1
|
Torres ILS, Assumpção JAF, de Souza A, de Oliveira C, Adachi LNS, Scarabelot VL, Cioato SG, Rozisky JR, Caumo W, Silva RS, Battastini AMO, Medeiros LF. Effects of gestational and breastfeeding caffeine exposure in adenosine A1 agonist-induced antinociception of infant rats. Int J Dev Neurosci 2020; 80:709-716. [PMID: 33030219 DOI: 10.1002/jdn.10069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Caffeine is extensively consumed as a psychostimulant drug, acting on A1 and A2A adenosine receptors blockade. Chronic exposure to caffeine during gestation and breast-feeding may be involved in infant rat's behavioral and biochemical alterations. Our goal was to evaluate the effect of chronic caffeine exposure during gestation and breast-feeding in the functionality of adenosine A1 receptors in infant rats at P14. NTPDase and 5'-nucleotidase activities were also evaluated. METHODS Mating of adult female Wistar rats was confirmed by presence of sperm in vaginal smears. Rats were divided into three groups on the first day of pregnancy: (1) control: tap water, (2) caffeine: 0.3 g/L until P14, and (3) washout caffeine: caffeine was changed to tap water at P7. Evaluation of nociceptive response was performed at P14 using hot plate (HP) and tail-flick latency (TFL) tests. A1 receptor involvement was assessed using caffeine agonist (CPA) and antagonist (DPCPX). Enzymatic activities assays were conducted in the spinal cord. RESULTS Gestational and breastfeeding exposure to caffeine (caffeine and washout groups) did not induce significant alterations in thermal nociceptive thresholds (HP and TF tests). Both caffeine groups did not show analgesic response induced by CPA when compared to the control group at P14, indicating chronic exposure to caffeine in the aforementioned periods inhibits the antinociceptive effects of the systemic A1 receptor agonist administration. No effect was observed upon ectonucleotidase activities. CONCLUSIONS Our results demonstrate that chronic caffeine exposure in gestational and breastfeeding alters A1-mediated analgesic response in rats.
Collapse
Affiliation(s)
- Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - José A F Assumpção
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| | - Carla de Oliveira
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lauren N S Adachi
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vanessa L Scarabelot
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Stefania G Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Joanna R Rozisky
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
| | - Ana Maria O Battastini
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liciane F Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas-Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| |
Collapse
|
2
|
Machado ML, Arantes LP, da Silveira TL, Zamberlan DC, Cordeiro LM, Obetine FBB, da Silva AF, da Cruz IBM, Soares FAA, Oliveira RDP. Ilex paraguariensis extract provides increased resistance against oxidative stress and protection against Amyloid beta-induced toxicity compared to caffeine in Caenorhabditis elegans. Nutr Neurosci 2019; 24:697-709. [PMID: 31595831 DOI: 10.1080/1028415x.2019.1671694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ilex paraguariensis is a plant from South America, used to prepare a tea-like beverage rich in caffeine and polyphenols with antioxidant proprieties. Caffeine consumption is associated with a lower risk of age-associated neuropathologies, besides several extracts that have antioxidant proprieties are known to be neuroprotective, and oxidative stress strongly correlates with Aβ-toxicity. This study aims to investigate the neuroprotective effects of the Ilex paraguariensis hydroalcoholic extract (IPHE) and to evaluate if caffeine agent present in IPHE exerts neuroprotective effects in an amyloid beta-peptide (Aβ)-induced toxicity in Caenorhabditis elegans. The wild-type and CL2006 worms were treated with IPHE (2 and 4 mg/mL) or caffeine (200 and 400 μM) since larval stage 1 (L1) until they achieved the required age for each assay. IPHE and caffeine increased the lifespan and appeared to act directly by reactive oxygen species (ROS) scavenger in both wild-type and CL2006 worms, also conferred resistance against oxidative stress in wild-type animals. Furthermore, both treatments delayed Aβ-induced paralysis and decreased AChE activity in CL2006. The protective effect of IPHE against Aβ-induced paralysis was found to be dependent on heat shock factor hsf-1 and FOXO-family transcription factor daf-16, which are respectively involved in aging-related processes and chaperone synthesis, while that of caffeine was dependent only on daf-16. Mechanistically, IPHE and caffeine decreased the levels of Aβ mRNA in the CL2006 worms; however, only IPHE induced expression of the heat shock chaperonin hsp-16.2, involved in protein homeostasis. The results were overall better when treated with IPHE than with caffeine.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Leticia Priscilla Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tássia Limana da Silveira
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniele Coradini Zamberlan
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Larissa Marafiga Cordeiro
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiane Baptista Bicca Obetine
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aline Franzen da Silva
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Felix Alexandre Antunes Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Aguirre-Martínez GV, André C, Gagné F, Martín-Díaz LM. The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:652-663. [PMID: 29156432 DOI: 10.1016/j.ecoenv.2017.09.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The constant release of pharmaceuticals products to aquatic environment even at low concentrations (ng L-1 to µg L-1) could lead to unknown chronic effects to non-target organisms. The aim of this study was to evaluate neurotoxic responses, inflammation, gametogenic activity and energy status on the fresh water clam C. fluminea after exposure to different concentrations of caffeine (CAF), ibuprofen (IBU), carbamazepine (CBZ), novobiocin (NOV) and tamoxifen (TMX) for 21 days under laboratory conditions. During the assay, water was spiked every two days with CAF (0; 0.1; 5; 15; 50µgL-1), IBU (0; 0.1; 5; 10; 50µgL-1), CBZ, NOV, and TMX (0.1, 1, 10, 50µgL-1). After the exposure period, dopamine levels (DOP), monoamine oxidase activity (MAO), arachidonic acid cyclooxygenase activity (COX), vitellogenin-like proteins (VTG), mitochondrial electron transport (MET), total lipids (TLP), and energy expenditure (MET/TLP) were determined in gonad tissues, and acetyl cholinesterase activity (AChE) was determined in digestive gland tissues. Results showed a concentration-dependence response on biomarkers tested, except for MAO. Environmental concentrations of pharmaceuticals induced significant changes (p < 0.05) in the neurotoxic responses analyzed (CAF, CBZ and NOV increased DOP levels and CBZ inhibited AChE activity), inflammation (CAF induced COX), and energy status (MET and TLP increased after exposure to CBZ, NOV and TMX). Responses of clams were related to the mechanism of action (MoA) of pharmaceuticals. Biomarkers applied and the model organism C. fluminea constituted a suitable tool for environmental risk assessment of pharmaceutical in aquatic environment.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Facultad Ciencias del Mar y Ambientales. Universidad de Cádiz, Campus Excelencia Internacional del Mar (CEI-Mar), Polígono Río San Pedro s/n, P. Real, Cádiz, Spain; Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121,1110939 Iquique, Chile; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
| | - C André
- Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - F Gagné
- Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - L M Martín-Díaz
- Facultad Ciencias del Mar y Ambientales. Universidad de Cádiz, Campus Excelencia Internacional del Mar (CEI-Mar), Polígono Río San Pedro s/n, P. Real, Cádiz, Spain; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
4
|
Transient Disruption of Adenosine Signaling During Embryogenesis Triggers a Pro-epileptic Phenotype in Adult Zebrafish. Mol Neurobiol 2018; 55:6547-6557. [PMID: 29327202 DOI: 10.1007/s12035-017-0850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Adenosinergic signaling has important effects on brain function, anatomy, and physiology in both late and early stages of development. Exposure to caffeine, a non-specific blocker of adenosine receptor, has been indicated as a developmental risk factor. Disruption of adenosinergic signaling during early stages of development can change the normal neural network formation and possibly lead to an increase in susceptibility to seizures. In this work, morpholinos (MO) temporarily blocked the translation of adenosine receptor transcripts, adora1, adora2aa, and adora2ab, during the embryonic phase of zebrafish. It was observed that the block of adora2aa and adora2aa + adora2ab transcripts increased the mortality rate and caused high rate of malformations. To test the susceptibility of MO adora1, MO adora2aa, MO adora2ab, and MO adora2aa + adora2ab animals to seizure, pentylenetetrazole (10 mM) was used as a convulsant agent in larval and adult stages of zebrafish development. Although no MO promoted significant differences in latency time to reach the seizures stages in 7-day-old larvae, during the adult stage, all MO animals showed a decrease in the latency time to reach stages III, IV, and V of seizure. These results indicated that transient interventions in the adenosinergic signaling through high affinity adenosine receptors during embryonic development promote strong outcomes on survival and morphology. Additionally, long-term effects on neural development can lead to permanent impairment on neural signaling resulting in increased susceptibility to seizure.
Collapse
|
5
|
Karaismailoglu S, Tuncer M, Bayrak S, Erdogan G, Ergun EL, Erdem A. The perinatal effects of maternal caffeine intake on fetal and neonatal brain levels of testosterone, estradiol, and dihydrotestosterone in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:827-838. [DOI: 10.1007/s00210-017-1383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 11/29/2022]
|
6
|
Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in Poloxamer-407-induced hyperlipidemia in rat brain. Physiol Behav 2017; 168:11-19. [DOI: 10.1016/j.physbeh.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023]
|
7
|
Atik A, Harding R, De Matteo R, Kondos-Devcic D, Cheong J, Doyle LW, Tolcos M. Caffeine for apnea of prematurity: Effects on the developing brain. Neurotoxicology 2016; 58:94-102. [PMID: 27899304 DOI: 10.1016/j.neuro.2016.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
Abstract
Caffeine is a methylxanthine that is widely used to treat apnea of prematurity (AOP). In preterm infants, caffeine reduces the duration of respiratory support, improves survival rates and lowers the incidence of cerebral palsy and cognitive delay. There is, however, little evidence relating to the immediate and long-term effects of caffeine on brain development, especially at the cellular and molecular levels. Experimental data are conflicting, with studies showing that caffeine can have either adverse or benefical effects in the developing brain. The aim of this article is to review current understanding of how caffeine ameliorates AOP, the cellular and molecular mechanisms by which caffeine exerts its effects and the effects of caffeine on brain development. A better knowledge of the effects of caffeine on the developing brain at the cellular and/or molecular level is essential in order to understand the basis for the impact of caffeine on postnatal outcome. The studies reviewed here suggest that while caffeine has respiratory benefits for preterm infants, it may have adverse molecular and cellular effects on the developing brain; indeed a majority of experimental studies suggest that regardless of dose or duration of administration, caffeine leads to detrimental changes within the developing brain. Thus there is an urgent need to assess the impact of caffeine, at a range of doses, on the structure and function of the developing brain in preclinical studies, particularly using clinically relevant animal models. Future studies should focus on determining the maximal dose of caffeine that is safe for the preterm brain.
Collapse
Affiliation(s)
- Anzari Atik
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Delphi Kondos-Devcic
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jeanie Cheong
- Department of Neonatal Services, Royal Women's Hospital, Victorian Infant Brain Studies, Murdoch Children's Research Institute, and Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lex W Doyle
- Department of Neonatal Services, Royal Women's Hospital, Victorian Infant Brain Studies, Murdoch Children's Research Institute, and Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Laureano-Melo R, da Silveira ALB, de Azevedo Cruz Seara F, da Conceição RR, da Silva-Almeida C, Marinho BG, da Rocha FF, Reis LC, Côrtes WDS. Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine. Metab Brain Dis 2016; 31:1071-80. [PMID: 27262967 DOI: 10.1007/s11011-016-9847-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
Abstract
The association between caffeine consumption and various psychiatric manifestations has long been observed. The objective was to assess the behavioral profile in offspring of Swiss mice treated during pregnancy and lactation with caffeine. For this purpose, two groups (n = 6 each and BW ~ 35 g) of female mice were treated during pregnancy and lactation by: tap water and caffeine solution at a concentration of 0.3 mg/mL through oral route. The offspring obtained, by completing 70 days of life, was underwent a behavioral battery test. Statistical analysis was performed by student t test and the different significance adopted was p < 0.05. According to our results, it was not found any significant differences in tail suspension and forced swimming tests. In anxiety related responses however, the mice of caffeine group had greater number of fecal pellets (178 %, p = 0.001) in the open field test, higher number of attempts (51 %, p = 0.03) in light-dark box and decreased percentage of entries in open arms (41 %, p = 0.01) in elevated plus maze test. Moreover, in the marble burying test, there was a significant decrease in the number of buried marbles compared with controls (110 %, p = 0,002). In the meantime, in the von Frey test, it was observed an exacerbation of mechanical allodynia both in basal conditions and after the carrageenan administration (p < 0.001). Furthermore, caffeine treatment during pregnancy and lactation causes long-term behavioral changes in the mice offspring that manifest later in life.
Collapse
Affiliation(s)
- Roberto Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Anderson Luiz Bezerra da Silveira
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Department of Physical Education, Institute of Education, Federal Rural University of Rio de Janeiro, BR 465, Km 7, 23897-000, Seropédica, Rio de Janeiro, Brazil
| | - Fernando de Azevedo Cruz Seara
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Rodrigo Rodrigues da Conceição
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Cláudio da Silva-Almeida
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Bruno Guimarães Marinho
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Fábio Fagundes da Rocha
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Luís Carlos Reis
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Wellington da Silva Côrtes
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil.
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Brito R, Pereira-Figueiredo D, Socodato R, Paes-de-Carvalho R, Calaza KC. Caffeine exposure alters adenosine system and neurochemical markers during retinal development. J Neurochem 2016; 138:557-70. [PMID: 27221759 DOI: 10.1111/jnc.13683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/18/2023]
Abstract
Evidence points to beneficial properties of caffeine in the adult central nervous system, but teratogenic effects have also been reported. Caffeine exerts most of its effects by antagonizing adenosine receptors, especially A1 and A2A subtypes. In this study, we evaluated the role of caffeine on the expression of components of the adenosinergic system in the developing avian retina and the impact of caffeine exposure upon specific markers for classical neurotransmitter systems. Caffeine exposure (5-30 mg/kg by in ovo injection) to 14-day-old chick embryos increased the expression of A1 receptors and concomitantly decreased A2A adenosine receptors expression after 48 h. Accordingly, caffeine (30 mg/kg) increased [(3) H]-8-cyclopentyl-1,3-dipropylxanthine (A1 antagonist) binding and reduced [(3) H]-ZM241385 (A2A antagonist) binding. The caffeine time-response curve demonstrated a reduction in A1 receptors 6 h after injection, but an increase after 18 and 24 h. In contrast, caffeine exposure increased the expression of A2A receptors from 18 and 24 h. Kinetic assays of [(3) H]-S-(4-nitrobenzyl)-6-thioinosine binding to the equilibrative adenosine transporter ENT1 revealed an increase in Bmax with no changes in Kd , an effect accompanied by an increase in adenosine uptake. Immunohistochemical analysis showed a decrease in retinal content of tyrosine hydroxylase, calbindin and choline acetyltransferase, but not Brn3a, after 48 h of caffeine injection. Furthermore, retinas exposed to caffeine had increased levels of phosphorylated extracellular signal-regulated kinase and cAMP-response element binding protein. Overall, we show an in vivo regulation of the adenosine system, extracellular signal-regulated kinase and cAMP-response element binding protein function and protein expression of specific neurotransmitter systems by caffeine in the developing retina. The beneficial or maleficent effects of caffeine have been demonstrated by the work of different studies. It is known that during animal development, caffeine can exert harmful effects, impairing the correct formation of CNS structures. In this study, we demonstrated cellular and tissue effects of caffeine's administration on developing chick embryo retinas. Those effects include modulation of adenosine receptors (A1 , A2 ) content, increasing in cAMP response element-binding protein (pCREB) and extracellular signal-regulated kinase phosphorylation (pERK), augment of adenosine equilibrative transporter content/activity, and a reduction of some specific cell subpopulations. ENT1, Equilibrative nucleoside transporter 1.
Collapse
Affiliation(s)
- Rafael Brito
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Karin C Calaza
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Souza AC, Souza A, Medeiros LF, De Oliveira C, Scarabelot VL, Da Silva RS, Bogo MR, Capiotti KM, Kist LW, Bonan CD, Caumo W, Torres IL. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring. Brain Res 2015; 1595:10-8. [DOI: 10.1016/j.brainres.2014.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 02/03/2023]
|
11
|
Gutierres JM, Carvalho FB, Schetinger MRC, Marisco P, Agostinho P, Rodrigues M, Rubin MA, Schmatz R, da Silva CR, de P. Cognato G, Farias JG, Signor C, Morsch VM, Mazzanti CM, Bogo M, Bonan CD, Spanevello R. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type. Life Sci 2014; 96:7-17. [DOI: 10.1016/j.lfs.2013.11.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/26/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
|
12
|
KW L, SK L, JH C. Effect of the methanol leaves extract of Clinacanthus nutans on the activity of acetylcholinesterase in male mice. JOURNAL OF ACUTE DISEASE 2014. [DOI: 10.1016/s2221-6189(14)60005-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Porciúncula LO, Sallaberry C, Mioranzza S, Botton PHS, Rosemberg DB. The Janus face of caffeine. Neurochem Int 2013; 63:594-609. [PMID: 24055856 DOI: 10.1016/j.neuint.2013.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation.
Collapse
Affiliation(s)
- Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil.
| | - Cássia Sallaberry
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Denis B Rosemberg
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil; Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Exatas e Ambientais, Universidade Comunitária da Região de Chapecó. Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó/SC, Brazil
| |
Collapse
|
14
|
Scaini G, Comim CM, Oliveira GMT, Pasquali MAB, Quevedo J, Gelain DP, Moreira JCF, Schuck PF, Ferreira GC, Bogo MR, Streck EL. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 2013; 36:721-30. [PMID: 23109061 DOI: 10.1007/s10545-012-9549-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
Abstract
Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alexander M, Smith AL, Rosenkrantz TS, Fitch RH. Therapeutic effect of caffeine treatment immediately following neonatal hypoxic-ischemic injury on spatial memory in male rats. Brain Sci 2013; 3:177-90. [PMID: 24961313 PMCID: PMC4061822 DOI: 10.3390/brainsci3010177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 12/15/2022] Open
Abstract
Hypoxia Ischemia (HI) refers to the disruption of blood and/or oxygen delivery to the brain. Term infants suffering perinatal complications that result in decreased blood flow and/or oxygen delivery to the brain are at risk for HI. Among a variety of developmental delays in this population, HI injured infants demonstrate subsequent memory deficits. The Rice-Vannucci rodent HI model can be used to explore behavioral deficits following early HI events, as well as possible therapeutic agents to help reduce deleterious outcomes. Caffeine is an adenosine receptor antagonist that has recently shown promising results as a therapeutic agent following HI injury. The current study sought to investigate the therapeutic benefit of caffeine following early HI injury in male rats. On post-natal day (P) 7, HI injury was induced (cauterization of the right common carotid artery, followed by two hours of 8% oxygen). Male sham animals received only a midline incision with no manipulation of the artery followed by room air exposure for two hours. Subsets of HI and sham animals then received either an intraperitoneal (i.p.) injection of caffeine (10 mg/kg), or vehicle (sterile saline) immediately following hypoxia. All animals later underwent testing on the Morris Water Maze (MWM) from P90 to P95. Results show that HI injured animals (with no caffeine treatment) displayed significant deficits on the MWM task relative to shams. These deficits were attenuated by caffeine treatment when given immediately following the induction of HI. We also found a reduction in right cortical volume (ipsilateral to injury) in HI saline animals as compared to shams, while right cortical volume in the HI caffeine treated animals was intermediate. These findings suggest that caffeine is a potential therapeutic agent that could be used in HI injured infants to reduce brain injury and preserve subsequent cognitive function.
Collapse
Affiliation(s)
- Michelle Alexander
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - Amanda L Smith
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - Ted S Rosenkrantz
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
16
|
Xing H, Wu H, Sun G, Zhang Z, Xu S, Li S. Alterations in activity and mRNA expression of acetylcholinesterase in the liver, kidney and gill of common carp exposed to atrazine and chlorpyrifos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:47-54. [PMID: 23237783 DOI: 10.1016/j.etap.2012.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Insecticides and herbicides are widely used in modern agricultural production. The intensive use of insecticide chlorpyrifos (CPF) and herbicide atrazine (ATR) has resulted in serious environmental problems. Herein, we investigated alteration in activity and mRNA levels of AChE in the liver, kidney and gill from common carp after 40d exposure to CPF and ATR alone or in combination and 20d recovery treatment. Results indicated that activity and mRNA levels of AChE at all high-dose groups have been significantly decreased after CPF and ATR alone or ATR/CPF mixture exposure, and the changes were improved in the end of recovery tests in varying degrees, the activity and gene expression of AChE in the joint toxicity of ATR and CPF groups were significantly lower than that in the single toxicant group. Our study suggests that the decrease of AChE activity observed at all high-dose groups (CPF and ATR alone or in combination) may be directly related to a lower AChE expression, and the joint toxicity of ATR and CPF is higher than ATR and CPF alone.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
This review discusses epidemiology and laboratory studies on the effects of prenatal methylxanthine administration on some systems developing organisms. They are mainly absorbed from coffee, tea and cocoa products such as cola beverages and chocolate bars. Prenatal methylxanthine exposure can induce several unfavourables changes in the developing organism, which are persistent even in later phases of life. Based on results obtained from animal studies, the effect on embryogenesis is not only poorly understood but also controversial. It is therefore important to study interspecies differences as results may differ depending on animals used and administration methods.
Collapse
|
18
|
Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease. Mol Neurobiol 2012; 45:279-86. [PMID: 22328136 DOI: 10.1007/s12035-012-8243-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.
Collapse
|
19
|
Profile of nucleotide catabolism and ectonucleotidase expression from the hippocampi of neonatal rats after caffeine exposure. Neurochem Res 2011; 37:23-30. [PMID: 21842269 DOI: 10.1007/s11064-011-0577-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/18/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1-8) and 5'-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5'-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.
Collapse
|
20
|
Brent RL, Christian MS, Diener RM. Evaluation of the reproductive and developmental risks of caffeine. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2011; 92:152-87. [PMID: 21370398 PMCID: PMC3121964 DOI: 10.1002/bdrb.20288] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/18/2011] [Accepted: 01/23/2011] [Indexed: 11/12/2022]
Abstract
A risk analysis of in utero caffeine exposure is presented utilizing epidemiological studies and animal studies dealing with congenital malformation, pregnancy loss, and weight reduction. These effects are of interest to teratologists, because animal studies are useful in their evaluation. Many of the epidemiology studies did not evaluate the impact of the "pregnancy signal," which identifies healthy pregnancies and permits investigators to identify subjects with low pregnancy risks. The spontaneous abortion epidemiology studies were inconsistent and the majority did not consider the confounding introduced by not considering the pregnancy signal. The animal studies do not support the concept that caffeine is an abortafacient for the wide range of human caffeine exposures. Almost all the congenital malformation epidemiology studies were negative. Animal pharmacokinetic studies indicate that the teratogenic plasma level of caffeine has to reach or exceed 60 µg/ml, which is not attainable from ingesting large amounts of caffeine in foods and beverages. No epidemiological study described the "caffeine teratogenic syndrome." Six of the 17 recent epidemiology studies dealing with the risk of caffeine and fetal weight reduction were negative. Seven of the positive studies had growth reductions that were clinically insignificant and none of the studies cited the animal literature. Analysis of caffeine's reproductive toxicity considers reproducibility and plausibility of clinical, epidemiological, and animal data. Moderate or even high amounts of beverages and foods containing caffeine do not increase the risks of congenital malformations, miscarriage or growth retardation. Pharmacokinetic studies markedly improve the ability to perform the risk analyses.
Collapse
Affiliation(s)
- Robert L Brent
- Thomas Jefferson University, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19899, USA.
| | | | | |
Collapse
|
21
|
Doyle LW, Cheong J, Hunt RW, Lee KJ, Thompson DK, Davis PG, Rees S, Anderson PJ, Inder TE. Caffeine and brain development in very preterm infants. Ann Neurol 2010; 68:734-42. [PMID: 21031585 DOI: 10.1002/ana.22098] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Caffeine improves neurological outcome in very preterm infants, but the mechanisms responsible for this neurological benefit are unknown. The objective of this study was to assess whether caffeine influenced brain macro- or microstructural development in preterm infants. METHODS Seventy preterm infants <1,251 g birthweight randomly allocated to either caffeine (n = 33) or placebo (n = 37) underwent brain magnetic resonance imaging (MRI) at term-equivalent age; white and gray matter abnormalities were qualitatively scored, global and regional brain volumes were measured, and white matter microstructure was evaluated using diffusion-weighted imaging. RESULTS There were no significant differences between the groups in the extent of white matter or gray matter abnormality, or in global or regional brain volumes. In contrast, although only available in 28 children, caffeine exposure was associated with reductions in the apparent diffusion coefficient, and radial and axial diffusivity with the greatest impact in the superior brain regions. The alterations in diffusion measures were not mediated by lowering the rate of lung injury, known as bronchopulmonary dysplasia. INTERPRETATION These diffusion changes are consistent with improved white matter microstructural development in preterm infants who received caffeine.
Collapse
Affiliation(s)
- Lex W Doyle
- Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xing H, Han Y, Li S, Wang J, Wang X, Xu S. Alterations in mRNA expression of acetylcholinesterase in brain and muscle of common carp exposed to atrazine and chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1666-1670. [PMID: 20696475 DOI: 10.1016/j.ecoenv.2010.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 05/29/2023]
Abstract
The uses of pesticides and herbicides have become an integral part of modern agricultural systems. The intensive use of pesticides chlorpyrifos (CPF) and herbicides atrazine (ATR) has resulted in serious environmental problems. Herein, we have developed real-time quantitative polymerase chain reaction assays for common carp (Cyprinus carpio L.) mRNA. The levels of AChE mRNA were evaluated in brain and muscle collected from common carp by treatment of ATR, CPF, and their mixture. The decreased transcription of AChE was detected in both tissues at different doses of the toxicants in the end of exposure tests, and the changes were improved in the end of recovery tests in varying degrees. It is suggested that transcription inhibition of AChE might be significant in long-playing single or associated exposure of ATR and CPF in common carp. Alteration in transcription of AChE caused by ATR, CPF, and their mixture could reveal the toxic mechanisms related to cholinergic signaling.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, PR China
| | | | | | | | | | | |
Collapse
|
23
|
mRNA expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period. Neurochem Res 2009; 35:564-71. [PMID: 19943190 DOI: 10.1007/s11064-009-0100-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 12/29/2022]
Abstract
Abnormally high levels of iron are observed in the brain of patients suffering from neurodegenerative disorders. The mechanisms involved in iron accumulation in neurodegenerative disorders remain poorly understood. In the present study we investigated the effects of aging and neonatal iron overload on the mRNA expression of proteins critically involved in controlling iron homeostasis. Wistar rat pups received a single daily dose of vehicle or iron (10 mg/kg of b.w. of Fe(2+)), at postnatal days 12-14. The expression of Transferrin Receptor (TfR), H-Ferritin, and IRP2 were analyzed by a semi-quantitative reverse transcriptase polymerase chain reaction assay in cortex, hippocampus and striatum of rats sacrificed at three different ages (15-day-old; 90-day-old and 2-year old rats). Results indicate that TfR, H-ferritin, and IRP2 mRNA expression was differentially affected by aging and by neonatal iron treatment in all three brain regions. These findings might have implications for the understanding of iron homeostasis misregulation associated with neurodegenerative disorders.
Collapse
|
24
|
Lorenzo A, León D, Castillo C, Ruiz M, Albasanz J, Martín M. Maternal caffeine intake during gestation and lactation down-regulates adenosine A1receptor in rat brain from mothers and neonates. J Neurosci Res 2009; 88:1252-61. [DOI: 10.1002/jnr.22287] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|