1
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
El-Dawy K, Barakat N, Ali H, Sindi IA, Adly HM, Saleh SA. Dexpanthenol improved stem cells against cisplatin-induced kidney injury by inhibition of TNF-α, TGFβ-1, β-catenin, and fibronectin pathways. Saudi J Biol Sci 2023; 30:103773. [PMID: 37635837 PMCID: PMC10450985 DOI: 10.1016/j.sjbs.2023.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cisplatin interacts with DNA and induces an immunological response and reactive oxygen species, which are nephrotoxic mediators. Stem cells self-renew through symmetric divisions and can develop into other cell types due to their multipotency. Dexpanthenol has been proven to protect against renal injury. Aim This study aims to demonstrate that dexpanthenol could improve the effect of adipose-derived mesenchymal stem cells (ADMSC) against cisplatin-induced acute kidney injury. Methods Sixty male Sprague-Dawley rats were divided into 5 groups (N = 12): control, cisplatin, cisplatin & dexpanthenol, cisplatin & ADMSC, and cisplatin & dexpanthenol & ADMSCs. On the 5th day following cisplatin injection, half the rats in each group were sacrificed, and the other half were sacrificed on the 12th day. Histopathological examination, molecular studies (IL-6, Bcl2, TGFβ-1, Caspase-3, Fibronectin, and β-catenin), antioxidants (superoxide dismutase and catalase), and renal function were all investigated. Results In contrast to cisplatin group, the dexpanthenol and ADMSCs treatments significantly decreased renal function and oxidative stress while significantly enhancing antioxidants. Dexpanthenol improved stem cells by significantly down-regulating caspase-3, IL-6, TGF-β1, Fibronectin, and β-catenin and significantly up-regulating Bcl2 and CD34, which reversed the cisplatin effect. Conclusion Dexpanthenol enhanced ADMSCs' ability to protect against cisplatin-induced AKI by decreasing inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Khalifa El-Dawy
- Biochemistry Dept., Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Hala Ali
- Biochemistry Dept., Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ikhlas A. Sindi
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Adly
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A.K. Saleh
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo 11435, Egypt
| |
Collapse
|
3
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
4
|
Bagheri-Mohammadi S. Stem cell-based therapy as a promising approach in Alzheimer's disease: current perspectives on novel treatment. Cell Tissue Bank 2021; 22:339-353. [PMID: 33398492 DOI: 10.1007/s10561-020-09896-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neuronal disorder with insidious onset and slow progression, leading to growing global concern with huge implications for individuals and society. The occurrence of AD has been increased and has become an important health issue throughout the world. In recent years, the care of more than 35 million patients with AD costs over $ 600 billion per year, it is approximately 1 percent of the global Gross Domestic Product. Currently, the therapeutic approach is not effective for neurological deficits especially after the development of these major neurological disorders. The discovery of the technique called cell-based therapy has shown promising results and made important conclusions beyond AD using the stem cells approach. Here we review recent progress on stem cell-based therapy in the context of AD.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Zhang X, Zhang L, Li Y, Yin Z, Feng Y, Ji Y. Human umbilical cord mesenchymal stem cells (hUCMSCs) promotes the recovery of ovarian function in a rat model of premature ovarian failure (POF). Gynecol Endocrinol 2021; 37:353-357. [PMID: 33491494 DOI: 10.1080/09513590.2021.1878133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS Our study was to evaluate the benefits of human umbilical cord mesenchymal stem cells (hUCMSCs) for the prevention of premature ovarian failure (POF) in a rat model. MATERIALS AND METHODS 80 female SD rats aged between 6 and 8 weeks were randomly divided into 4 groups A, B, C and D. Rats in group A is normal control group; group B, C and D received zona pellucida glycoprotein 3 (pZP3) administration to induce POF model. Among these, group B is model control group; group C received PBS injection in ovaries and group D received hUCMSCs injection in ovaries, all injections were performed after modeling on the same day. Estrus cycle; serum hormone level of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and amount of ovarian follicles were detected 20 days after treatment. RESULTS We successfully injected hUCMSCs in the ovary tissue of a POF rat. The estrus cycle and hormone expression of the rats in group D tends to be normal. Histological studies indicated that hUCMSCs transplantation increased the amount of ovarian follicles. CONCLUSIONS This study shows that hUCMSCs may have a preventive effect on POF rats.
Collapse
Affiliation(s)
- Xunyi Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Li
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Yin
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Feng
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yazhong Ji
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021; 216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability development and interrupts neurocognitive function. This neuropathological condition is depicted by neurodegeneration, neural loss, and development of neurofibrillary tangles and Aβ plaques. There is also a greater risk of developing AD at a later age for people with cardiovascular diseases, hypertension and diabetes. In the biomedical sciences, effective treatment for Alzheimer's disease is a severe obstacle. There is no such treatment to cure Alzheimer's disease. The drug present in the market show only symptomatic relief. The cause of Alzheimer's disease is not fully understood and the blood-brain barrier restricts drug efficacy are two main factors that hamper research. Stem cell-based therapy has been seen as an effective, secure, and creative therapeutic solution to overcoming AD because of AD's multifactorial nature and inadequate care. Current developments in nanotechnology often offer possibilities for the delivery of active drug candidates to address certain limitations. The key nanoformulations being tested against AD include polymeric nanoparticles (NP), inorganic NPs and lipid-based NPs. Nano drug delivery systems are promising vehicles for targeting several therapeutic moieties by easing drug molecules' penetration across the CNS and improving their bioavailability. In this review, we focus on the causes of the AD and their treatment by different approaches.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Differentiation of Motor Neuron-Like Cells from Tonsil-Derived Mesenchymal Stem Cells and Their Possible Application to Neuromuscular Junction Formation. Int J Mol Sci 2019; 20:ijms20112702. [PMID: 31159418 PMCID: PMC6600529 DOI: 10.3390/ijms20112702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Human tonsil-derived mesenchymal stem cells (T-MSCs) are newly identified MSCs and present typical features of MSCs, including having the differentiation capacity into the three germ layers and excellent proliferation capacity. They are easily sourced and are useful for stem cell therapy in various disease states. We previously reported that T-MSCs could be differentiated into skeletal myocytes and Schwann-like cells; therefore, they are a promising candidate for cell therapies for neuromuscular disease. Motor neurons (MNs), which regulate spontaneous behavior, are affected by a wide range of MN diseases (MNDs) for which there are no effective remedies. We investigated the differentiation potential of MN-like cells derived from T-MSCs (T-MSC-MNCs) for application to therapy of MNDs. After the process of MN differentiation, the expression of MN-related markers, including Islet 1, HB9/HLXB9 (HB9), and choline acetyltransferase (ChAT), was increased when compared with undifferentiated T-MSCs. The secretion of acetylcholine to the conditioned medium was significantly increased after MN differentiation. We cocultured T-MSC-MNCs and human skeletal muscle cells, and confirmed the presence of the acetylcholine receptor clusters, which demonstrated the formation of neuromuscular junctions. The potential functional improvements afforded by these T-MSC-MNCs could be useful in the treatment of MNDs caused by genetic mutation, viral infection, or environmental problems.
Collapse
|
8
|
Liu H, Xia J, Wang T, Li W, Song Y, Tan G. Differentiation of human glioblastoma U87 cells into cholinergic neuron. Neurosci Lett 2019; 704:1-7. [PMID: 30928478 DOI: 10.1016/j.neulet.2019.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
To facilitate research methodologies for investigating the role of cholinergic nerves in many diseases, establishing an in vitro cholinergic neuron model is necessary. In this study, we investigated whether human glioblastoma U87 cells could be differentiated into cholinergic neurons in vitro. Sodium butyrate was used as the differentiation agent. The differentiated cells established by inducing U87 cells with sodium butyrate were named D-U87 cells. Immunofluorescence was used to label the neuronal markers MAP2, NF-M, and ChAT and the glial marker GFAP in D-U87 cells. Flow cytometry was used to measure cell cycle distribution in D-U87 cells. PCR, protein chip, and western blot assays were used to measure the expression levels of muscarinic cholinergic receptor 1 (M1), M4, ChAT, SYP and Akt. ELISA was used to measure neurotransmitter levels. As a result, we found that sodium butyrate induced U87 cell differentiation into cells with neuronal characteristics and increased not only the expression levels of the cholinergic neuron-related proteins M1, M4, ChAT and SYP in D-U87 cells but also the acetylcholine neurotransmitters in D-U87 cells. Moreover, the Akt protein expression in D-U87 cells was increased compared with that in U87 cells. Finally, we found that M1, M4, ChAT and SYP protein expression and acetylcholine secretion levels were significantly decreased in D-U87 cells after treatment with the Akt inhibitor MK-2206. These results demonstrate that D-U87 cells exhibit cholinergic neuron characteristics and that sodium butyrate induced U87 cell differentiation into cholinergic neuron partially through Akt signaling.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Jinye Xia
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Tiansheng Wang
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Wei Li
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Yexun Song
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Guolin Tan
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
9
|
Wu JH, Li M, Liang Y, Lu T, Duan CY. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro. Chin Med J (Engl) 2017; 129:1592-9. [PMID: 27364797 PMCID: PMC4931267 DOI: 10.4103/0366-6999.184464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. METHODS ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. RESULTS Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). CONCLUSIONS Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs.
Collapse
Affiliation(s)
- Jian-Huang Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Liang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Lu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Yue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
10
|
Lee JH, Oh IH, Lim HK. Stem Cell Therapy: A Prospective Treatment for Alzheimer's Disease. Psychiatry Investig 2016; 13:583-589. [PMID: 27909447 PMCID: PMC5128344 DOI: 10.4306/pi.2016.13.6.583] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) without cure remains as a serious health issue in the modern society. The major neuropathological alterations in AD are characterized by chronic neuroinflammation and neuronal loss due to neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau, plaques of β-amyloid (Aβ) and various metabolic dysfunctions. Due to the multifaceted nature of AD pathology and our limited understanding on its etiology, AD is difficult to be treated with currently available pharmaceuticals. This unmet need, however, could be met with stem cell technology that can be engineered to replace neuronal loss in AD patients. Although stem cell therapy for AD is only in its development stages, it has vast potential uses ranging from replacement therapy to disease modelling and drug development. Current progress with stem cells in animal model studies offers promising results for the new prospective treatment for AD. This review will discuss the characteristics of AD, current progress in stem cell therapy and remaining challenges and promises in its development.
Collapse
Affiliation(s)
- Ji Han Lee
- Washington University in St. Louis, St. Louis, MO, USA
| | - Il-Hoan Oh
- The Catholic High-Performance Cell Therapy Center & Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues. Sci Rep 2016; 6:23544. [PMID: 27045658 PMCID: PMC4820697 DOI: 10.1038/srep23544] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Human perinatal tissue is an abundant source of mesenchymal stromal cells(MSCs) and lacks the ethical concerns. Perinatal MSCs can be obtained from various tissues as like amnion, chorion, and umbilical cord. Still, little is known of the distinct nature of each MSC type. In this study, we successfully isolated and cultured MSCs from amnion(AMSCs), chorion(CMSCs), and umbilical cord(UC-MSCs). Proliferation potential was different among them, that AMSCs revealed the lowest proliferation rate due to increased Annexin V and senescence-associated β-galactosidase positive cells. We demonstrated distinct characteristic gene expression according to the source of the original tissue using microarray. In particular, genes associated with apoptosis and senescence including CDKN2A were up-regulated in AMSCs. In CMSCs, genes associated with heart morphogenesis and blood circulation including HTR2B were up-regulated. Genes associated with neurological system processes including NPY were up-regulated in UC-MSCs. Quantitative RT-PCR confirmed the gene expression data. And in vitro differentiation of MSCs demonstrated that CMSCs and UC-MSCs had a more pronounced ability to differentiate into cardiomyocyte and neural cells, respectively. This study firstly demonstrated the innate tissue-specific differentiation potency of perinatal MSCs which can be helpful in choosing more adequate cell sources for better outcome in a specific disease.
Collapse
|
12
|
Moghadasi Boroujeni S, Mashayekhan S, Vakilian S, Ardeshirylajimi A, Soleimani M. The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2016; 104:1610-21. [DOI: 10.1002/jbm.a.35686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Affiliation(s)
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran 11365-8639 Iran
| | - Saeid Vakilian
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran 11365-8639 Iran
- Stem Cell Technology Research Center; Tehran 1997775555 Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences; Tarbiat Modarres University; Tehran 14115-111 Iran
| |
Collapse
|
13
|
Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid. Best Pract Res Clin Obstet Gynaecol 2015; 31:30-44. [PMID: 26482184 DOI: 10.1016/j.bpobgyn.2015.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Collapse
Affiliation(s)
- Marianne S Joerger-Messerli
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Caterina Marx
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Byron Oppliger
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| | - Daniel V Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Eftekhar-Vaghefi SH, Zahmatkesh L, Salehinejad P, Totonchi S, Shams-Ara A. Evaluation of neurogenic potential of human umbilical cord mesenchymal cells; a time- and concentration-dependent manner. IRANIAN BIOMEDICAL JOURNAL 2015; 19:82-90. [PMID: 25864812 PMCID: PMC4412918 DOI: 10.6091/ibj.1452.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipogenic and osteogenic cells were tested. hUCM were then cultured with different concentrations of retinoic acid, and on days 1, 7, and 12, the percentage of differentiated cells was determined by immunostaining for nestin, anti-microtubule associated protein 2 (MAP2), glutamic acid decarboxylase (GAD), and gamma-aminobutyric acid (GABA) markers. Results: The isolated cells were negative for the hematopoietic markers and positive for the mesenchymal markers. They showed the population doubling time 60 ± 3 hours and differentiated into osteogenic and adipogenic cells. A descending trend in nestin and an ascending trend in MAP2, GAD, and GABA expression were observed from the first day until the last day between different concentrations of retinoic acid. Conclusion: hUCM cells may have the potential to differentiate into neural cells in the presence of different incubation period and concentration of retinoic acid.
Collapse
Affiliation(s)
| | - Leila Zahmatkesh
- Dept. of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman , Iran
| | - Parvin Salehinejad
- Dept. of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman , Iran
| | - Shahin Totonchi
- School of Medicine,
Yazd University of Medical Sciences, Yazd, Iran
| | - Ali Shams-Ara
- Dept. of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman , Iran
| |
Collapse
|
15
|
Jadalannagari S, Aljitawi OS. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:314-22. [PMID: 25517045 DOI: 10.1089/ten.teb.2014.0404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.
Collapse
Affiliation(s)
| | - Omar S Aljitawi
- 1Department of Bioengineering, University of Kansas, Lawrence, Kansas.,2Department of Hematology/Oncology, Blood and Marrow Transplant Program, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Efficient and sustained IGF-1 expression in the adipose tissue-derived stem cells mediated via a lentiviral vector. J Mol Histol 2014; 46:1-11. [DOI: 10.1007/s10735-014-9599-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/12/2014] [Indexed: 12/29/2022]
|
17
|
Zhou J, Tian G, Wang J, Luo X, Zhang S, Li J, Li L, Xu B, Zhu F, Wang X, Jia C, Zhao W, Zhao D, Xu A. Neural cell injury microenvironment induces neural differentiation of human umbilical cord mesenchymal stem cells. Neural Regen Res 2014; 7:2689-97. [PMID: 25337115 PMCID: PMC4200737 DOI: 10.3969/j.issn.1673-5374.2012.34.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation. hUCMSCs were co-cultured with normal or Aβ1-40-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural cells.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Guoping Tian
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Jinge Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xiaoguang Luo
- First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Siyang Zhang
- College of Basic Medical Sciences, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jianping Li
- Liaoning Provincial Blood Center, Shenyang 110044, Liaoning Province, China
| | - Li Li
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Bing Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Feng Zhu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xia Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Chunhong Jia
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Weijin Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Danyang Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Aihua Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| |
Collapse
|
18
|
Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R, Das AK. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 2014; 39:157-69. [PMID: 24499800 DOI: 10.1007/s12038-013-9409-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriatemerits of different sources ofMSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.
Collapse
Affiliation(s)
- Ramyani Taran
- Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li Z, Qin H, Feng Z, Liu W, Zhou Y, Yang L, Zhao W, Li Y. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res 2014; 8:3441-8. [PMID: 25206667 PMCID: PMC4146003 DOI: 10.3969/j.issn.1673-5374.2013.36.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55–65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.
Collapse
Affiliation(s)
- Zhi Li
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Hanjiao Qin
- Department of Endocrinology and Metabolism, First Clinical Hospital of Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin Province, China
| | - Zishan Feng
- Shengjing Hospital, China Medical University, Shenyang 110000, Liaoning Province, China
| | - Wei Liu
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Ye Zhou
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Lifeng Yang
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Wei Zhao
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Youjun Li
- Department of Human Anatomy and Histoembryology, Norman Bethune University of Medical Science, Changchun 130000, Jilin Province, China
| |
Collapse
|
20
|
Liu X, Li D, Jiang D, Fang Y. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells. Neural Regen Res 2014; 8:2086-92. [PMID: 25206517 PMCID: PMC4146069 DOI: 10.3969/j.issn.1673-5374.2013.22.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fibroblast growth factor. Results confirmed that cell morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtubule-associated protein-2 expression and acetylcholine levels increased following induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyltransferase expression was high following inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differentiation of umbilical cord mesenchymal stem cells into motor neuron-like cells. Simultaneously, umbilical cord mesenchymal stem cells could secrete acetylcholine.
Collapse
Affiliation(s)
- Xueyuan Liu
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Dehua Li
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Dong Jiang
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Yan Fang
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
21
|
Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A, Roudkenar MH. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 2014; 19:657-66. [PMID: 24464492 PMCID: PMC4147073 DOI: 10.1007/s12192-014-0491-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/01/2014] [Indexed: 12/18/2022] Open
Abstract
Due to the limitations in the clinical application of embryonic stem cells (ESC) and induced pluripotent stem cells, mesenchymal stem cells (MSCs) are now much more interesting for cell-based therapy. Although MSCs have several advantages, they are not capable of differentiating to all three embryonic layers (three germ layers) without cultivation under specific induction media. Hence, improvement of MSCs for cell therapy purposes is under intensive study now. In this study, we isolated MSCs from umbilical cord tissue at the single-cell level, by treatment with trypsin, followed by cultivation under suspension conditions to form a colony. These colonies were trypsin resistant, capable of self-renewal differentiation to the three germ layers without any induction, and they were somewhat similar to ESC colonies. The cells were able to grow in both adherent and suspension culture conditions, expressed both the MSCs markers, especially CD105, and the multipotency markers, i.e., SSEA-3, and had a limited lifespan. The cells were expanded under simple culture conditions at the single-cell level and were homogenous. Further and complementary studies are required to understand how trypsin-tolerant mesenchymal stem cells are established. However, our study suggested non-embryonic resources for future cell-based therapy.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Raheleh Halabian
- />Applied Microbiology Research Center, Medical Science of Baqiyatallah University, Tehran, Iran
| | - Morteza Salimian
- />Department of Medical Laboratory, Kashan University of Medical Sciences and Health, Kashan, Iran
| | | | - Masoud Soleimani
- />Department of Hematology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology and Bioinformatics Research Center, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
22
|
Mruthyunjaya S, Parveen D, Shah RD, Manchanda R, Godbole R, Vasudevan M, Shastry P. Gene expression analysis of laminin-1-induced neurite outgrowth in human mesenchymal stem cells derived from bone marrow. J Biomed Mater Res A 2014; 103:746-61. [DOI: 10.1002/jbm.a.35221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
- S. Mruthyunjaya
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | - D. Parveen
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | - Reecha D. Shah
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| | | | | | | | - Padma Shastry
- National centre for Cell Science (NCCS); University of Pune; Ganeshkhind Pune 411007 India
| |
Collapse
|
23
|
Fan X, Sun D, Tang X, Cai Y, Yin ZQ, Xu H. Stem-cell challenges in the treatment of Alzheimer's disease: a long way from bench to bedside. Med Res Rev 2014; 34:957-78. [PMID: 24500883 DOI: 10.1002/med.21309] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, and its neuropathology is characterized by deposition of insoluble β-amyloid peptides, intracellular neurofibrillary tangles, and the loss of diverse neurons. Current pharmacological treatments for AD relieve symptoms without affecting the major pathological characteristics of the disease. Therefore, it is essential to develop new and effective therapies. Stem-cell types include tissue-specific stem cells, such as neural stem cells and mesenchymal stem cells, embryonic stem cells derived from blastocysts, and induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells. Recent preclinical evidence suggests that stem cells can be used to treat or model AD. The mechanisms of stem cell based therapies for AD include stem cell mediated neuroprotection and trophic actions, antiamyloidogenesis, beneficial immune modulation, and the replacement of the lost neurons. iPSCs have been recently used to model AD, investigate sporadic and familial AD pathogenesis, and screen for anti-AD drugs. Although considerable progress has been achieved, a series of challenges must be overcome before stem cell based cell therapies are used clinically for AD patients. This review highlights the recent experimental and preclinical progress of stem-cell therapies for AD, and discusses the translational challenges of their clinical application.
Collapse
Affiliation(s)
- Xiaotang Fan
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Zhang X, Zhang Q, Li W, Nie D, Chen W, Xu C, Yi X, Shi J, Tian M, Qin J, Jin G, Tu W. Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy. J Neurosci Res 2013; 92:35-45. [PMID: 24265136 DOI: 10.1002/jnr.23304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/28/2013] [Accepted: 08/29/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Xinhua Zhang
- Department of Pediatrics; Changzhou Children's Hospital; Changzhou Jiangsu China
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Qinfen Zhang
- Department of Pediatrics; Changzhou Children's Hospital; Changzhou Jiangsu China
| | - Wei Li
- Jiangsu Beike Biotechnology Ltd.; Taizhou Jiangsu China
| | - Dekang Nie
- Department of Neurosurgery; Affiliated Hospital of Nantong University; Nantong Jiangsu China
| | - Weiwei Chen
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Chunxiang Xu
- Department of Pediatrics; Changzhou Children's Hospital; Changzhou Jiangsu China
| | - Xin Yi
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Jinhong Shi
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Meiling Tian
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Jianbing Qin
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Guohua Jin
- Department of Anatomy; Nantong University; Nantong Jiangsu China
| | - Wenjuan Tu
- Department of Pediatrics; Changzhou Children's Hospital; Changzhou Jiangsu China
| |
Collapse
|
25
|
|
26
|
Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2013; 2:284-96. [PMID: 23486833 PMCID: PMC3659839 DOI: 10.5966/sctm.2012-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.
Collapse
Affiliation(s)
| | | | - Bernard Rogister
- Neurosciences Unit and
- Development, Stem Cells and Regenerative Medicine Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | | |
Collapse
|
27
|
Neurotrophin-induced migration and neuronal differentiation of multipotent astrocytic stem cells in vitro. PLoS One 2012; 7:e51706. [PMID: 23251608 PMCID: PMC3520915 DOI: 10.1371/journal.pone.0051706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/05/2012] [Indexed: 01/02/2023] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) affects 2-3 per 1000 full-term neonates. Up to 75% of newborns with severe HIE die or have severe neurological handicaps. Stem cell therapy offers the potential to replace HIE-damaged cells and enhances the autoregeneration process. Our laboratory implanted Multipotent Astrocytic Stem Cells (MASCs) into a neonatal rat model of hypoxia-ischemia (HI) and demonstrated that MASCs move to areas of injury in the cortex and hippocampus. However, only a small proportion of the implanted MASCs differentiated into neurons. MASCs injected into control pups did not move into the cortex or differentiate into neurons. We do not know the mechanism by which the MASCs moved from the site of injection to the injured cortex. We found neurotrophins present after the hypoxic-ischemic milieu and hypothesized that neurotrophins could enhance the migration and differentiation of MASCs. Using a Boyden chamber device, we demonstrated that neurotrophins potentiate the in vitro migration of stem cells. NGF, GDNF, BDNF and NT-3 increased stem cell migration when compared to a chemokinesis control. Also, MASCs had increased differentiation toward neuronal phenotypes when these neurotrophins were added to MASC culture tissue. Due to this finding, we believed neurotrophins could guide migration and differentiation of stem cell transplants after brain injury.
Collapse
|