregionen, Gothenburg, Sweden
| | - Eva Billstedt
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Child Neuropsychiatric Clinic, Queen Silvia Children's Hospital, Västra Götalandsregionen, Gothenburg, Sweden
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jakob Åsberg Johnels
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Child Neuropsychiatric Clinic, Queen Silvia Children's Hospital, Västra Götalandsregionen, Gothenburg, Sweden
- Section of Speech and Language Pathology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Strathearn L, Momany A, Kovács EH, Guiler W, Ladd-Acosta C. The intersection of genome, epigenome and social experience in autism spectrum disorder: Exploring modifiable pathways for intervention. Neurobiol Learn Mem 2023; 202:107761. [PMID: 37121464 PMCID: PMC10330448 DOI: 10.1016/j.nlm.2023.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/22/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
The number of children diagnosed with autism spectrum disorder (ASD) has increased substantially over the past two decades. Current research suggests that both genetic and environmental risk factors are involved in the etiology of ASD. The goal of this paper is to examine how one specific environmental factor, early social experience, may be correlated with DNA methylation (DNAm) changes in genes associated with ASD. We present an innovative model which proposes that polygenic risk and changes in DNAm due to social experience may both contribute to the symptoms of ASD. Previous research on genetic and environmental factors implicated in the etiology of ASD will be reviewed, with an emphasis on the oxytocin receptor gene, which may be epigenetically altered by early social experience, and which plays a crucial role in social and cognitive development. Identifying an environmental risk factor for ASD (e.g., social experience) that could be modified via early intervention and which results in epigenetic (DNAm) changes, could transform our understanding of this condition, facilitate earlier identification of ASD, and guide early intervention efforts.
Collapse
Affiliation(s)
- Lane Strathearn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road 2-471 Bowen Science Building, Iowa City, IA 52241, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, 100 Hawkins Drive, Iowa City, IA 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, 100 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Allison Momany
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, 100 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Emese Hc Kovács
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road 2-471 Bowen Science Building, Iowa City, IA 52241, USA.
| | - William Guiler
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA.
| | - Christine Ladd-Acosta
- Department of Epidemiology and the Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Matyjek M, Bayer M, Dziobek I. Reward responsiveness in autism and autistic traits - Evidence from neuronal, autonomic, and behavioural levels. Neuroimage Clin 2023; 38:103442. [PMID: 37285795 PMCID: PMC10250120 DOI: 10.1016/j.nicl.2023.103442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Autism has been linked to atypicalities in reward processing, especially in the social domain. However, results are heterogeneous, and their interpretation is hindered by the use of personally non-relevant social rewards. In this study we investigated behavioural (reaction times), neuronal (event-related potentials), and autonomic (pupil sizes) responses to personally relevant social rewards, money, and neutral outcomes in 26 autistic and 53 non-autistic subjects varying in levels of autistic traits. As hypothesised and preregistered, autism and autistic traits did not differently influence responses to social, monetary, or neutral outcomes on either response level. While groups did not differ in behaviour (reaction times), autism was linked to generally enhanced brain responses in early anticipation and larger pupil constrictions in reward reception. Together, these results suggest that when using personally relevant stimuli, autism is linked to generally preserved, although less neuronally efficient processing of rewards. Considering the role of social relevance in reward processing, we propose an interpretation of contradictory evidence from clinical practice and empirical research.
Collapse
Affiliation(s)
- Magdalena Matyjek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany.
| | - Mareike Bayer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
| |
Collapse
|
30
|
Ilchibaeva T, Tsybko A, Lipnitskaya M, Eremin D, Milutinovich K, Naumenko V, Popova N. Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines 2023; 11:biomedicines11051482. [PMID: 37239153 DOI: 10.3390/biomedicines11051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Disturbances in neuroplasticity undoubtedly play an important role in the development of autism spectrum disorders (ASDs). Brain neurotransmitters and brain-derived neurotrophic factor (BDNF) are known as crucial players in cerebral and behavioral plasticity. Such an important neurotransmitter as dopamine (DA) is involved in the behavioral inflexibility of ASD. Additionally, much evidence from human and animal studies implicates BDNF in ASD pathogenesis. Nonetheless, crosstalk between BDNF and the DA system has not been studied in the context of an autistic-like phenotype. For this reason, the aim of our study was to compare the effects of either the acute intracerebroventricular administration of a recombinant BDNF protein or hippocampal adeno-associated-virus-mediated BDNF overexpression on autistic-like behavior and expression of key DA-related and BDNF-related genes in BTBR mice (a widely recognized model of autism). The BDNF administration failed to affect autistic-like behavior but downregulated Comt mRNA in the frontal cortex and hippocampus; however, COMT protein downregulation in the hippocampus and upregulation in the striatum were insignificant. BDNF administration also reduced the receptor TrkB level in the frontal cortex and midbrain and the BDNF/proBDNF ratio in the striatum. In contrast, hippocampal BDNF overexpression significantly diminished stereotypical behavior and anxiety; these alterations were accompanied only by higher hippocampal DA receptor D1 mRNA levels. The results indicate an important role of BDNF in mechanisms underlying anxiety and repetitive behavior in ASDs and implicates BDNF-DA crosstalk in the autistic-like phenotype of BTBR mice.
Collapse
Affiliation(s)
- Tatiana Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Anton Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Marina Lipnitskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Dmitry Eremin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Milutinovich
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vladimir Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Nina Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
31
|
Stallworthy IC, Berry D, Davis S, Wolff JJ, Burrows CA, Swanson MR, Grzadzinski RL, Botteron K, Dager SR, Estes AM, Schultz RT, Piven J, Elison JT, Pruett JR, Marrus N. Quantifying latent social motivation and its associations with joint attention and language in infants at high and low likelihood for autism spectrum disorder. Dev Sci 2023; 26:e13336. [PMID: 36222317 PMCID: PMC10591497 DOI: 10.1111/desc.13336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 01/29/2023]
Abstract
Social motivation-the psychobiological predisposition for social orienting, seeking social contact, and maintaining social interaction-manifests in early infancy and is hypothesized to be foundational for social communication development in typical and atypical populations. However, the lack of infant social-motivation measures has hindered delineation of associations between infant social motivation, other early-arising social abilities such as joint attention, and language outcomes. To investigate how infant social motivation contributes to joint attention and language, this study utilizes a mixed longitudinal sample of 741 infants at high (HL = 515) and low (LL = 226) likelihood for ASD. Using moderated nonlinear factor analysis (MNLFA), we incorporated items from parent-report measures to establish a novel latent factor model of infant social motivation that exhibits measurement invariance by age, sex, and familial ASD likelihood. We then examined developmental associations between 6- and 12-month social motivation, joint attention at 12-15 months, and language at 24 months of age. On average, greater social-motivation growth from 6-12 months was associated with greater initiating joint attention (IJA) and trend-level increases in sophistication of responding to joint attention (RJA). IJA and RJA were both positively associated with 24-month language abilities. There were no additional associations between social motivation and future language in our path model. These findings substantiate a novel, theoretically driven approach to modeling social motivation and suggest a developmental cascade through which social motivation impacts other foundational skills. These findings have implications for the timing and nature of intervention targets to support social communication development in infancy. HIGHLIGHTS: We describe a novel, theoretically based model of infant social motivation wherein multiple parent-reported indicators contribute to a unitary latent social-motivation factor. Analyses revealed social-motivation factor scores exhibited measurement invariance for a longitudinal sample of infants at high and low familial ASD likelihood. Social-motivation growth from ages 6-12 months is associated with better 12-15-month joint attention abilities, which in turn are associated with greater 24-month language skills. Findings inform timing and targets of potential interventions to support healthy social communication in the first year of life.
Collapse
Affiliation(s)
| | - Daniel Berry
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Meghan R. Swanson
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Rebecca L. Grzadzinski
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Stephen R. Dager
- Departments of Radiology and Bioengineering, University of Washington, Seattle, Washington, USA
| | - Annette M. Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| | - Robert T. Schultz
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | | |
Collapse
|
32
|
Leisman G, Melillo R, Melillo T. Prefrontal Functional Connectivities in Autism Spectrum Disorders: A Connectopathic Disorder Affecting Movement, Interoception, and Cognition. Brain Res Bull 2023; 198:65-76. [PMID: 37087061 DOI: 10.1016/j.brainresbull.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The prefrontal cortex is included in a neuronal system that includes the basal ganglia, the thalamus, and the cerebellum. Most of the higher and more complex motor, cognitive, and emotional behavioral functions are thought to be found primarily in the frontal lobes. Insufficient connectivity between the medial prefrontal cortex (mPFC) and other regions of the brain that are distant from each other involved in top-down information processing rely on the global integration of data from multiple input sources and enhance low level perception processes (bottom-up information processing). The reduced deactivation in mPFC and in the rest of the Default Network during global task processing is consistent with the integrative modulatory role served by the mPFC. We stress the importance of understanding the degree to which sensory and movement anomalies in individuals with autism spectrum disorder (ASD) can contribute to social impairment. Further investigation on the neurobiological basis of sensory symptoms and its relationship to other clinical features found in ASD is required Treatment perhaps should not be first behaviorally based but rather based on facilitating sensory motor development.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel; University of the Medical Sciences of Havana, Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Ty Melillo
- Northeast College of the Health Sciencs, Seneca Falls, NY USA
| |
Collapse
|
33
|
The Effects of Social Processing and Role Type on Attention Networks: Insights from Team Ball Athletes. Brain Sci 2023; 13:brainsci13030476. [PMID: 36979286 PMCID: PMC10046498 DOI: 10.3390/brainsci13030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
(1) Background: Several findings have shown how social stimuli can influence attentional processes. Social attention is crucial in team ball sports, in which players have to react to dynamically changing, unpredictable, and externally paced environments. Our study aimed at demonstrating the influence of social processing on team ball sports athletes’ attentional abilities. (2) Methods: A total of 103 male players divided by sport (soccer, handball, and basketball) and by role (striker, midfielder, or defender) were tested through a modified version of the Attention Network Test (ANT) in which they were exposed to both social and non-social stimuli. (3) Results: Social stimuli positively impacted the athletes’ abilities to focus on target stimuli and ignore conflicting environmental requests (t = −2.600, p = 0.011 *). We also found that the athletes’ roles impacted their performance accuracy. Specifically, differences were found in the ability to maintain a general state of reactivity between athletes (strikers vs. midfielders: t = 3.303, p = 0.004 **; striker vs. defenders: t = −2.820, p = 0.017 *; midfielders vs. defenders: t = −5.876, p < 001 ***). (4) Conclusion: These findings revealed that social stimuli are crucial for performance enhancement in team ball sports athletes. Further, we suggest that it is possible to draw specific attentional profiles for athletes in different roles.
Collapse
|
34
|
A critical role of brain network architecture in a continuum model of autism spectrum disorders spanning from healthy individuals with genetic liability to individuals with ASD. Mol Psychiatry 2023; 28:1210-1218. [PMID: 36575304 PMCID: PMC10005951 DOI: 10.1038/s41380-022-01916-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Studies have shown cortical alterations in individuals with autism spectrum disorders (ASD) as well as in individuals with high polygenic risk for ASD. An important addition to the study of altered cortical anatomy is the investigation of the underlying brain network architecture that may reveal brain-wide mechanisms in ASD and in polygenic risk for ASD. Such an approach has been proven useful in other psychiatric disorders by revealing that brain network architecture shapes (to an extent) the disorder-related cortical alterations. This study uses data from a clinical dataset-560 male subjects (266 individuals with ASD and 294 healthy individuals, CTL, mean age at 17.2 years) from the Autism Brain Imaging Data Exchange database, and data of 391 healthy individuals (207 males, mean age at 12.1 years) from the Pediatric Imaging, Neurocognition and Genetics database. ASD-related cortical alterations (group difference, ASD-CTL, in cortical thickness) and cortical correlates of polygenic risk for ASD were assessed, and then statistically compared with structural connectome-based network measures (such as hubs) using spin permutation tests. Next, we investigated whether polygenic risk for ASD could be predicted by network architecture by building machine-learning based prediction models, and whether the top predictors of the model were identified as disease epicenters of ASD. We observed that ASD-related cortical alterations as well as cortical correlates of polygenic risk for ASD implicated cortical hubs more strongly than non-hub regions. We also observed that age progression of ASD-related cortical alterations and cortical correlates of polygenic risk for ASD implicated cortical hubs more strongly than non-hub regions. Further investigation revealed that structural connectomes predicted polygenic risk for ASD (r = 0.30, p < 0.0001), and two brain regions (the left inferior parietal and left suparmarginal) with top predictive connections were identified as disease epicenters of ASD. Our study highlights a critical role of network architecture in a continuum model of ASD spanning from healthy individuals with genetic risk to individuals with ASD. Our study also highlights the strength of investigating polygenic risk scores in addition to multi-modal neuroimaging measures to better understand the interplay between genetic risk and brain alterations associated with ASD.
Collapse
|
35
|
Synchrony and mental health: Investigating the negative association between interpersonal coordination and subclinical variation in autism and social anxiety. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2023. [DOI: 10.1016/j.jesp.2022.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Ma H, Cao Y, Li M, Zhan L, Xie Z, Huang L, Gao Y, Jia X. Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study. Hum Brain Mapp 2023; 44:1094-1104. [PMID: 36346215 PMCID: PMC9875923 DOI: 10.1002/hbm.26141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies have explored resting-state functional connectivity (rs-FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency-specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age-matched and sex-matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed-based FC analyses in the conventional, slow-5, and slow-4 frequency bands at each site. Image-based meta-analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta-analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow-5 frequency band instead of the conventional and slow-4 frequency bands. The deep learning results showed that, compared with the conventional and slow-4 frequency bands, the slow-5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| |
Collapse
|
37
|
Lopes da Cunha P, Fittipaldi S, González Campo C, Kauffman M, Rodríguez-Quiroga S, Yacovino DA, Ibáñez A, Birba A, García AM. Social concepts and the cerebellum: behavioural and functional connectivity signatures in cerebellar ataxic patients. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210364. [PMID: 36571119 PMCID: PMC9791482 DOI: 10.1098/rstb.2021.0364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/26/2022] [Indexed: 12/27/2022] Open
Abstract
Neurocognitive research on social concepts underscores their reliance on fronto-temporo-limbic regions mediating broad socio-cognitive skills. Yet, the field has neglected another structure increasingly implicated in social cognition: the cerebellum. The present exploratory study examines this link combining a novel naturalistic text paradigm, a relevant atrophy model and functional magnetic resonance imaging. Fifteen cerebellar ataxia (CA) patients with focal cerebellar atrophy and 29 matched controls listened to a social text (highlighting interpersonal events) as well as a non-social text (focused on a single person's actions), and answered comprehension questionnaires. We compared behavioural outcomes between groups and examined their association with cerebellar connectivity. CA patients showed deficits in social text comprehension and normal scores in the non-social text. Also, social text outcomes in controls selectively correlated with connectivity between the cerebellum and key regions subserving multi-modal semantics and social cognition, including the superior and medial temporal gyri, the temporal pole and the insula. Conversely, brain-behaviour associations involving the cerebellum were abolished in the patients. Thus, cerebellar structures and connections seem involved in processing social concepts evoked by naturalistic discourse. Such findings invite new theoretical and translational developments integrating social neuroscience with embodied semantics. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Cognitive Neuroscience Center, University of San Andrés, Buenos Aires B1644BID, Argentina
- National Agency for Scientific Promotion and Technology (ANPCyT), Buenos Aires, C1425FQD, Argentina
| | - Sol Fittipaldi
- Cognitive Neuroscience Center, University of San Andrés, Buenos Aires B1644BID, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
- Global Brain Health Institute, University of California San Francisco, 94158-2324, US and Trinity College Dublin, D02 PN40, Ireland
- Latin American Brain Health Institute (BrainLat), Adolfo Ibáñez University, Santiago, 7550344, Chile
| | - Cecilia González Campo
- Cognitive Neuroscience Center, University of San Andrés, Buenos Aires B1644BID, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Marcelo Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología “José María Ramos Mejía” y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA, Buenos Aires, C1221ADC, Argentina
- School of Medicine, UBA, CONICET, Buenos Aires, C1121ABG, Argentina
| | - Sergio Rodríguez-Quiroga
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología “José María Ramos Mejía” y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA, Buenos Aires, C1221ADC, Argentina
| | - Darío Andrés Yacovino
- Department of Neurology, Dr. Cesar Milstein Hospital, Buenos Aires, C1221ACI, Argentina
- Memory and Balance Clinic, Buenos Aires, C1425BPC, Argentina
| | - Agustín Ibáñez
- Cognitive Neuroscience Center, University of San Andrés, Buenos Aires B1644BID, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
- Global Brain Health Institute, University of California San Francisco, 94158-2324, US and Trinity College Dublin, D02 PN40, Ireland
- Latin American Brain Health Institute (BrainLat), Adolfo Ibáñez University, Santiago, 7550344, Chile
| | - Agustina Birba
- Cognitive Neuroscience Center, University of San Andrés, Buenos Aires B1644BID, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Adolfo M. García
- Cognitive Neuroscience Center, University of San Andrés, Buenos Aires B1644BID, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
- Global Brain Health Institute, University of California San Francisco, 94158-2324, US and Trinity College Dublin, D02 PN40, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| |
Collapse
|
38
|
Duan K, Eyler L, Pierce K, Lombardo M, Datko M, Hagler D, Taluja V, Zahiri J, Campbell K, Barnes C, Arias S, Nalabolu S, Troxel J, Courchesne E. Language, Social, and Face Regions Are Affected in Toddlers with Autism and Predictive of Language Outcome. RESEARCH SQUARE 2023:rs.3.rs-2451837. [PMID: 36778379 PMCID: PMC9915795 DOI: 10.21203/rs.3.rs-2451837/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Identifying prognostic early brain alterations is crucial for autism spectrum disorder (ASD). Leveraging structural MRI data from 166 ASD and 109 typical developing (TD) toddlers and controlling for brain size, we found that, compared to TD, ASD toddlers showed larger or thicker lateral temporal regions; smaller or thinner frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most of these differences were replicated in an independent cohort of 38 ASD and 37 TD toddlers. Moreover, the identified brain alterations were related to ASD symptom severity and cognitive impairments at intake, and, remarkably, they improved the accuracy for predicting later language outcome beyond intake clinical and demographic variables. In summary, brain regions involved in language, social, and face processing were altered in ASD toddlers. These early-age brain alterations may be the result of dysregulation in multiple neural processes and stages and are promising prognostic biomarkers for future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Georgia Institute of Technology, Emory University, Georgia State University
| | | | | | | | | | - Donald Hagler
- Department of Radiology, School of Medicine, University of California San Diego, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders. Brain Imaging Behav 2023; 17:257-269. [PMID: 36633738 PMCID: PMC10049951 DOI: 10.1007/s11682-022-00754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
Social and non-social deficits in autism spectrum disorders (ASD) persist into adulthood and may share common regions of aberrant neural activations. The current meta-analysis investigated activation differences between ASD and neurotypical controls irrespective of task type. Activation likelihood estimation meta-analyses were performed to examine consistent hypo-activated and/or hyper-activated regions for all tasks combined, and for social and non-social tasks separately; meta-analytic connectivity modelling and behavioral/paradigm analyses were performed to examine co-activated regions and associated behaviors. One hundred studies (mean age range = 18-41 years) were included. For all tasks combined, the ASD group showed significant (p < .05) hypo-activation in one cluster around the left amygdala (peak - 26, -2, -20, volume = 1336 mm3, maximum ALE = 0.0327), and this cluster co-activated with two other clusters around the right cerebellum (peak 42, -56, -22, volume = 2560mm3, maximum ALE = 0.049) Lobule VI/Crus I and the left fusiform gyrus (BA47) (peak - 42, -46, -18, volume = 1616 mm3, maximum ALE = 0.046) and left cerebellum (peak - 42, -58, -20, volume = 1616mm3, maximum ALE = 0.033) Lobule VI/Crus I. While the left amygdala was associated with negative emotion (fear) (z = 3.047), the left fusiform gyrus/cerebellum Lobule VI/Crus I cluster was associated with language semantics (z = 3.724) and action observation (z = 3.077). These findings highlight the left amygdala as a region consistently hypo-activated in ASD and suggest the potential involvement of fusiform gyrus and cerebellum in social cognition in ASD. Future research should further elucidate if and how amygdala-fusiform/cerebellar connectivity relates to social and non-social cognition in adults with ASD.
Collapse
|
40
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
41
|
Antezana L, Coffman MC, DiCriscio AS, Richey JA. Effects of nonsocial and circumscribed interest images on neural mechanisms of emotion regulation in autistic adults. Front Behav Neurosci 2022; 16:1057736. [PMID: 36570705 PMCID: PMC9771392 DOI: 10.3389/fnbeh.2022.1057736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Emotion dysregulation is commonly reported among autistic individuals. Prior work investigating the neurofunctional mechanisms of emotion regulation (ER) in autistic adults has illustrated alterations in dorsolateral prefrontal cortex (dlPFC) activity, as well as concurrent atypical patterns of activation in subcortical regions related to affect during cognitive reappraisal of social images. Whereas most research examining ER in autism has focused on regulation of negative emotions, the effects of regulating positive emotions has been generally understudied. This is surprising given the relevance of positive motivational states to understanding circumscribed interests (CI) in autism. Methods Accordingly, the purpose of this study was to use fMRI with simultaneous eye-tracking and pupillometry to investigate the neural mechanisms of ER during passive viewing and cognitive reappraisal of a standardized set of nonsocial images and personalized (self-selected) CI images. Results The autistic group demonstrated comparatively reduced modulation of posterior cingulate cortex (PCC) activation during cognitive reappraisal of CI images compared to viewing of CI, although no eye-tracking/pupillometry differences emerged between-groups. Further, the autistic group demonstrated increased PCC connectivity with left lateral occipital and right supramarginal areas when engaging in cognitive reappraisal vs. viewing CI. Discussion In autistic adults, CI may be differentially modulated via PCC. Considering the documented role of the PCC as a core hub of the default mode network, we further postulate that ER of CI could potentially be related to self-referential cognition.
Collapse
Affiliation(s)
- Ligia Antezana
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marika C. Coffman
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | | | - John A. Richey
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
42
|
Levy EJ, Foss-Feig J, Isenstein EL, Srihari V, Anticevic A, Naples AJ, McPartland JC. Electrophysiological Studies of Reception of Facial Communication in Autism Spectrum Disorder and Schizophrenia. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022; 9:521-554. [PMID: 36568688 PMCID: PMC9783109 DOI: 10.1007/s40489-021-00260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorder (ASD) and schizophrenia spectrum disorders (SZ) are characterized by difficulty with social cognition and atypical reception of facial communication - a key area in the Research Domain Criteria framework. To identify areas of overlap and dissociation between ASD and SZ, we review studies of event-related potentials (ERP) to faces across ASD and SZ populations, focusing on ERPs implicated in social perception: P100, N170, N250, and P300. There were many inconsistent findings across studies; however, replication was strongest for delayed N170 latency in ASD and attenuated N170 amplitude in SZ. These results highlight the challenges of replicating research findings in heterogeneous clinical populations and the need for transdiagnostic research that continuously quantifies behavior and neural activity across neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jennifer Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai
| | | | - Vinod Srihari
- Department of Psychiatry, Yale University School of Medicine
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine
- Department of Psychology, Yale University
- Division of Neurogenetics, Neurocomputation, and Neuroimaging, Yale University School of Medicine
| | - Adam J. Naples
- Yale Child Study Center, Yale University School of Medicine
| | - James C. McPartland
- Department of Psychology, Yale University
- Yale Child Study Center, Yale University School of Medicine
| |
Collapse
|
43
|
Goold S, Murphy MJ, Goodale MA, Crewther SG, Laycock R. Faster social attention disengagement in individuals with higher autism traits. J Clin Exp Neuropsychol 2022; 44:755-767. [PMID: 36694386 DOI: 10.1080/13803395.2023.2167943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Atypical visual and social attention has often been associated with clinically diagnosed autism spectrum disorder (ASD), and with the broader autism phenotype. Atypical social attention is of particular research interest given the importance of facial expressions for social communication, with faces tending to attract and hold attention in neurotypical individuals. In autism, this is not necessarily so, where there is debate about the temporal differences in the ability to disengage attention from a face. METHOD Thus, we have used eye-tracking to record saccadic latencies as a measure of time to disengage attention from a central task-irrelevant face before orienting to a newly presented peripheral nonsocial target during a gap-overlap task. Neurotypical participants with higher or lower autism-like traits (AT) completed the task that included central stimuli with varied expressions of facial emotion as well as an inverted face. RESULTS High AT participants demonstrated faster saccadic responses to detect the nonsocial target than low AT participants when disengaging attention from a face. Furthermore, faster saccadic responses were recorded when comparing disengagement from upright to inverted faces in low AT but not in high AT participants. CONCLUSIONS Together, these results extend findings of atypical social attention disengagement in autism and highlight how differences in attention to faces in the broader autism phenotype can lead to apparently superior task performance under certain conditions. Specifically, autism traits were linked to faster attention orienting to a nonsocial target due to the reduced attentional hold of the task irrelevant face stimuli. The absence of an inversion effect in high AT participants also reinforces the suggestion that they process upright or inverted faces similarly, unlike low AT participants for whom inverted faces are thought to be less socially engaging, thus allowing faster disengagement.
Collapse
Affiliation(s)
- Saxon Goold
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Melanie J Murphy
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Melvyn A Goodale
- Western Institute for Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Sheila G Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Robin Laycock
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia.,School of Health and Biomedical Science, RMIT University, Melbourne, Australia
| |
Collapse
|
44
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Falck-Ytter T, Kleberg JL, Portugal AM, Thorup E. Social Attention: Developmental Foundations and Relevance for Autism Spectrum Disorder. Biol Psychiatry 2022:S0006-3223(22)01695-X. [PMID: 36639295 DOI: 10.1016/j.biopsych.2022.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/27/2022] [Accepted: 09/27/2022] [Indexed: 01/15/2023]
Abstract
The use of the term "social attention" (SA) in the cognitive neuroscience and developmental psychopathology literature has increased exponentially in recent years, in part motivated by the aim to understand the early development of autism spectrum disorder (ASD). Unfortunately, theoretical discussions around the term have lagged behind its various uses. Here, we evaluate SA through a review of key candidate SA phenotypes emerging early in life, from newborn gaze cueing and preference for face-like configurations to later emerging skills such as joint attention. We argue that most of the considered SA phenotypes are unlikely to represent unique socioattentional processes and instead have to be understood in the broader context of bottom-up and emerging top-down (domain-general) attention. Some types of SA behaviors (e.g., initiation of joint attention) are linked to the early development of ASD, but this may reflect differences in social motivation rather than attention per se. Several SA candidates are not linked to ASD early in life, including the ones that may represent uniquely socioattentional processes (e.g., orienting to faces, predicting others' manual action goals). Although SA may be a useful superordinate category under which one can organize certain research questions, the widespread use of the term without proper definition is problematic. Characterizing gaze patterns and visual attention in social contexts in infants at elevated likelihood of ASD may facilitate early detection, but conceptual clarity regarding the underlying processes at play is needed to sharpen research questions and identify potential targets for early intervention.
Collapse
Affiliation(s)
- Terje Falck-Ytter
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden; Center of Neurodevelopmental Disorders, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region, Stockholm, Stockholm, Sweden; Swedish Collegium for Advanced Study, Uppsala, Sweden.
| | - Johan Lundin Kleberg
- Rare Diseases Research Group, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Ana Maria Portugal
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden; Center of Neurodevelopmental Disorders, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region, Stockholm, Stockholm, Sweden
| | - Emilia Thorup
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Psychology, Lund University, Lund, Sweden.
| |
Collapse
|
46
|
Hocking MC, Schultz RT, Minturn JE, Brodsky C, Albee M, Herrington JD. Reduced Fusiform Gyrus Activation During Face Processing in Pediatric Brain Tumor Survivors. J Int Neuropsychol Soc 2022; 28:937-946. [PMID: 34605383 PMCID: PMC8977397 DOI: 10.1017/s135561772100117x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The neural mechanisms contributing to the social problems of pediatric brain tumor survivors (PBTS) are unknown. Face processing is important to social communication, social behavior, and peer acceptance. Research with other populations with social difficulties, namely autism spectrum disorder, suggests atypical brain activation in areas important for face processing. This case-controlled functional magnetic resonance imaging (fMRI) study compared brain activation during face processing in PBTS and typically developing (TD) youth. METHODS Participants included 36 age-, gender-, and IQ-matched youth (N = 18 per group). PBTS were at least 5 years from diagnosis and 2 years from the completion of tumor therapy. fMRI data were acquired during a face identity task and a control condition. Groups were compared on activation magnitude within the fusiform gyrus for the faces condition compared to the control condition. Correlational analyses evaluated associations between neuroimaging metrics and indices of social behavior for PBTS participants. RESULTS Both groups demonstrated face-specific activation within the social brain for the faces condition compared to the control condition. PBTS showed significantly decreased activation for faces in the medial portions of the fusiform gyrus bilaterally compared to TD youth, ps ≤ .004. Higher peak activity in the left fusiform gyrus was associated with better socialization (r = .53, p < .05). CONCLUSIONS This study offers initial evidence of atypical activation in a key face processing area in PBTS. Such atypical activation may underlie some of the social difficulties of PBTS. Social cognitive neuroscience methodologies may elucidate the neurobiological bases for PBTS social behavior.
Collapse
Affiliation(s)
- Matthew C. Hocking
- Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
- Correspondence and reprint requests to: Matthew C. Hocking, Ph.D., Division of Oncology, The Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., 1427B Abramson Pediatric Research Center, Philadelphia, PA 19104, USA.
| | - Robert T. Schultz
- Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Jane E. Minturn
- Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Cole Brodsky
- Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - May Albee
- Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - John D. Herrington
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Nibbio G, Barlati S, Calzavara-Pinton I, Necchini N, Invernizzi E, Dell'Ovo D, Lisoni J, Deste G, Vita A. Assessment and correlates of autistic symptoms in Schizophrenia Spectrum Disorders measured with the PANSS Autism Severity Score: A systematic review. Front Psychiatry 2022; 13:934005. [PMID: 36111306 PMCID: PMC9468543 DOI: 10.3389/fpsyt.2022.934005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/12/2022] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia Spectrum Disorders (SSD) and Autism Spectrum Disorders (ASD) are considered separate entities, but the two spectra share important similarities, and the study of these areas of overlap represents a field of growing scientific interest. The PANSS Autism Score (PAUSS) was recently developed specifically to assess autistic symptoms in people living with SSD reliably and quickly. The aims of the present systematic review were to provide a comprehensive assessment of the use of the PAUSS scale in available literature and to systematically analyze cognitive, functional and neurobiological correlates of autistic symptoms measured with this instrument in SSD. The systematic literature search included three electronic databases (PubMed, Scopus and PsycINFO) as well as a manual search in Google Scholar and in reference lists of included papers. Screening and extraction were conducted by at least two independent reviewers. Out of 213 identified records, 22 articles referring to 15 original studies were included in the systematic review. Studies were conducted in several different countries by independent groups, showing consistent scientific interest in the use of the scale; most works focused on cognitive and functional correlates of ASD symptoms, but some also considered neurobiological features. Results of included studies showed that autistic symptoms in people with SSD are consistently associated with worse cognitive performance, especially in the social cognition domain, and with worse psychosocial functioning. However, the presence of autistic symptoms appears to also have a protective role, particularly on functioning, in subjects with more severe psychotic symptoms. Further exploring the impact of autistic symptoms could be of significant scientific and clinical interest, allowing the development of tailored interventions to improve treatment for people living with SSDs.
Collapse
Affiliation(s)
- Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Nicola Necchini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elena Invernizzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Dario Dell'Ovo
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
48
|
Abassi Abu Rukab S, Khayat N, Hochstein S. High-level visual search in children with autism. J Vis 2022; 22:6. [PMID: 35994261 PMCID: PMC9419456 DOI: 10.1167/jov.22.9.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
Visual search has been classified as easy feature search, with rapid target detection and little set size dependence, versus slower difficult search with focused attention, with set size-dependent speed. Reverse hierarchy theory attributes these classes to rapid high cortical-level vision at a glance versus low-level vision with scrutiny, attributing easy search to high-level representations. Accordingly, faces "pop out" of heterogeneous object photographs. Individuals with autism have difficulties recognizing faces, and we now asked if this disability disturbs their search for faces. We compare search times and set size slopes for children with autism spectrum disorders (ASDs) and those with neurotypical development (NT) when searching for faces. Human face targets were found rapidly, with shallow set size slopes. The between-group difference between slopes (18.8 vs. 11.3 ms/item) is significant, suggesting that faces may not "pop out" as easily, but in our view does not warrant classifying ASD face search as categorically different from that of NT children. We also tested search for different target categories, dog and lion faces, and nonface basic categories, cars and houses. The ASD group was generally a bit slower than the NT group, and their slopes were somewhat steeper. Nevertheless, the overall dependencies on target category were similar: human face search fastest, nonface categories slowest, and dog and lion faces in between. We conclude that autism may spare vision at a glance, including face detection, despite its reported effects on face recognition, which may require vision with scrutiny. This dichotomy is consistent with the two perceptual modes suggested by reverse hierarchy theory.
Collapse
Affiliation(s)
- Safa'a Abassi Abu Rukab
- ELSC Edmond & Lily Safra Center for Brain Research and Silberman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Noam Khayat
- ELSC Edmond & Lily Safra Center for Brain Research and Silberman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Shaul Hochstein
- ELSC Edmond & Lily Safra Center for Brain Research and Silberman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
49
|
Yan H, Shan X, Li H, Liu F, Guo W. Abnormal spontaneous neural activity in hippocampal-cortical system of patients with obsessive-compulsive disorder and its potential for diagnosis and prediction of early treatment response. Front Cell Neurosci 2022; 16:906534. [PMID: 35910254 PMCID: PMC9334680 DOI: 10.3389/fncel.2022.906534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Early brain functional changes induced by pharmacotherapy in patients with obsessive-compulsive disorder (OCD) in relation to drugs per se or because of the impact of such drugs on the improvement of OCD remain unclear. Moreover, no neuroimaging biomarkers are available for diagnosis of OCD and prediction of early treatment response. We performed a longitudinal study involving 34 patients with OCD and 36 healthy controls (HCs). Patients with OCD received 5-week treatment with paroxetine (40 mg/d). Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were applied to acquire and analyze the imaging data. Compared with HCs, patients with OCD had higher ReHo values in the right superior temporal gyrus and bilateral hippocampus/parahippocampus/fusiform gyrus/cerebellum at baseline. ReHo values in the left hippocampus and parahippocampus decreased significantly after treatment. The reduction rate (RR) of ReHo values was positively correlated with the RRs of the scores of Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and obsession. Abnormal ReHo values at baseline could serve as potential neuroimaging biomarkers for OCD diagnosis and prediction of early therapeutic response. This study highlighted the important role of the hippocampal-cortical system in the neuropsychological mechanism underlying OCD, pharmacological mechanism underlying OCD treatment, and the possibility of building models for diagnosis and prediction of early treatment response based on spontaneous activity in the hippocampal-cortical system.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
50
|
Hand CJ, Kennedy A, Filik R, Pitchford M, Robus CM. Emoji Identification and Emoji Effects on Sentence Emotionality in ASD-Diagnosed Adults and Neurotypical Controls. J Autism Dev Disord 2022; 53:2514-2528. [PMID: 35415776 DOI: 10.1007/s10803-022-05557-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
We investigated ASD-diagnosed adults' and neurotypical (NT) controls' processing of emoji and emoji influence on the emotionality of otherwise-neutral sentences. Study 1 participants categorised emoji representing the six basic emotions using a fixed-set of emotional adjectives. Results showed that ASD-diagnosed participants' classifications of fearful, sad, and surprised emoji were more diverse and less 'typical' than NT controls' responses. Study 2 participants read emotionally-neutral sentences; half paired with sentence-final happy emoji, half with sad emoji. Participants rated sentence + emoji stimuli for emotional valence. ASD-diagnosed and NT participants rated sentences + happy emoji as equally-positive, however, ASD-diagnosed participants rated sentences + sad emoji as more-negative than NT participants. We must acknowledge differential perceptions and effects of emoji, and emoji-text inter-relationships, when working with neurodiverse stakeholders.
Collapse
Affiliation(s)
- Christopher J Hand
- School of Education, University of Glasgow, 11 Eldon Street, Glasgow, G3 6NH, UK.
| | - Ashley Kennedy
- Department of Psychology, Glasgow Caledonian University, Glasgow, UK
| | - Ruth Filik
- School of Psychology, The University of Nottingham, Nottingham, UK
| | | | - Christopher M Robus
- School of Psychotherapy and Psychology, Regents University London, London, UK
| |
Collapse
|