1
|
Yilmaz B, Erdogan CS, Sandal S, Kelestimur F, Carpenter DO. Obesogens and Energy Homeostasis: Definition, Mechanisms of Action, Exposure, and Adverse Effects on Human Health. Neuroendocrinology 2024; 115:72-100. [PMID: 39622213 DOI: 10.1159/000542901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Obesity is a major risk factor for noncommunicable diseases and is associated with a reduced life expectancy of up to 20 years, as well as with other consequences such as unemployment and increased economic burden for society. It is a multifactorial disease, and physiopathology of obesity involves dysregulated calorie utilization and energy balance, disrupted homeostasis of appetite and satiety, lifestyle factors including sedentary lifestyle, lower socioeconomic status, genetic predisposition, epigenetics, and environmental factors. Some endocrine-disrupting chemicals (EDCs) have been proposed as "obesogens" that stimulate adipogenesis leading to obesity. In this review, definition of obesogens, their adverse effects, underlying mechanisms, and metabolic implications will be updated and discussed. SUMMARY Disruption of lipid homeostasis by EDCs involves multiple mechanisms including increase in the number and size of adipocytes, disruption of endocrine-regulated adiposity and metabolism, alteration of hypothalamic regulation of appetite, satiety, food preference and energy balance, and modification of insulin sensitivity in the liver, skeletal muscle, pancreas, gastrointestinal system, and the brain. At a cellular level, obesogens can exert their endocrine disruptive effects by interfering with peroxisome proliferator-activated receptors and steroid receptors. Human exposure to chemical obesogens mainly occurs by ingestion and, to some extent, by inhalation and dermal uptake, usually in an unconscious manner. Persistent pollutants are lipophilic features; thus, they bioaccumulate in adipose tissue. KEY MESSAGES Although there are an increasing number of reports studying the effects of obesogens, their mechanisms of action remain to be elucidated. In addition, epidemiological studies are needed in order to evaluate human exposure to obesogens.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Clinical Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - David O Carpenter
- Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
2
|
Battistoni M, Metruccio F, Di Renzo F, Moretto A, Bacchetta R, Menegola E. Effects of combined exposure to two bisphenol plasticizers (BPA and BPB) on Xenopus laevis development. Reprod Toxicol 2024; 128:108614. [PMID: 38866257 DOI: 10.1016/j.reprotox.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Due to its endocrine disruptive activity, the plastic additive Bisphenol A (BPA) is classified as substance of very high concern (EU ECHA 2017). A correlation between environmental exposure to BPA and congenital defects has been described in humans and in experimental species including the amphibian Xenopus laevis, where severe branchial defects were associated to lethality. The exposure of X. laevis embryos to the BPA analogue bisphenol B (BPB) was recently linked to similar teratogenic effects, with BPB having relative potency about 3 times higher than BPA. The combined BPA-BPB exposure is realistic as both BPA and BPB are detected in human samples and environment. Limited experimental data are available on the combined developmental toxicity of BPA and BPB. The aim of the present work is to evaluate the effects of BPA and BPB mixture in the X. laevis development model, using R-FETAX procedure. The exposure was limited to the first day of development (corresponding to the phylotypic developmental period, common to all vertebrates). Samples were monitored for lethal effects during the full six-day test period and the external morphology was evaluated at the end of the test. Mixture effects were described by modelling, using the PROAST software package. Overall data modelling showed that dose-addiction could not be rejected, suggesting a health concern for co-exposure.
Collapse
Affiliation(s)
- M Battistoni
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| | - F Metruccio
- ICPS, ASST Fatebenefratelli Sacco, via GB Grassi, Milan 74-20159, Italy
| | - F Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy.
| | - A Moretto
- Università degli Studi di Padova, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, via Giustiniani, Padua 2-35128, Italy
| | - R Bacchetta
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| | - E Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria, Milan 26-20133, Italy
| |
Collapse
|
3
|
El-Shimi BI, Mohareb RM, Ahmed HH, Abohashem RS, Mahmoud KF, Hanna DH. Mechanistic Insights into Bisphenol A-Mediated Male Infertility: Potential Role of Panax Ginseng Extract. Chem Biodivers 2024; 21:e202400480. [PMID: 38818674 DOI: 10.1002/cbdv.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Male infertility is identified by the inability of a man to successfully impregnate his fertile female partner, even following a year of regular unprotected sexual intercourse. About half of all infertility cases are attributed to what is known as "male factor" infertility. The escalating prevalence of male infertility in the contemporary era across the globe can be largely attributed to environmental pollution, which is the common etiological factor due to the ubiquitous presence of the environmental contaminants. Bisphenol A is recognized as an endocrine-disrupting chemical that has adverse effects on both male and female reproductive systems. On the other hand, numerous studies have demonstrated that Panax ginseng possessed the potential to improve male infertility parameters; promote spermatogenesis, recover the quality and motility of sperm and enhance testicular functions as it acted as a natural androgen supplement. The objective of this review is to offer a summary of the findings obtained from the current research data on the insult of bisphenol A (BPA) on male infertility and its supposed mode of action, as well as shed light on the potent ameliorative role of Panax ginseng extract, with a special focus on the mechanism behind its action. This review delivers a clear understanding of BPA mechanism of action on male infertility and the presumed risks deriving from its exposure. Also, this review provides evidence for the functional role of Panax ginseng extract in restoring male fertility.
Collapse
Affiliation(s)
- Basma I El-Shimi
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Khaled F Mahmoud
- Food Technology Department, National Research Centre, Dokki, Giza, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Abdulazeez ZM, Yazici F, Aksoy A. Influence of UV light, ultrasound, and heat treatment on the migration of bisphenol A from polyethylene terephthalate bottle into the food simulant. Food Chem 2024; 439:138162. [PMID: 38100872 DOI: 10.1016/j.foodchem.2023.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
This research examined the impacts of ultrasound, UV light, storage time, and temperature on the leaching of bisphenol A (BPA) from polyethylene terephthalate (PET) drinking water bottles in Turkey. The initial phase of the investigation encompassed the quantification of BPA in two distinct brands of bottled water. Samples were extracted by solid- phase extraction (SPE) and analyzed by high performance liquid chromatography with fluorescence detection (HPLC-FLD). According to the results in the first part, the highest BPA levels were found in bottled water. In the second part of the study, 10 to 30 min of ultrasound treatment increased the BPA migration with increased time in simulants. In the first and second weeks of storage at 25 °C, the effect of storage on BPA migration was below the detection limit (
Collapse
Affiliation(s)
- Zana M Abdulazeez
- Department of Food Science and Quality Control, Faculty of Agricultural Engineering Sciences, University of Sulaimani, Iraq.
| | - Fehmi Yazici
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Turkey
| | - Abdurrahman Aksoy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
5
|
Metruccio F, Battistoni M, Di Renzo F, Bacchetta R, Santo N, Menegola E. Teratogenic and neuro-behavioural toxic effects of bisphenol A (BPA) and B (BPB) on Xenopus laevis development. Reprod Toxicol 2024; 123:108496. [PMID: 37951421 DOI: 10.1016/j.reprotox.2023.108496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Bisphenol A (BPA) is a plastic additive with endocrine disruptive activity, classified in 2017 by EU ECHA as substance of very high concern. A correlation between environmental exposure to BPA and congenital defects has been described in humans and in experimental species, including the amphibian Xenopus laevis. Among BPA analogues, bisphenol B (BPB) is used as alternative in different not-EU countries, including US, but seems to share with BPA its endocrine disruptor properties. Aim of the present work is the evaluation of the effects of BPB versus BPA exposure in a X. laevis developmental model. A windowed exposure (R-FETAX method) was applied covering the developmental phylotypic period (teratogenicity window), or the late tailbud stages (neuro-behavioural toxicity window, corresponding to the spontaneous swimming acquisition period). Samples were monitored for lethal effects during the full test period. External morphology evaluation and deglutition functional test were applied in any group. Abnormal tadpoles were also processed for cartilage staining. In groups exposed during neuro-behavioural toxicity window the swimming test was also applied. Lethality and malformations were obtained only in samples exposed during the teratogenicity window; these data were modelled using PROAST software and BPB relative potency resulted about 3 times higher than BPA. The day-by-day evaluation revealed that lethality was correlated to embryonic abnormal development of gills and apoptosis in gill primordia. Teratogenicity was never detected in groups exposed during the neuro-behavioural toxicity window, where some significant neuro-behavioural deficits were detected in tadpoles exposed to the highest tested concentrations of BPA and BPB.
Collapse
Affiliation(s)
- F Metruccio
- ICPS, ASST Fatebenefratelli Sacco, via GB Grassi, 74, 20159 Milan, Italy
| | - M Battistoni
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| | - F Di Renzo
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy.
| | - R Bacchetta
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| | - N Santo
- Unitech NOLIMITS, Imaging Facility, Università degli Studi di Milano, via Golgi, 19, 20133 Milan, Italy
| | - E Menegola
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| |
Collapse
|
6
|
Lei X, Hao Z, Wang H, Tang Z, Zhang Z, Yuan J. Identification of core genes, critical signaling pathways, and potential drugs for countering BPA-induced hippocampal neurotoxicity in male mice. Food Chem Toxicol 2023; 182:114195. [PMID: 37992956 DOI: 10.1016/j.fct.2023.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Although the neurotoxicity of the common chemical bisphenol A (BPA) to the mouse hippocampus has been often reported, the mechanism underlying BPA-induced depression-like behavior in mice remains unclear. We evaluated BPA's role in inducing depressive-like behavior by exposing male mice to different BPA concentrations (0, 0.01, 0.1, and 1 μg/mL) and using the forced swimming test (FST) and tail suspension test (TST). We aimed to identify critical gene and anti-BPA-neurotoxicity compounds using RNA sequencing combined with bioinformatics analysis. Our results showed that 1 μg/mL BPA exposure increased mouse immobility during the FST and TST. Based on BPA-induced hippocampal transcriptome changes, we identified NADH: ubiquinone oxidoreductase subunit AB1 (Ndufab1) as a critical and potential therapeutic target gene, and Ndufab1 mRNA and protein levels were downregulated in the BPA-exposed groups. Furthermore, molecular docking identified phenelzine as a compound that could counteract BPA-related neurotoxicity. Conclusively, our analyses confirmed that BPA triggers depressive behavior in male mice by downregulating Ndufab1 expression and suggested that phenelzine might reduce BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Xuepei Lei
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhoujie Hao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Huimin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhuo Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianqin Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Ecological Animal Sciences and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
8
|
Guignard D, Canlet C, Tremblay-Franco M, Chaillou E, Gautier R, Gayrard V, Picard-Hagen N, Schroeder H, Jourdan F, Zalko D, Viguié C, Cabaton NJ. Gestational exposure to bisphenol A induces region-specific changes in brain metabolomic fingerprints in sheep. ENVIRONMENT INTERNATIONAL 2022; 165:107336. [PMID: 35700571 DOI: 10.1016/j.envint.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Collapse
Affiliation(s)
- Davy Guignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Elodie Chaillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Henri Schroeder
- Université de Lorraine, INSERM U1256, NGERE, Nutrition Génétique et Exposition aux Risques Environnementaux, 54000 Nancy, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicolas J Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
9
|
Zhang Z, Wang H, Lei X, Mehdi Ommati M, Tang Z, Yuan J. Bisphenol a exposure decreases learning ability through the suppression of mitochondrial oxidative phosphorylation in the hippocampus of male mice. Food Chem Toxicol 2022; 165:113167. [DOI: 10.1016/j.fct.2022.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
|
10
|
Chronic exposure of bisphenol-A impairs cognitive function and disrupts hippocampal insulin signaling pathway in male mice. Toxicology 2022; 472:153192. [PMID: 35489422 DOI: 10.1016/j.tox.2022.153192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Bisphenol-A (BPA), a well-known estrogenic endocrine disruptor, is generally applied to turn out plastic consumer products. Available data have manifested that exposure to BPA can trigger insulin resistance. Hence, the purpose of the actual study was to consider the impacts of BPA exposure on cognitive function and insulin signaling pathway in the hippocampus of male offspring mice. For this purpose, the pregnant female mice were treated either vehicle (0.1% ethanol) or BPA (0.01, 0.1, and 1µg/mL) via drinking water from day 1 of gestation until delactation (D1-PND21, newborn exposure). Afterward, the three-week-old male offspring mice took orally with the same doses of BPA for nine weeks (PND84). The behavioral tests, blood sugar level, histological observation, transcriptome sequencing, glucose transporter 4 (GLUT4), and hippocampal insulin signaling pathway were checked for the male offspring mice at 13 weeks of age (PND91). Our data indicated that BPA exposure impaired cognitive function, disrupted the hippocampal regular cell arrangement, increased blood glucose levels, disturbed the insulin signaling pathway including phosphorylated insulin receptor substrate1 (p-IRS1), protein kinase B (p-AKT), and glycogen synthase kinase 3β (p-GSK3β). At the same time, the mRNA and protein expressions of GLUT4 were markedly down-regulated in the BPA-exposed groups. To sum up, it has been suggested from these results that BPA has detrimental effects on the insulin signaling pathway, which might subsequently be conducive to the impairment of cognitive function in the adult male offspring mice. Therefore, BPA exposure might in part be an element of risk for the long-term neurodegeneration in male offspring mice.
Collapse
|
11
|
Vaudin P, Augé C, Just N, Mhaouty-Kodja S, Mortaud S, Pillon D. When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms. ENVIRONMENTAL RESEARCH 2022; 205:112495. [PMID: 34883077 DOI: 10.1016/j.envres.2021.112495] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs have become consumer products, with a daily use for some of them. The volume of production and consumption of drugs is such that they have become environmental pollutants. Their transfer to wastewater through urine, feces or rinsing in case of skin use, associated with partial elimination by wastewater treatment plants generalize pollution in the hydrosphere, including drinking water, sediments, soils, the food chain and plants. Here, we review the potential effects of environmental exposure to three classes of pharmaceutical drugs, i.e. antibiotics, antidepressants and non-steroidal anti-inflammatory drugs, on neurodevelopment. Experimental studies analyzing their underlying modes of action including those related to endocrine disruption, and molecular mechanisms including epigenetic modifications are presented. In addition, the contribution of brain imaging to the assessment of adverse effects of these three classes of pharmaceuticals is approached.
Collapse
Affiliation(s)
- Pascal Vaudin
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| | - Corinne Augé
- UMR 1253, IBrain, University of Tours, INSERM, 37000, Tours, France
| | - Nathalie Just
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires, UMR7355, CNRS, Université D'Orléans, 45000, Orléans, France
| | - Delphine Pillon
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| |
Collapse
|
12
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2021; 46:2586-2600. [PMID: 33216313 PMCID: PMC8134618 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
13
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
14
|
Peshdary V, Hobbs CA, Maynor T, Shepard K, Gagné R, Williams A, Kuo B, Chepelev N, Recio L, Yauk C, Atlas E. Transcriptomic pathway and benchmark dose analysis of Bisphenol A, Bisphenol S, Bisphenol F, and 3,3',5,5'-Tetrabromobisphenol A in H9 human embryonic stem cells. Toxicol In Vitro 2021; 72:105097. [PMID: 33476716 DOI: 10.1016/j.tiv.2021.105097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
Bisphenol A (BPA) is a chemical used in the manufacturing of plastics to which human exposure is ubiquitous. Numerous studies have linked BPA exposure to many adverse health outcomes prompting the replacement of BPA with various analogues including bisphenol-F (BPF) and bisphenol S (BPS). Other bisphenols are used in various consumer applications, such as 3,3',5,5'-Tetrabromobisphenol A (TBBPA), which is used as a flame retardant. Few studies to date have examined the effects of BPA and its analogues in stem cells to explore potential developmental impacts. Here we used transcriptomics to investigate similarities and differences of BPA and three of its analogues in the estrogen receptor negative, human embryonic stem cell line H9 (WA09). H9 cells were exposed to increasing concentrations of the bisphenols and analyzed using RNA-sequencing. Our data indicate that BPA, BPF, and BPS have similar potencies in inducing transcriptional changes and perturb many of the same pathways. TBBPA, the least structurally similar bisphenol of the group, exhibited much lower potency. All bisphenols robustly impacted gene expression in these cells, albeit at concentrations well above those observed in estrogen-positive cells. Overall, we provide a foundational data set against which to explore the transcriptional similarities of other bisphenols in embryonic stem cells, which may be used to assess the suitability of chemical grouping for read-across and for preliminary potency evaluation.
Collapse
Affiliation(s)
- Vian Peshdary
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cheryl A Hobbs
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Timothy Maynor
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Kim Shepard
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, United States
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada.
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Dreolin N, Aznar M, Moret S, Nerin C. Development and validation of a LC–MS/MS method for the analysis of bisphenol a in polyethylene terephthalate. Food Chem 2019; 274:246-253. [DOI: 10.1016/j.foodchem.2018.08.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/13/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
16
|
Alavian-Ghavanini A, Lin PI, Lind PM, Risén Rimfors S, Halin Lejonklou M, Dunder L, Tang M, Lindh C, Bornehag CG, Rüegg J. Prenatal Bisphenol A Exposure is Linked to Epigenetic Changes in Glutamate Receptor Subunit Gene Grin2b in Female Rats and Humans. Sci Rep 2018; 8:11315. [PMID: 30054528 PMCID: PMC6063959 DOI: 10.1038/s41598-018-29732-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) exposure has been linked to neurodevelopmental disorders and to effects on epigenetic regulation, such as DNA methylation, at genes involved in brain function. High doses of BPA have been shown to change expression and regulation of one such gene, Grin2b, in mice. Yet, if such changes occur at relevant doses in animals and humans has not been addressed. We investigated if low-dose developmental BPA exposure affects DNA methylation and expression of Grin2b in brains of adult rats. Furthermore, we assessed associations between prenatal BPA exposure and Grin2b methylation in 7-year old children. We found that Grin2b mRNA expression was increased and DNA methylation decreased in female, but not in male rats. In humans, prenatal BPA exposure was associated with increased methylation levels in girls. Additionally, low APGAR scores, a predictor for increased risk for neurodevelopmental diseases, were associated with higher Grin2b methylation levels in girls. Thus, we could link developmental BPA exposure and low APGAR scores to changes in the epigenetic regulation of Grin2b, a gene important for neuronal function, in a sexual dimorphic fashion. Discrepancies in exact locations and directions of the DNA methylation change might reflect differences between species, analysed tissues, exposure level and/or timing.
Collapse
Affiliation(s)
- Ali Alavian-Ghavanini
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36, Södertälje, Sweden
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Molecular Medicine (CMM), 171 64, Solna, Sweden
| | - Ping-I Lin
- Karlstad University, Department of Health Sciences, 651 88, Karlstad, Sweden
| | - P Monica Lind
- Uppsala University, Department of Medical Sciences, Occupational and Environmental Medicine, 751 85, Uppsala, Sweden
| | - Sabina Risén Rimfors
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36, Södertälje, Sweden
| | - Margareta Halin Lejonklou
- Uppsala University, Department of Medical Sciences, Occupational and Environmental Medicine, 751 85, Uppsala, Sweden
| | - Linda Dunder
- Uppsala University, Department of Medical Sciences, Occupational and Environmental Medicine, 751 85, Uppsala, Sweden
| | - Mandy Tang
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36, Södertälje, Sweden
| | - Christian Lindh
- Lund University, Division of Occupational and Environmental Medicine, Lund University, 221 85, Lund, Sweden
| | - Carl-Gustaf Bornehag
- Karlstad University, Department of Health Sciences, 651 88, Karlstad, Sweden
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joëlle Rüegg
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36, Södertälje, Sweden.
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Molecular Medicine (CMM), 171 64, Solna, Sweden.
| |
Collapse
|
17
|
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. ENVIRONMENTAL RESEARCH 2018; 164:45-52. [PMID: 29476947 PMCID: PMC8085909 DOI: 10.1016/j.envres.2018.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/01/2023]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Monica G Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA, USA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Juanita K Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
18
|
Ahmed RG, Walaa GH, Asmaa FS. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol Ind Health 2018; 34:397-407. [DOI: 10.1177/0748233718757082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to assess the effects of neonatal bisphenol A (BPA) administration on neuroendocrine features (the thyroid–brain axis). BPA (20 or 40 µg/kg) was orally administered to juvenile male albino rats ( Rattus norvegicus) from postnatal days (PNDs) 15 to 30. Both doses resulted in lower serum thyroxine (T4), triiodothyronine (T3), and growth hormone levels and higher thyrotropin level than the control levels at PND 30. In the neonatal cerebellum and cerebrum, vacuolation, pyknosis, edema, degenerative changes, and reductions in the size and number of the cells were observed in both treated groups. Alternatively, elevations in oxidative markers (lipid peroxidation, nitric oxide, and hydrogen peroxide [H2O2]) at both dose levels were recorded at PND 30, along with decreased activities of antioxidant markers (ascorbic acid, total thiol [t-SH], glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) with respect to control levels. Thus, the BPA-induced hypothyroid state may disturb the neonatal thyroid–brain axis via production of free radicals, and this could damage the plasma membrane and cellular components, delaying cerebrum and cerebellum development.
Collapse
Affiliation(s)
- RG Ahmed
- Anatomy and Embryology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - GH Walaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - FS Asmaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Durmaz E, Asci A, Erkekoglu P, Balcı A, Bircan I, Koçer-Gumusel B. Urinary bisphenol A levels in Turkish girls with premature thelarche. Hum Exp Toxicol 2018; 37:1007-1016. [PMID: 29405766 DOI: 10.1177/0960327118756720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is a growing concern over the timing of pubertal breast development and its possible association with exposure to endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA). BPA is abundantly used to harden plastics. The aim of this study was to investigate the relation between premature thelarche (PT) and BPA by comparing the urinary BPA levels of PT girls with those of healthy subjects. Twenty-five newly diagnosed nonobese PT subjects (aged 4-8 years) who were admitted to the Pediatric Endocrinology Department at Akdeniz University were recruited. The control group composed of 25 age-matched girls without PT and other endocrine disorders. Urinary BPA levels were measured by high pressure liquid chromatography. The median urinary concentrations of BPA were found to be significantly higher in the PT group compared to the healthy control group (3.2 vs. 1.62 μg/g creatinine, p < 0.05). We observed a weak positive correlation between uterus volume and urinary BPA levels. There was a weak correlation between estradiol and urinary BPA levels ( r = 0.166; p = 0.37); and luteinizing hormone and urinary BPA levels ( r = 0.291; p = 0.08) of PT girls. Our results suggest that exposure to BPA might be one of the underlying factors of early breast development in prepubertal girls and EDCs may be considered as one of the etiological factors in the development of PT.
Collapse
Affiliation(s)
- E Durmaz
- 1 Department of Pediatric Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - A Asci
- 2 Department of Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - P Erkekoglu
- 3 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - A Balcı
- 3 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - I Bircan
- 1 Department of Pediatric Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - B Koçer-Gumusel
- 3 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Mondschein RJ, Dennis JM, Liu H, Ramakrishnan RK, Nazarenko S, Turner SR, Long TE. Synthesis and Characterization of Amorphous Bibenzoate (Co)polyesters: Permeability and Rheological Performance. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ryan J. Mondschein
- Macromolecules
Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M. Dennis
- Macromolecules
Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Haoyu Liu
- Macromolecules
Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ramesh K. Ramakrishnan
- School
of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39402, United States
| | - Sergei Nazarenko
- School
of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39402, United States
| | - S. Richard Turner
- Macromolecules
Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E. Long
- Macromolecules
Innovation Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Lee JH, Ahn C, Kang HY, Hong EJ, Hyun SH, Choi KC, Jeung EB. Effects of Octylphenol and Bisphenol A on the Metal Cation Transporter Channels of Mouse Placentas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100965. [PMID: 27690074 PMCID: PMC5086704 DOI: 10.3390/ijerph13100965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Octylphenol (OP) and bisphenol A (BPA) are known as endocrine-disrupting chemicals (EDCs). During pregnancy, the expression of steroid hormone receptors is controlled by maternal and fetal nutrition. To evaluate the impact of EDCs during pregnancy, ethinyl estradiol (EE, 0.2 mg/kg/day), OP (50 mg/kg/day), and BPA (50 mg/kg/day) were administered to pregnant mice. The mRNA levels of TRPV6 (transient receptor potential cation channels in subfamily V, member 6) decreased significantly by EE and OP. The PMCA1 (ATPase, Ca++ transporting, plasma membrane 1) mRNA and protein levels decreased significantly by EE, OP, and BPA. CTR1 (solute carrier family 31, member 1) and ATP7A (ATPase, Cu++ transporting, alpha polypeptide) expression decreased significantly by EE, OP, and BPA. The mRNA levels of IREG1 (iron-regulated transporter, member 1) decreased significantly by EE. Hephaestin (HEPH) mRNA levels decreased significantly by EE, OP, and BPA, and protein levels decreased significantly by BPA. As a result of immunohistochemistry analysis, all cation transporter proteins were found in labyrinth of placenta. To confirm the cytosolic level of cations, levels of cation level in fetal serum were measured. EE, OP, and BPA significantly reduced serum calcium and copper levels, and iron levels were reduced by BPA. Taken together, some EDCs, such as OP and BPA, could modulate the calcium, copper, and iron ion-transporting channels during pregnancy. The fetus relies on the mother for ionic transportation, and, therefore, pregnant women should avoid exposure to cation-channel-disrupting chemicals.
Collapse
Affiliation(s)
- Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Cheongju, Chungbuk 28644, Korea.
| | - Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Cheongju, Chungbuk 28644, Korea.
| | - Hee Young Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Cheongju, Chungbuk 28644, Korea.
| | - Eui-Ju Hong
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Biotechnology and Embryology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
22
|
Ramu J, Konak T, Liachenko S. Magnetic resonance spectroscopic analysis of neurometabolite changes in the developing rat brain at 7T. Brain Res 2016; 1651:114-120. [PMID: 27663970 DOI: 10.1016/j.brainres.2016.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
We utilized proton magnetic resonance spectroscopy to evaluate the metabolic profile of the hippocampus and anterior cingulate cortex of the developing rat brain from postnatal days 14-70. Measured metabolite concentrations were modeled using linear, exponential, or logarithmic functions and the time point at which the data reached plateau (i.e. when the portion of the data could be fit to horizontal line) was estimated and was interpreted as the time when the brain has reached maturity with respect to that metabolite. N-acetyl-aspartate and myo-inositol increased within the observed period. Gluthathione did not vary significantly, while taurine decreased initially and then stabilized. Phosphocreatine and total creatine had a tendency to increase towards the end of the experiment. Some differences between our data and the published literature were observed in the concentrations and dynamics of phosphocreatine, myo-inositol, and GABA in the hippocampus and creatine, GABA, glutamine, choline and N-acetyl-aspartate in the cortex. Such differences may be attributed to experimental conditions, analysis approaches and animal species. The latter is supported by differences between in-house rat colony and rats from Charles River Labs. Spectroscopy provides a valuable tool for non-invasive brain neurochemical profiling for use in developmental neurobiology research. Special attention needs to be paid to important sources of variation like animal strain and commercial source.
Collapse
Affiliation(s)
- Jaivijay Ramu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Tetyana Konak
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
23
|
Rebuli ME, Patisaul HB. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol 2016; 160:148-59. [PMID: 26307491 PMCID: PMC4762757 DOI: 10.1016/j.jsbmb.2015.08.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain sex differences are found in nearly every region of the brain and fundamental to sexually dimorphic behaviors as well as disorders of the brain and behavior. These differences are organized during gestation and early adolescence and detectable prior to puberty. Endocrine disrupting compounds (EDCs) interfere with hormone action and are thus prenatal exposure is hypothesized to disrupt the formation of sex differences, and contribute to the increased prevalence of pediatric neuropsychiatric disorders that present with a sex bias. OBJECTIVE Available evidence for the ability of EDCs to impact the emergence of brain sex differences in the rodent brain was reviewed here, with a focus on effects detected at or before puberty. METHODS The peer-reviewed literature was searched using PubMed, and all relevant papers published by January 31, 2015 were incorporated. Endpoints of interest included molecular cellular and neuroanatomical effects. Studies on behavioral endpoints were not included because numerous reviews of that literature are available. RESULTS The hypothalamus was found to be particularly affected by estrogenic EDCs in a sex, time, and exposure dependent manner. The hippocampus also appears vulnerable to endocrine disruption by BPA and PCBs although there is little evidence from the pre-pubertal literature to make any conclusions about sex-specific effects. Gestational EDC exposure can alter fetal neurogenesis and gene expression throughout the brain including the cortex and cerebellum. The available literature primarily focuses on a few, well characterized EDCs, but little data is available for emerging contaminants. CONCLUSION The developmental EDC exposure literature demonstrates evidence of altered neurodevelopment as early as fetal life, with sex specific effects observed throughout the brain even before puberty.
Collapse
Affiliation(s)
- Meghan E Rebuli
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
24
|
Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity. J Dev Orig Health Dis 2015; 6:539-52. [PMID: 26378919 DOI: 10.1017/s2040174415001488] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications.
Collapse
|
25
|
Kelly EA, Opanashuk LA, Majewska AK. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat 2014; 8:117. [PMID: 25374513 PMCID: PMC4205826 DOI: 10.3389/fnana.2014.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Bisphenol-A (BPA) is a monomer used in the production of polycarbonate plastics, epoxies and resins and is present in many common household objects ranging from water bottles, can linings, baby bottles, and dental resins. BPA exposure has been linked to numerous negative health effects throughout the body, although the mechanisms of BPA action on the developing brain are still poorly understood. In this study, we sought to investigate whether low dose BPA exposure during a developmental phase when brain connectivity is being organized can cause long-term deleterious effects on brain function and plasticity that outlast the BPA exposure. Lactating dams were orally exposed to 25 μg/kg/day of BPA (one half the U.S. Environmental Protection Agency's 50 μg/kg/day rodent dose reference) or vehicle alone from postnatal day (P)5 to P21. Pups exposed to BPA in their mother's milk exhibited deficits in activity-dependent plasticity in the visual cortex during the visual critical period (P28). To determine the possible mechanisms underlying BPA action, we used immunohistochemistry to examine histological markers known to impact cortical maturity and developmental plasticity and quantified cortical dendritic spine density, morphology, and dynamics. While we saw no changes in parvalbumin neuron density, myelin basic protein expression or microglial density in BPA-exposed animals, we observed increases in spine density on apical dendrites in cortical layer five neurons but no significant alterations in other morphological parameters. Taken together our results suggest that exposure to very low levels of BPA during a critical period of brain development can have profound consequences for the normal wiring of sensory circuits and their plasticity later in life.
Collapse
Affiliation(s)
- Emily A Kelly
- Department of Neurobiology and Anatomy, Center for Visual Science, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| | - Lisa A Opanashuk
- Department of Environmental Medicine, University of Rochester Rochester, NY, USA
| | - Ania K Majewska
- Department of Neurobiology and Anatomy, Center for Visual Science, School of Medicine and Dentistry, University of Rochester Rochester, NY, USA
| |
Collapse
|
26
|
Sadowski RN, Wise LM, Park PY, Schantz SL, Juraska JM. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience 2014; 279:122-31. [PMID: 25193849 DOI: 10.1016/j.neuroscience.2014.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/26/2022]
Abstract
Previous work has shown that exposure to bisphenol A (BPA) during early development can alter sexual differentiation of the brain in rodents, although few studies have examined effects on areas of the brain associated with cognition. The current study examined if developmental BPA exposure alters the total number of neurons and glia in the medial prefrontal cortex (mPFC) in adulthood. Pregnant Long-Evans rats were orally exposed to 0, 4, 40, or 400-μg/kg BPA in corn oil throughout pregnancy. From postnatal days 1 to 9, pups were given daily oral doses of oil or BPA, at doses corresponding to those given during gestation. Brains were examined in adulthood, and the volume of layers 2/3 and layers 5/6 of the mPFC was parcellated. The density of neurons and glia in these layers was quantified stereologically with the optical disector, and density was multiplied by volume for each animal. Males exposed to 400-μg/kg BPA were found to have increased numbers of neurons and glia in layers 5/6. Although there were no significant effects of BPA in layers 2/3, the pattern of increased neuron number in males exposed to 400-μg/kg BPA was similar to that seen in layers 5/6. No effects of BPA were seen in females or in males exposed to the other doses of BPA. This study indicates that males are more susceptible to the long-lasting effects of BPA on anatomy of the mPFC, an area implicated in neurological disorders.
Collapse
Affiliation(s)
- R N Sadowski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - L M Wise
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - P Y Park
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - S L Schantz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - J M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States.
| |
Collapse
|
27
|
Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A. Toxicology 2014; 322:51-60. [DOI: 10.1016/j.tox.2014.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 11/17/2022]
|
28
|
Duarte JM, Do KQ, Gruetter R. Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 2014; 35:1660-8. [DOI: 10.1016/j.neurobiolaging.2014.01.135] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 11/19/2013] [Accepted: 01/27/2014] [Indexed: 12/29/2022]
|
29
|
Liu X, Matsushima A, Shimohigashi M, Shimohigashi Y. A characteristic back support structure in the bisphenol A-binding pocket in the human nuclear receptor ERRγ. PLoS One 2014; 9:e101252. [PMID: 24978476 PMCID: PMC4076284 DOI: 10.1371/journal.pone.0101252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
The endocrine disruptor bisphenol A (BPA) affects various genes and hormones even at merely physiological levels. We recently demonstrated that BPA binds strongly to human nuclear receptor estrogen-related receptor (ERR) γ and that the phenol-A group of BPA is in a receptacle pocket with essential amino acid residues to provide structural support at the backside. This led BPA to bind to ERRγ in an induced-fit-type binding mode, for example, with a rotated motion of Val313 to support the Tyr326-binding site. A similar binding mechanism appears to occur at the binding site of the BPA phenol-B ring. X-ray crystal analysis of the ERRγ-ligand-binding domain/BPA complex suggested that the ERRγ receptor residues Leu342, Leu345, Asn346, and Ile349 function as intrinsic binding sites of the BPA phenol-B, whereas Leu265, Leu268, Ile310, Val313, Leu324, Tyr330, Lys430, Ala431, and His434 work as structural elements to assist these binding sites. In the present study, by evaluating the mutant receptors replaced by a series of amino acids, we demonstrated that a finely assembled structural network indeed exists around the two adjacent Leu342-Asn346 and Leu345-Ile349 ridges on the same α-helix 7 (H7), constructing a part of the binding pocket structure with back support residues for the BPA phenol-B ring. The results reveal that the double-layer binding sites, namely, the ordinary ligand binding sites and their back support residues, substantiate the strong binding of BPA to ERRγ. When ERRγ-Asn346 was replaced by the corresponding Gly and Tyr in ERRα and ERRβ, respectively, the binding affinity of BPA and even 4-hydroxytamxifen (4-OHT) is much reduced. Asn346 was found to be one of the residues that make ERRγ to be exclusive to BPA.
Collapse
Affiliation(s)
- Xiaohui Liu
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Sciences, and Risk Science Research Center, Kyushu University, Fukuoka, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Sciences, and Risk Science Research Center, Kyushu University, Fukuoka, Japan
| | - Miki Shimohigashi
- Division of Biology, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Yasuyuki Shimohigashi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Sciences, and Risk Science Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Wolkowicz IRH, Herkovits J, Pérez Coll CS. Stage-dependent toxicity of bisphenol a on Rhinella arenarum (anura, bufonidae) embryos and larvae. ENVIRONMENTAL TOXICOLOGY 2014; 29:146-154. [PMID: 22052622 DOI: 10.1002/tox.20781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/15/2011] [Accepted: 09/24/2011] [Indexed: 05/31/2023]
Abstract
The acute and chronic toxicity of bisphenol A (BPA) was evaluated on the common South American toad Rhinella arenarum embryos and larvae by means of continuous and pulse exposure treatments. Embryos were treated continuously from early blastula (S.4) up to complete operculum (S.25), during early larval stages and by means of 24 h pulse exposures of BPA in concentrations ranging between 1.25 and 40 mg L(-1) , in order to evaluate the susceptibility to this compound in different developmental stages. For lethal effects, S.25 was the most sensitive and gastrula was the most resistant to BPA. The Teratogenic Index for neurula, the most sensitive embryonic stage for sublethal effects was 4.7. The main morphological alterations during early stages were: delayed or arrested development, reduced body size, persistent yolk plug, microcephaly, axial/tail flexures, edemas, blisters, waving fin, underdeveloped gills, mouth malformations, and cellular dissociation. BPA caused a remarkable narcotic effect from gill circulation stage (S.20) onwards in all the organisms exposed after 3 h of treatment with 10 mg L(-1) BPA. After recovering, the embryos exhibited scarce response to stimuli, erratic or circular swimming, and spasmodic contractions from 5 mg L(-1) onwards. Our results highlight the lethal and sublethal effectsof BPA on R. arenarum embryos and larvae, in the last case both at structural and functional levels.
Collapse
Affiliation(s)
- Ianina R Hutler Wolkowicz
- Programa de Seguridad Química, Instituto de Ciencias Ambientales y Salud (ICAS), Fundación PROSAMA, Buenos Aires, Argentina
| | | | | |
Collapse
|
31
|
Zhang J, Zhao SQ, Zhang K, Zhou JQ. Cd-doped ZnO quantum dots-based immunoassay for the quantitative determination of bisphenol A. CHEMOSPHERE 2014; 95:105-110. [PMID: 24034823 DOI: 10.1016/j.chemosphere.2013.08.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental contaminant in food products and aquatic ecosystems. Its endocrine and developmental toxicity presents a serious concern to human health and an effective high-throughput method for its detection is desirable. In this paper, water-soluble quantum dots (QDs) have been conjugated covalently with BPA antibodies and the conjugate has been utilized in a competitive fluorescence-linked immunoassay (FLISA). Cd-doped ZnO QDs were functionalized with poly(amidoamine) (PAMAM) dendrimers, as evidenced by ultraviolet absorption spectrum and fluorescence emission spectra analyses, and this led to their successful transfer into aqueous solution. Biological mass spectrometry demonstrated that the bisphenol A antibodies were successfully coupled to the water-soluble QDs, and the structures of these conjugates kept intact. The FLISA method allowed for BPA determination in a linear working range of 20.8-330.3 ng mL(-1) with the limit of detection (LOD) of 13.1 ng mL(-1). The recoveries of BPA from water samples were from 85.92% to 109.62%. In conclusion, a rapid and sensitive FLISA was developed by utilizing novel QD coupling method and validated for use in aqueous samples.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | | | | | | |
Collapse
|
32
|
A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals. Food Chem Toxicol 2013; 62:935-48. [PMID: 23867546 DOI: 10.1016/j.fct.2013.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding.
Collapse
|
33
|
Cabaton NJ, Canlet C, Wadia PR, Tremblay-Franco M, Gautier R, Molina J, Sonnenschein C, Cravedi JP, Rubin BS, Soto AM, Zalko D. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:586-93. [PMID: 23425943 PMCID: PMC3673190 DOI: 10.1289/ehp.1205588] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/04/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. Exposure of pregnant rodents to low doses of BPA results in pleiotropic effects in their offspring. OBJECTIVE We used metabolomics--a method for determining metabolic changes in response to nutritional, pharmacological, or toxic stimuli--to examine metabolic shifts induced in vivo by perinatal exposure to low doses of BPA in CD-1 mice. METHODS Male offspring born to pregnant CD-1 mice that were exposed to vehicle or to 0.025, 0.25, or 25 µg BPA/kg body weight/day, from gestation day 8 through day 16 of lactation, were examined on postnatal day (PND) 2 or PND21. Aqueous extracts of newborns (PND2, whole animal) and of livers, brains, and serum samples from PND21 pups were submitted to (1)H nuclear magnetic resonance spectroscopy. Data were analyzed using partial least squares discriminant analysis. RESULTS Examination of endogenous metabolic fingerprints revealed remarkable discrimination in whole extracts of the four PND2 newborn treatment groups, strongly suggesting changes in the global metabolism. Furthermore, statistical analyses of liver, serum, and brain samples collected on PND21 successfully discriminated among treatment groups. Variations in glucose, pyruvate, some amino acids, and neurotransmitters (γ-aminobutyric acid and glutamate) were identified. CONCLUSIONS Low doses of BPA disrupt global metabolism, including energy metabolism and brain function, in perinatally exposed CD-1 mouse pups. Metabolomics can be used to highlight the effects of low doses of endocrine disruptors by linking perinatal exposure to changes in global metabolism.
Collapse
Affiliation(s)
- Nicolas J Cabaton
- Institut National de la Recherche Agronomique, UMR1331, TOXALIM (Research Centre in Food Toxicology), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tse WKF, Yeung BHY, Wan HT, Wong CKC. Early embryogenesis in zebrafish is affected by bisphenol A exposure. Biol Open 2013; 2:466-71. [PMID: 23789094 PMCID: PMC3654264 DOI: 10.1242/bio.20134283] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/25/2013] [Indexed: 11/20/2022] Open
Abstract
Exposure of a developing embryo or fetus to endocrine disrupting chemicals (EDCs) has been hypothesized to increase the propensity of an individual to develop a disease or dysfunction in his/her later life. Although it is important to understand the effects of EDCs on early development in animals, sufficient information about these effects is not available thus far. This is probably because of the technical difficulties in tracing the continuous developmental changes at different stages of mammalian embryos. The zebrafish, an excellent model currently used in developmental biology, provides new insights to the field of toxicological studies. We used the standard whole-mount in situ hybridization screening protocol to determine the early developmental defects in zebrafish embryos exposed to the ubiquitous pollutant, bisphenol A (BPA). Three stages (60–75% epiboly, 8–10 somite, and prim-5) were selected for in situ screening of different molecular markers, whereas BPA exposure altered early dorsoventral (DV) patterning, segmentation, and brain development in zebrafish embryos within 24 hours of exposure.
Collapse
Affiliation(s)
- William K F Tse
- Department of Biology, Hong Kong Baptist University , Kowloon Tong, Hong Kong , China
| | | | | | | |
Collapse
|
35
|
Kuwahara R, Kawaguchi S, Kohara Y, Cui H, Yamashita K. Perinatal Exposure to Low-Dose Bisphenol A Impairs Spatial Learning and Memory in Male Rats. J Pharmacol Sci 2013; 123:132-9. [DOI: 10.1254/jphs.13093fp] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
36
|
Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, Amano K, Sajiki J, Shimizu E. Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:273-9. [PMID: 22760093 DOI: 10.1016/j.pnpbp.2012.06.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical, is widely present in the environment. It has been reported that perinatal exposure to low doses of BPA that are less than the tolerable daily intake level (50μg/kg/day) affects anxiety-like behavior and dopamine levels in the brain. Although the dopaminergic system in the brain is considered to be related to anxiety, no study has reported the effects of low-dose BPA exposure on the dopaminergic system in the brain and on anxiety-like behavior using the same methods of BPA exposure. To investigate the relationship between alterations in anxiety-like behavior and changes in the dopaminergic system in the brain induced by BPA, we examined the effects of BPA on anxiety-like behavior using an open field test in juvenile and adult mice and measured DA and DOPAC levels and the DOPAC/DA ratio in the dorsal hippocampus (HIP), amygdala (AMY), and medulla oblongata (MED) using high-performance liquid chromatography (HPLC) in adult mice. In males, BPA decreased the time spent in the center area of the open field in both juveniles and adults. In addition, BPA increased DA levels in the dorsal HIP and MED and decreased the DOPAC/DA ratio in the dorsal HIP, AMY, and MED in adults. The activity of monoamine oxidase (MAO)-B, the enzyme that metabolizes DA into DOPAC, was reduced in the MED. In females, those changes were not observed. These results suggest that an increase in anxiety-like behavior induced by perinatal exposure to BPA may be related to decreases in DA metabolites in the brain, and there are sex differences in those BPA effects.
Collapse
Affiliation(s)
- Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nelson AM, Long TE. A perspective on emerging polymer technologies for bisphenol-A replacement. POLYM INT 2012. [DOI: 10.1002/pi.4323] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Wolstenholme JT, Edwards M, Shetty SRJ, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ. Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology 2012; 153:3828-38. [PMID: 22707478 PMCID: PMC3404345 DOI: 10.1210/en.2012-1195] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is a plasticizer and an endocrine-disrupting chemical. It is present in a variety of products used daily including food containers, paper, and dental sealants and is now widely detected in human urine and blood. Exposure to BPA during development may affect brain organization and behavior, perhaps as a consequence of its actions as a steroid hormone agonist/antagonist and/or an epigenetic modifier. Here we show that BPA produces transgenerational alterations in genes and behavior. Female mice received phytoestrogen-free chow with or without BPA before mating and throughout gestation. Plasma levels of BPA in supplemented dams were in a range similar to those measured in humans. Juveniles in the first generation exposed to BPA in utero displayed fewer social interactions as compared with control mice, whereas in later generations (F(2) and F(4)), the effect of BPA was to increase these social interactions. Brains from embryos (embryonic d 18.5) exposed to BPA had lower gene transcript levels for several estrogen receptors, oxytocin, and vasopressin as compared with controls; decreased vasopressin mRNA persisted into the F(4) generation, at which time oxytocin was also reduced but only in males. Thus, exposure to a low dose of BPA, only during gestation, has immediate and long-lasting, transgenerational effects on mRNA in brain and social behaviors. Heritable effects of an endocrine-disrupting chemical have implications for complex neurological diseases and highlight the importance of considering gene-environment interactions in the etiology of complex disease.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia, P.O. Box 800733, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 2012; 61:342-62. [DOI: 10.1016/j.neuroimage.2011.12.038] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022] Open
|
40
|
Liu X, Matsushima A, Nakamura M, Costa T, Nose T, Shimohigashi Y. Fine spatial assembly for construction of the phenol-binding pocket to capture bisphenol A in the human nuclear receptor estrogen-related receptor γ. J Biochem 2012; 151:403-15. [PMID: 22298789 DOI: 10.1093/jb/mvs008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Various lines of evidence have shown that bisphenol A (BPA) acts as an endocrine disruptor that affects various hormones even at merely physiological levels. We demonstrated recently that BPA binds strongly to human nuclear receptor estrogen-related receptor γ (ERRγ), one of 48 nuclear receptors. Based on X-ray crystal analysis of the ERRγ ligand-binding domain (LBD)/BPA complex, we demonstrated that ERRγ receptor residues, Glu275 and Arg316, function as the intrinsic-binding site of the phenol-hydroxyl group of BPA. If these phenol-hydroxyl↔Glu275 and Arg316 hydrogen bonds anchor the A-benzene ring of BPA, the benzene-phenyl group of BPA would be in a pocket constructed by specific amino acid side chain structures. In the present study, by evaluating the Ala-replaced mutant receptors, we identified such a ligand-binding pocket. Leu268, Leu271, Leu309 and Tyr326, in addition to the previously reported participants Glu275 and Arg316, were found to make a receptacle pocket for the A-ring, whereas Ile279, Ile310 and Val313 were found to assist or structurally support these residues. The results revealed that each amino acid residue is an essential structural element for the strong binding of BPA to ERRγ.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Chemistry, Laboratory of Structure-Function Biochemistry, Risk Science Research Center, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|